ELEKTRO INDONESIA Edisi Perdana, Maret 1996
TELEKOMUNIKASI
Kontrol Kongesti pada Jaringan Frame Relay
Pendahuluan
Terjadinya kontrol kongesti pada jaringan bila terjadi kelebihan beban.
Ada dua kemungkinan mengatasi kelebihan beban dalam jaringan :
-
Panggilan yang baru di blok,dan
-
Menyesuaikan dengan situasi jaringan (membuat sumber- sumber baru atau
dengan mengurangi perintah di dalam jaringan atau dengan mengurangi tambahan
servis).
Suatu jaringan Frame Relay membawa keuntungan data "bursty" pada
trafik sebagaimana keputusan memblok panggilan baru hanya dilaksanakan
jika kapasitas kombinasi rata-rata (tidak maksimum) pada arus panggilan
akan dilebihkan. Solusi dari kongesti dalam jaringan Frame Relay adalah
mencoba mengadabtasikan jumlah masukan dari frame-frame ke dalam
bagian arus kongesti. Sebab "flow control" tidak tersedia pada layer-2
interface user-network (flow control dalam Frame Relay terjadi pada
end-to-end), ini tidak dapat digunakan untuk mengontrol "kongesti"
seperti kasus dalam beberapa jaringan packet-switch. Atau jika terjadi
kongesti, masing-masing user harus mendeteksi kongesti secara "implisit"(dengan
mengamati beberapa penggunaan servis), atau ketika jaringan mendeteksi
suatu keadaan kongesti, secara "eksplisit" harus diberitahukan kepada user.
User harus mengambil tindakan mengurangi jumlah frame-frame
yang dimasukkan ke dalam jaringan.
Kongesti terjadi ketika sumber jaringan kelebihan beban, sumber
akan menjadi individual transmission link, kelompok buffer
penuh pada node-intermediate atau pada sistem tujuan atau proses
dalam salah satu dari sistem-sistem ini. Kongesti mungkin juga terjadi
karena adanya gangguan.
Bahwa kontrol kongesti tidak dapat tercapai dengan menambahkan
sumber-sumber dalam jaringan dalam formasi kapasitas buffer atau
menambah kecepatan link lebih tinggi. Kedua-duanya tidak dapat dikontrol
dengan konfigurasi balans; sebab kejadian trafik dapat diramalkan,
kemacetan masih dapat terjadi. Kongesti mungkin "inherent" terjadi
dalam beberapa jaringan packet dan jaringan Frame Relay tanpa kecuali.
Sebab itu hal ini penting untuk memiliki "strategi" kontrol kongesti untuk
jaringan Frame Relay.
Jika beban trafik terus meningkat, kongesti akan menjadi semakin
serius (parah) dan beban prosesor sistem akan semakin berat, serta dapat
mengakibatkan kegagalan sistem. Untuk mencegah terjadinya kegagalan sistem
ini, diperlukan suatu kontrol kongesti yang dapat mengurangi beban sistem.
Indikator-indikator dan cara mengatasi kongesti
Gambar 1 menunjukkan bentuk karakteristik kinerja
throughput dari sebuah jaringan"store" dan "forward".
Kurva dapat dibagi menjadi 3 (tiga) daerah kongesti dari level jaringan.
Daerah-daerah ini dapat dianggap sebagai indikator-indikator kongesti yang
mana mungkin dilakukan pendekatan untuk melakukan pengontrolan kongesti
dalam masing-masing daerah tersebut. Daerah di bawah menunjukkan tidak
ada kongesti. Kongesti "moderat" terjadi antara "knee" dan "cliff",
sumber-sumber bisa saja melebihi dan sesuai dengan Qualiy of Service (QOS)
(throughput, delay atau frame loss) tidak dapat dipertahankan.
