Berkeley Sockets

Study and use of Berkeley sockets in network programming



















Pratap Vikram Singh

December 7th, 1997�
Contents

� TOC \o "1-3" �1. Berkeley Sockets	� GOTOBUTTON _Toc425307672  � PAGEREF _Toc425307672 �1��

1.1 Introduction	� GOTOBUTTON _Toc425307673  � PAGEREF _Toc425307673 �1��

1.2 UNIX Domain Protocols	� GOTOBUTTON _Toc425307674  � PAGEREF _Toc425307674 �1��

1.3 Socket Addresses	� GOTOBUTTON _Toc425307675  � PAGEREF _Toc425307675 �1��

2. Socket System Calls	� GOTOBUTTON _Toc425307676  � PAGEREF _Toc425307676 �3��

2.1 Socket()	� GOTOBUTTON _Toc425307677  � PAGEREF _Toc425307677 �3��

2.2 Socketpair()	� GOTOBUTTON _Toc425307678  � PAGEREF _Toc425307678 �4��

2.3 Bind()	� GOTOBUTTON _Toc425307679  � PAGEREF _Toc425307679 �4��

2.4 Connect()	� GOTOBUTTON _Toc425307680  � PAGEREF _Toc425307680 �4��

2.5 Listen()	� GOTOBUTTON _Toc425307681  � PAGEREF _Toc425307681 �5��

2.6 Accept()	� GOTOBUTTON _Toc425307682  � PAGEREF _Toc425307682 �5��

2.7 Send(), Sendto(), Recv() and Recvfrom()	� GOTOBUTTON _Toc425307683  � PAGEREF _Toc425307683 �6��

2.8 Close()	� GOTOBUTTON _Toc425307684  � PAGEREF _Toc425307684 �6��

3. Byte Ordering Routines	� GOTOBUTTON _Toc425307685  � PAGEREF _Toc425307685 �7��

4. Address Conversion Routines	� GOTOBUTTON _Toc425307686  � PAGEREF _Toc425307686 �8��

5. Advanced Socket System Calls	� GOTOBUTTON _Toc425307687  � PAGEREF _Toc425307687 �9��

5.1 Readv() and Writev()	� GOTOBUTTON _Toc425307688  � PAGEREF _Toc425307688 �9��

5.2 Recvmsg() and Sendmsg()	� GOTOBUTTON _Toc425307689  � PAGEREF _Toc425307689 �9��

5.3 Getpeername()	� GOTOBUTTON _Toc425307690  � PAGEREF _Toc425307690 �10��

5.4 Getsockname()	� GOTOBUTTON _Toc425307691  � PAGEREF _Toc425307691 �10��

5.5 Shutdown()	� GOTOBUTTON _Toc425307692  � PAGEREF _Toc425307692 �10��

6. Reserved Ports	� GOTOBUTTON _Toc425307693  � PAGEREF _Toc425307693 �11��

��
1.	Berkeley Sockets

1.1	Introduction

Berkeley sockets are one of the most prevalent communication APIs in UNIX. It is developed for the C language. Some points to be considered for network programming are:

The network program should know what role it is playing, client or server.

The connection can be of two types, connection-oriented or connection-less.

A network application must know the names of its peer processes to verify that those processes have to authority to request services.

There are a lot of parameters required for a network connection like protocol, local address, local process, foreign address and foreign process.

Support for multiple protocols must be provided e.g. TCP/IP, XNS, etc.

1.2	UNIX Domain Protocols

Sockets in the Unix domain can only be used to communicate with processes in the same Unix system. There are both connection-less and connection-oriented protocols. Both are considered reliable as both exist within the kernel and are not transmitted across communication mediums. The only difference is that the connection-oriented protocol provides flow control while the connection-less does not. The Unix domain protocols provide a feature that is not currently provided by any other protocol family. This is the ability to pass access rights from one process to another e.g. passing of file descriptors. The 5 tuple for this protocol is slightly different.

The protocol is same as before PF_UNIX.

The local and foreign address are zero as they are in the same system.

The local and foreign processes are specified as pathnames.

The system creates some files as specified in the pathname. These are not regular files and cannot be opened by normal system calls. The call stat reports them as S_IFSOCK type.

1.3	Socket Addresses

The socket system call requires a pointer to a socket address structure. The structure is defined in <sys/socket.h> as:

struct sockaddr {

		u_short		sa_family;	// Address family: AF_XXX value

		char		sa_data[14];	// Upto 14 bytes of protocol specific address

};

The contents of the 14 bytes of protocol specific address are interpreted according to the type of address.