Dengan menetapkan daerah kinerja jaringan suatu pendekatan skema
kongesti dapat diimplementasikan untuk mengatasi kongesti yang mana akan
mengarahkan bentuk kurva dengan 2 (dua) daerah pertama dan mencegahnya
melewati daerah cliff. Rencana penanggulangan kongesti memiliki
banyak obyek angka masukan frame discard yang diminimumkan, mempertahankan
QOS, mencegah suatu single-user dari monopoli penggunaan jaringan
dan membatasi timbulnya kongesti pada jaringan tersebut atau pada jaringan
yang lain. Suatu rencana pencegahan yang baik akan jadi mudah untuk dilaksanakan
dan akan menghasilkan penambahan jaringan trafik minimal.
Pendekatan untuk kontrol kongesti dalam jaringan Frame Relay
Ada 3 (tiga) pendekatan utama untuk kontrol kongesti dalam jaringan Frame
Relay :
-
User mendeteksi secara implisit daerah kongesti pada jaringan,
-
User dapat mengindikasi jaringan yang mana dari frame-frame
mungkin dibuang pada saat terjadi kongesti, dan
-
Pemberitahuan diberikan pada user pada saat jaringan itu sendiri mendeteksi
adanya kongesti.
CCITT memberikan Rekomendasi I.370 tentang manajemen kongesti untuk ISDN
tentang frame relaying bearer service, yaitu tindakan untuk menyelesaikan
pencegahan kongesti dihubungkan dengan respon pada jaringan dan end-
user. Rekomendasi juga menetapkan bahwa meskipun pemberitahuan kongesti
tidak sesuai perintah, ini sangat diperlukan.
User dapat menetapkan kongesti yang implisit didasarkan
pada suatu jumlah parameter-parameter sebagai contoh jumlah REJ yang diterima,
rate kehilangan frame yang terjadi atau throughput dari
call. Kontrol biasanya digunakan dengan memvariasikan ukuran window.
Untuk contoh di dalam sistem prediksi-dasar yang digambarkan belakangan
ini, perbedaan window meningkatkan/menurunkan "algoritma" yang digunakan
tergantung daerah kongesti mana yang diantisipasi.
Di dalam rencana (scheme) Bandwidth Management (BMW), end-user
menegosiasi dengan jaringan selama tahap pembentukan call bagi suatu
jaminan throughput (Committed Information Rate = CIR). Selama
tahap pentransferan data, jaringan memonitor rate dari frame
yang mana yang dikirim oleh end-user. Jika rate kedatangan
berlebihan sesuai throughput yang disetujui, beberapa frame dikirim
di atas level yang diberi label (menggunakan indikator Discard
Eligibility = DE) sesuai kelebihan frame. Frame-frame yang dikirim
di bawah level diberi label committed frames. Pada saat jaringan
terjadi kongesti, kelebihan frame dibuang. Ketika tidak terjadi
kongesti, end-user mungkin meningkatkan rate pengiriman di
atas negosiasi yang disetujui. Penerapan BMW untuk call admittance dan
kontrol kongesti digunakan dalam jaringan ATM.
Secara eksplisit skema dasar pada jaringan mengetahui antrian
buffer occupancy dan tingkat yang mana dari link individu
yang mungkin overload (kelebihan beban). Informasi Explicit Binary Feedback
(EBF) dapat digunakan langsung pada kondisi kongesti, dan dalam rekomendasi
I.370 menjelaskan daerah kongesti. Untuk transfer kontrol-tujuan (tempat
untuk rate-control yang mana biasanya berfungsi pada layer-transport)
untuk meneruskanpemberitahuan kongesti secara eksplisit. Dalam keadaaan
transfer kontrol-sumber (dimana informasi menyusun window dengan
baik) mengirimkan informasi langsung pada backward memberitahu kongesti
secara eksplisit. Pemberitahuan yang mungkin dapat mengidikasikan letak
dalam frame yang menormalkan travelling langsung tepat pada
sisa overhead (di atas) dengan teknik pendekatan.
Satu lagi bentuk secara eksplisit yang betul-betul dipertimbangkan
untuk panggilan Stop Duration. Dalam skema, jaringan secara terus-menerus
memonitor kedatangan frame-frame di dalam buffer. Jika penempatan
frame yang lain dapat menekan dalam buffer- occupancy melebihi
beberapa threshold, pengiriman akan "stop message" oleh jaringan
ke pengirim end-user menjawab dan seluruhnya berhenti pada trafik
layer-3. Selama parameter dibawa dalam menentukan "stop message"
setelah periode yang mana boleh mengirim lagi ke trafik.
Teknik prediksi untuk mengatasi kongesti
Teknik menghindari kongesti secara implisit digunakan metode dasar prediksi
dengan metode Kalman-filter, dengan menggunakan Kalman Congestion Avoidance
Scheme (CAS). Observasi throughput pada level particular virtual
circuit dapat digunakan untuk menyimpulkan mengenai gambaran status
kongesti dalam jaringan. Pengiriman user dapat digunakan sebagai
aksi pencegahan untuk menghindari kongesti sebelum benar-benar terjadi,
atau alternatif/kemungkinan lain terjadi penambahan jumlah aliran trafik
yang diharapkan dapat mengantisipasi beban pada jaringan.
Skema ini memerlukan 4 (empat) tahap :
-
Observasi throughput.
-
Membuat prediksi level kongesti.
-
Keputusan dibuat sesuai untuk menambah atau mengurangi beban trafik.
-
Window ditambahkan atau dikurangi dalam line dengan tegas.
Perputaran diulang pada beberapa preset interval pengamatan.
Kesimpulan
Solusi terbaik bagi kontrol kongesti dalam jaringan Frame Relay adalah
satu dasar dalam penanggulangan kongesti lebih baik dari pada pendeteksian
yang sederhana dan penemuan kembali (recorvery) dan ini telah ditetapkan
dalam rekomendasi CCITT.
Teknik dasar prediksi kita seringkali menggunakan pendekatan untuk
penanggulangan kongesti dan akan bekerja ketika jaringan tidak memberikan
pemberitahuan adanya kongesti pada user. Hal ini tidak memerlukan
kerja lebih dengan jaringan dan frame-frame untuk implementasi.
Ini seperti halnya suatu kombinasi dari skema ini dengan beberapa bentuk
pemberitahuan yang eksplisit akan menjadi suatu kekuatan penuh untuk mencegah
terjadinya kongesti di dalam jaringan Frame Relay.
Daftar pustaka
-
A.G. Waters and K.Ab. Hamid, "Congestion Control for Frame Relay Networks",
CDROM BPPT Jakarta, 1995.
-
Darren L.Spohn, "Data Network Design", McGraw-Hill, Inc., 1993.
-
Frank J.Derfler, Jr., "PC Magazine Guide to Linkins LAN'S", Ziff.
Davis Press, 1992.
-
Kim-Joan Chen and Kiran M.Rege, "A Comparative Performance Study of
Various Congestion for ISDN Frame Relay Networks", IEEE 1989.
-
Lynn A. Neir & David W.Petr, "Time-to-delivery queuing : A Multi
Purpose Resource Allocation and Congestion Control Technique", IEEE
1993.
Ir. Syafruddin Syarif tinggal di Bandung
The MSS Spectrum Requirements for The Asia-Pacific
(ELEKTRO No. 6, August 1995)
Introduction
The international telecommunications community has experienced in the past
view years a most prodigious change in the radio regulation and frequency
spectrum re-allocation. The advent of the new MSS concepts and its feeder
links have led to an avid requirement of new frequencies, despite of a
very limited spectrum resource that operators operate with many constraints.
Such an exigency will certainly affect the operationability and the future
of different existing installations that make use of the pertinent spectrum
globally. Apparently however the most grieved parties would certainly be
such of the developing nations.
Figure 1 depicts a severe overlapping situation that the future MSS
allocated spectrums will be in conflict with those of the present terrestrial
fixed services.
The coming WRC-95 in Geneva November 1995 shall attempt to shed a light
of relevant problems in particular to pursuing the measures to this very
spectrum coordination equation. Judgement from various operators will seemingly
be predominated by the oblique idea of heavy investment being made in the
past in the realm of fixed services. That a large amount of existing backbone
terrestrial system in place should prevent the use of MSS system despite
its potential to relieve great many problems in developing very basic telecommunications
infrastructure in most developing countries.