For the internet family it is defined in <netinet/in.h> as:

struct in_addr {

		u_long		s_addr;		// 32 bit netid/hostid

};



struct sockaddr_in {

		short		sin_family;	// AF_INET

		u_short		sin_port;	// 16-bit port number

		struct in_addr	sin_addr;	// 32 bit netid/host id defined above

		char		sin_zero[8];	// Unused

};



�
For the Xerox NS family it is defined in <sys/ns.h> as :

union ns_host {

		u_char		c_host[6];	// Host id address as 6 bytes

		u_short		s_host[3];	// Hostid address as three 16-bit shorts

};



union ns_net {

		u_char		c_net[4];	// Netid as 4 bytes

		u_short		s_net[2];	// Netid as two 16-bit shorts

};



struct ns_addr {				// Combined 12 byte XNS address

		union ns_net	x_net;		// 4 byte netid

		union ns_host	x_host;		// 6 byte hostid

		u_short		x_port;		// 2 byte port

};



struct sockaddr_ns {

		u_short		sns_family;	// AF_NS

		struct ns_addr	sns_addr;	// 12 byte XNS address

		char		sns_zero[2];	// Unused

};

For the Unix domain it is defined in <sys/un.h> as :

struct sockaddr_un {

		short		sun_family;	// AF_UNIX

		char		sun_path[108];	// pathname

};

The system calls have to take a struct sockaddr type structure. So before passing the protocol specific structure it must be typecasted. e.g.

struct sockaddr_in	serv_addr;

connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr));

2.	�
Socket System Calls

2.1	Socket()

To do network I/O, the first thing a process must do is call the socket() system call specifying the type of communication protocol desired.

Syntax:

int socket(

	int family,		// Family of protocols

	int type,		// Type of connection

	int protocol);		// Protocol to use

The family is defined as :

TYPE�
DESCRIPTION�
�
PF_UNIX�
Unix internal protocols�
�
PF_INET�
ARPA internet protocols�
�
The socket type is defined as:

TYPE�
DESCRIPTION�
�
SOCK_STREAM�
Stream socket�
�
SOCK_DGRAM�
Datagram socket�
�
SOCK_RAW�
Raw socket�
�
SOCK_RDM�
Reliably delivered message socket�
�
SOCK_SEQPACKET�
Sequenced packet socket�
�
The protocol argument specifies the particular protocol to be used with the socket. Generally only a single protocol exists to support a protocol family. This parameter is passed as 0.

This call returns an integer value similar to a file descriptor. This is the socket descriptor. A value of -1 indicates an error. The errno values are:

EACCES�
Permission to create a socket of the specified type and/or protocol is denied.�
�
EMFILE�
The peer-process descriptor table is full.�
�
ENOMEM�
Insufficient user memory is available.�
�
ENOSR�
There were insufficient STREAMS resources available to complete the operation.�
�
EPROTONOSUPPORT�
The protocol type or the specified protocol is not  supported within this domain.�
�
In the 5 tuple association, this system call defines the protocol value. Before using the connection, we must specify the rest of the four values.

2.2	�
Socketpair()

This call has been implemented for the Unix domain only. It returns a pair of socket descriptors and is similar to the pipe system call. The sockets returned by this system call are bi-directional and are called Unix stream pipes.

Syntax:

int socketpair(

	int family,		// Family of protocol

	int type,		// Type of connection

	int protocol,		// Type of protocol

	int sockvec[2]);	// Array to store the socket descriptors

The family is PF_UNIX.

The valid types are:

SOCK_STREAM

SOCK_DGRAM

Since this call is limited for the Unix domain, we do not have any defined protocols so it is always passed as zero. The third parameter is as array of two integers which store the two unnamed and connected socket descriptors on a successful return.

The function returns 0 on success and -1 on error. The errno values are:

EAFNOSUPPORT�
The specified address family is not supported on this machine.�
�
EMFILE�
Too many descriptors are in use by this process.�
�
ENOMEM�
There was insufficient user memory for the operation to complete.�
�
ENOSR�
There were insufficient STREAMS resources for the operation to complete.�
�
EOPNOSUPPORT�
The specified protocol does not support creation of socket pairs.�
�
EPROTONOSUPPORT�
The specified protocol is not  supported on this machine.�
�
2.3	Bind()

This call assigns a name to an unnamed socket. It is used by a process to register itself to the system so any messages sent to its socket must be directed to it. This call fills the local address and local process fields of the 5 tuple.