The November 95 conference shall urge some future CPM to perform a more
thorough and realistic study in view of the terrestrial fixed service-MSS
tradeoffs. We have thought that compromise measures based upon more accurate
result of the MSS bandwidth requirement prediction and existing data on
the present and future investments on the Non-MSS systems, shall be exercised.
This paper present some preliminary analysis to the said equation.
The MSS Spectrum Requirements
Asia and the Pacific represent a unique but important telecommunications
problem. Here are some statistics underlying that potent requirement.
-
Ensemble of telecommunications-related parameters of various countries
[see Table 1]
-
Prediction of mobile, rural and remote communications users which call
for MSS capacity.
We should also note the difficulty in which terrestrial systems encounter
in fulfilling the demand especially those prevailing in the rural, remote
and harsh areas : deserts, islands, isolated communities, in economically
and timely.The recent studies [CPM] on bandwidth requirements of the MSS
have come up with preliminary results as follows: (Table 2).
MSS Frequency Coordinations Problems
The CPM 95, a conference of Preparatory Meeting which has been held in
Genewa from 22 March to 4 April 1995, has come up with interesting results
as regard to the spectrum sharing problems between MSS and other services,
in particular the Fixed Services. The conference has also noted different
level of difficulties in sharing the frequency bands, and in view of the
necessary introduction of certain MSS service, options in some regulatory
aspects have been proposed.
In spite of the various WARC92 bands allocated for the MSS service,
however the CPM95 has put a focus on the bands that will be of immediate
interest for the implementations of some MSS. It seems that there is still
a long way to arrive to a state where significant agreement on the sharing
possibilities based upon coexistence between MSS and the rest of the services
can be achieved. This in part is due to the high investments already in
place for different service, in the developing countries.
Although some of the problems are under study, it is clear that the
coming WRC will make use of some results and recommendations of the CPM95,
so it is worthwhile if we could discuss those results at present. The CPM95
finding are as follows:
-
Sharing of Frequency Bands in the 1-3 GHz between transmitting Stations
in FS and E-S MSS (non- GSO/MSS) (The studies have focussed on sharing
in the 1610- 1626.5 MHz and 1970-2010 MHz) [see Table 3]
In view of the above results, regulatory options as regard to the 1970-2010
MHz bands will eventually be needed for introduction of the MSS system.
-
Sharing of frequency bands in the 1-3 GHz range between transmitting stations
in the FS and the Earth-to-Space GSO/MSS:
The CPM95 has concluded that co-channel sharing is not feasible due
to severe constraints to be exerted to the FS transmitting stations. Provision
shall be made for the avoidance of co-channel sharing between the MSS and
the FS.3.
-
Sharing of frequency bands in the 1-3 GHz range between stations of non-
GSO/MSS Space-to-Earth service and the FS receiving stations:
Based on the studies undertaken in the 2483.5 - 2500 MHz and 2160 -
2200 MHz bands, sharing between non- GSO/MSS (space-to-earth) systems and
the FS should be feasible. However, in the long term, sharing difficulties
could arise between non-GSO/MSS systems and the FS.
Accordingly, considerations should be given to a possible gradual transition
plan in order to enable the FS to migrate to other frequency bands with
no overlap with the MSS allocations between 1-3 GHz.
-
Sharing of frequency bands in the 1-3 GHz range between stations of GSO/MSS
Space-to-Earth service and the FS receiving stations :
It is generally possible to share the frequencies in the range of 1-3
GHz between the MSS and FS, as addressed in the draft Recommendations ITU-RIS
(Doc 2/7). Recommendations provides coordination threshold power-flux density
levels that are consistent with the RR 2566 for all the downlink bands
allocated by WARC-92, with the exception of the 2520-2535 MHz band where
a more stringent threshold value is recommended.
-
Sharing of frequency bands in the range below 1 GHz between non GSO/MSS
service and the FS.
Frequency Bands allocated for the MSS below 1 GHz (Table 4) will be
shared by various other existing services such as Space Operations, Meteorological
Satellites, Meteorological Aids, Space Research, Radio Navigation-Satellite,
Radio Astronomy, Broadcasting, Fixed and Mobile Service. Whilst the sharing
studies between MSS and Meteorological Aids are not yet accomplished, the
present studies have shown many ways of alleviating the obstacles in achieving
sharing-possible conditions. Among other methods are : that the MSS systems
are to operate in either a narrow-band, frequency agile fashion to coexist
with terrestrial services, or with wideband, low-power density, spread
spectrum transmissions (that conditions apply to MSS uplink directions).
The MSS downlink operations shall also exploit various techniques in
view of achieving sharing possible conditions. These include spread spectrum,
orthogonal- polarizations, and co-channel avoidance procedures.
-
Sharing of frequency spectrums in the C, Ku and Ka bands between MSS Feeder
Links, FS and FSS services :
The sharing problems in this matter lie mostly between non-GSO/MSS
Feeder Links and GSO/FSS networks. There will be outage times experienced
by both systems, (for a codirectional sharing to be exercised) when an
earth station, a non-GSO satellite and a geostationary satellite will be
in line, or nearly in line with each other. This makes the codirectional
sharing solution will be apparently not feasible.
Method of bidirectional sharing, on the other hand, seems to be promising
albeit certain constraints. Table 3 outlines the CPM95 study result on
the sharing problems between MSS Feeder links and other services.
Matters Relating to The Date of Entry into Force of Allocations in the
Bands 1980-2010 MHz, and 2170-2200 MHz in Regions 1 and 3
RR 746B, following the WARC92, states that use of the above bands for MSS
services in Region 1 and Region 3 shall not commence before 1 January 2005.
Possible commencement of MSS services will require a definite prerequisite
: clearance in the sharing problems. This means that every administration
shall be prepared for certain migration plan for its FS networks, especially
those which utilize the frequency bands that will be allocated and utilized
by MSS Earth-to space service. Otherwise, noting a severe sharing environment
prevailing, the MSS introduction will be hampered. As to with the Space-to-Earth
MSS bands case, since it poses less problems, migration plan of the FS
using the associated bands could be somewhat extended at a later years
after2005.
The sharing problems in the MSS feeder links, as stated earlier, can
be solved partly by bidirectional scheme. But this means that redesign
is to be made in the MSS feeder links, to ensure bidirectional sharing
with the existing FSS networks. Only if the MSS planner be ready to modify
the specifications timely, then there will be no significant delay affecting
the original schedule.
Possible Arrangement of Mitigating The Interference Problem with the MSS
frequency band
As a summary, in order to facilitate the introduction of the MSS, certain
procedures can be made as follows :
MSS Planner :
-
Use of narrow-band, frequency-agile fashion, or
-
Wideband, low-power density spread spectrum transmission uplinks MSS transmission
systems.MSS and FS planners have to exploit at maximum the following techniques.
-
Orthogonally-polarized, low-power density, spread-spectrum downlinks.
-
Co-channel avoidance.MSS planner shall make its best efforts to
-
Use of higer frequency spectrum, i.e. : Upper Ku and Ka bands, for their
feeder links, in view of heavy investment in the C and lower Ku bands.This
will retain at some longer periods the use of the C and some lower Ku bands
by the FSS and FS, which will be benefited particularly by the developing
countries.
FS planner should endeavour and do a diligence in exercising the
-
Liberalization of some bands < 1 GHz and between 1 to 3 GHz is to be
exercised.MSS planner shall continue to do a
-
Detailed study about the evolution of the MSS bandwidth requirement.
-
Every country is obliged to incorporate in their long term national plan,
as a part of their network modernization framework, to systematically phase
out the FS networks and replace them with fibre networks.
By Dr. Ir. Arifin Nugroho
[Sajian Utama] [Sajian
Khusus] [Profil Elektro]
[KOMPUTER] [KENDALI]
[ENERGI] [ELEKTRONIKA]
[INSTRUMENTASI] [PII
NEWS]
Please send comments, suggestions, and criticisms
about ELEKTRO INDONESIA.
Click here to send me
email.
© 1996 ELEKTRO Online.
All Rights Reserved.