Syntax:

int bind(

	int 		   	sockfd,		// Socket descriptor

	struct sockaddr		*myaddr,	// Pointer to a protocol specific structure

	int 		   	addrlen);	// Size of structure

This function returns 0 on success and -1 on error. The errno values are :

EACCES�
Search permission is denied for a component of the path prefix of the pathname in name.�
�
EIO�
An I/O error occurred while making the directory entry or allocating the inode.�
�
EISDIR�
A null pathname was specified.�
�
ELOOP�
Too many symbolic links were encountered in translating the pathname in name.�
�
ENOENT�
A component of the path prefix of the  pathname in name does not exist.�
�
ENOTDIR�
A component of the path prefix of the pathname in name is not a directory.�
�
EROFS�
The inode would reside on a read-only file system.�
�
2.4	Connect()

A client process connects a socket descriptor following a socket call to establish a connection with the server.

Syntax:

int connect(

	int 			sockfd,   	// Socket descriptor

	struct sockaddr		*servaddr,	// Pointer to structure with server address

	int 			addrlen); 	// Sizeof address structure

Stream sockets will use this call once while datagram sockets will use it every time they send a packet.

This function call returns 0 on success and -1 on error. The errno values are:

EACCES�
Search permission is denied for a component of the path prefix of the path name in name.�
�
EADDRINUSE�
The address is already in use.�
�
EADDRNOTAVAIL�
The specified address is not available on the remote machine.�
�
EAFNOSUPPORT�
Addresses in the specified address family cannot be used with this socket.�
�
EALREADY�
The socket is non-blocking and a previous connection attempt has not yet been completed.�
�
EBADF�
sockfd is not a valid descriptor.�
�
ECONNREFUSED�
The attempt to connect was forcefully rejected. The calling program should close the socket  descriptor, and issue another socket call to obtain a new descriptor before attempting another connect call.�
�
EINPROGRESS�
The socket is non-blocking and the connection cannot be completed immediately. It is possible to select for completion by selecting the socket for writing. However, this is only possible if the socket STREAMS module is the topmost module on the protocol stack with a write service  procedure. This will be the normal case.�
�
EINTR�
The connection attempt was interrupted before any data arrived by the delivery of a signal.�
�
EINVAL�
addrlen is not the size of a valid address for the specified address family.�
�
EIO�
An I/O error occurred while reading from or writing to the file system.�
�
EISCONN�
The socket is already connected.�
�
ELOOP�
Too many symbolic links were encountered in translating the pathname in name.�
�
ENETUNREACH�
The network is not reachable  from  this host.�
�
ENOENT�
A component of the path  prefix  of  the pathname in name does not exist.�
�
ENOENT�
The socket referred to by  the  pathname in name does not exist.�
�
ENOSR�
There were insufficient STREAMS resources  available to complete the  operation.�
�
ETIMEDOUT�
Connection   establishment   timed   out�
�
2.5	Listen()

This call is used by a connection oriented server to indicate that it is willing to receive connections. This call is executed immediately after the socket and the bind system calls and immediately before the accept system call. It is possible for some client requests to arrive between these two. So the system should store the pending messages for the server till it makes the accept system call.

Syntax:

int listen(

	int sockfd,	// Socket descriptor

	int backlog);	// No of messages that the system should track

The backlog parameter cannot be more than 5.

2.6	Accept()

An actual connection from some client is awaited for by having the server execute this call.

Syntax:

int accept(

	int		sockfd,		// Socket descriptor

	struct sockaddr	*peer,		// Address of peer to connect

	int 		*addrlen);	// Size of address structure

This call takes the first connection request from the queue and creates another socket with the same properties as sockfd. If there are no pending requests, this call blocks.

�
This function returns:

on error.

New socket descriptor on success.

The peer address.

The size of peer address.

The new socket descriptor returned by this call completes the 5 tuple.

2.7	Send(), Sendto(), Recv() and Recvfrom()

Used to send and receive messages. The sendto and recvfrom calls are for connection-less processes while the other two are for connection-oriented.

Syntax:

int send(

	int 			sockfd,	// Socket descriptor

	const char		*buff,	// Message buffer

	int 			nbytes,	// No of bytes to send

	int 			flags);	// Flags



int sendto(

	int 			sockfd,	// Socket descriptor

	const char		*buff,	// Message buffer

	int 			nbytes,	// No of bytes to send

	int 		    	flags,		// Flags

	struct sockaddr 	*to,		// Address of destination

	int 			addrlen);	// Length of address structure



int revc(

	int 			sockfd,		// Socket descriptor

	const char		*buff,		// Message buffer

	int 			nbytes,		// No of bytes to receive

	int 			flags);		// Flags



int recvfrom(

	int 			sockfd,		// Socket descriptor

	const char		*buff,		// Message buffer

	int 			nbytes,		// No of bytes to receive

	int 			flags,		// Flags

	struct sockaddr		*from,		// Address of source filled

	int 			*addrlen);	// Length of address structure filled



The flags argument is either zero or is or’red using the following constants:

MSG_OOB�
Send or receive out-of-band data.�
�
MSG_PEEK�
Peek at incoming message. Used by recv and recvfrom.�
�
This function returns the length of data that was sent or received.

2.8	Close()

The normal Unix close system call is used for closing a socket.

Syntax:

int close(int sockfd);

If the socket being closed is associated with a protocol that promises reliable delivery, the system must ensure that any data within the kernel that still has to be transmitted or acknowledged, is sent.

3.	�
Byte Ordering Routines

These routines handle the potential byte order difference between different computer architectures and different network protocols.

Syntax:

#include <sys/types.h>

#include <netinet/in.h>

ulong htonl(u_long hostlong);

u_short htons(u_short hostshort);

u_long ntohl(u_long netlong);

u_short ntohs(u_short netshort);

The following table describes the functions :

FUNCTION�
DESCRIPTION�
�
htonl()�
Convert host to network, long integer�
�
htons()�
Convert host to network, short integer�
�
ntohl()�
Convert network to host, long integer�
�
ntohs()�
Convert network to host, short integer�
�
Implicit to these functions are that a short integer occupies 16 bits and a long integer occupies 32 bits.

4.	�
Address Conversion Routines

Address conversion routines are used for internet address conversions.

Syntax:

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long	inet_addr(const char *cp);

char 		*inet_ntoa(const struct in_addr in);

The first function takes the stringified IP address and returns the 32 bit value.

The second function takes the in_addr structure and returns a pointer to the stringified IP address form.

5.	�
Advanced Socket System Calls

5.1	Readv() and Writev()

These calls are called scatter read and gather write. They can be used to write or read multiple buffers in a single operation. They are atomic calls.

Syntax:

#include <sys/types.h>

#include <sys/uio.h>

int writev( int fd, struct iovec iov[], int iovcount );

int readv ( int fd, struct iovec iov[], int iovcount );

The structure iovec is defined as:

struct iovec {

	caddr_t	iov_base;	// Starting address of buffer

	int	iovlen;		// Size of buffer in bytes

};

Each element of the iovec array specifies a base address of a buffer and the amount of data to be written or read from it. The parameter iovcount specifies the number of separate buffers. In case of a datagram system, each write will generate separate datagrams but if combined in one, a writev will generate only one.

5.2	Recvmsg() and Sendmsg()

These are the most general of the read and write system calls.

Syntax:

int sendmsg( int sockfd, struct msghdr msg[], int flags );

int recvmsg( int sockfd, struct msghdr msg[], int flags );

The structure msghdr is defined as:

struct msghdr{

	caddr_t      msg_name;			// Optional address

	int          msg_namelen;      	// Size of address

	struct iovec *msg_iov;         	// Scatter or gather array

	int          msg_iovlen;       	// Elements in msg_iov

	caddr_t      msg_accrights;    	// Access rights sent or received

	int          msg_accrightslen;	// Length of the access rights buffer

};

The fields msg_name and msg_namelen are not used for connected processes.

5.3	�
Getpeername()

This system call returns the name of the peer process that is connected to a given socket.

Syntax:

int getpeername( int sockfd, struct sockaddr *peer, int *addrlen );

This function returns the foreign address and the foreign process elements of the 5 tuple association of sockfd.

5.4	Getsockname()

This function call returns the name associated with the socket.

Syntax:

int getsockname( int sockfd, struct sockaddr *peer, int *addrlen );

This call returns the local address and the local process of the association.

5.5	Shutdown()

This call provides more control over a connection termination.

Syntax:

int shutdown( int sockfd, int howto );

The control is defined using different values of howto. They are:

VALUE�
FUNCTION�
�
0�
No more data can be received on the socket�
�
1�
No more data can be sent through the socket�
�
2�
Both sends and receives are disallowed�
�
6.	�
Reserved Ports

There are two ways for a process to have a port assigned to it

The process can itself specify the port number.

The process can leave it to the system to assign it any available port.

The system call rresvport is used by a process for assigning a port.

Syntax:

int rresvport( int *aport );

The port scenario is shown below:

�
Internet�
XNS�
�
Reserved Ports�
1-1023�
1-2999�
�
Ports automatically assigned by the system�
1024-5000�
3000-65535�
�
Ports assigned by rresvport�
512-1023�
NA�
�
This function checks the value of aport passed to it and assigns any port available equal to or below the value till 512. If successful it creates a socket, binds it to the port and returns the value of the socket descriptor. Otherwise it returns -1 and sets the value of errno to EAGAIN.









�PAGE  �11�

Berkeley Sockets







