Next: About this document
Up: Alpha Shapes: Definition and
Previous: Data Structures
References
- 1
-
B. Delaunay.
Sur la sphère vide.
Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7:793-800, 1934.
- 2
-
C. J. A. Delfinado and H. Edelsbrunner.
An incremental algorithm for Betti numbers of simplicial complexes.
In Proceedings of the 9th Annual Symposium on Computational
Geometry, pages 232-239, 1993.
- 3
-
D. P. Dobkin and M. J. Laszlo.
Primitives for the manipulation of three-dimensional subdivisions.
Algorithmica, 4(1):3-32, 1989.
- 4
-
H. Edelsbrunner.
A new approach to rectangle intersections, Part I.
International Journal of Computer Mathematics, 13:209-219,
1983.
- 5
-
H. Edelsbrunner.
The union of balls and its dual shape.
In Proceedings of the 9th Annual Symposium on Computational
Geometry, pages 218-231, 1993.
- 6
-
H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel.
On the shape of a set of points in the plane.
IEEE Transactions on Information Theory, IT-29(4):551-559,
1983.
- 7
-
H. Edelsbrunner and E. P. Mücke.
Simulation of Simplicity: A technique to cope with degenerate cases
in geometric algorithms.
ACM Transactions on Graphics, 9(1):66-104, 1990.
http://www.geom.umn.edu/locate/cglist/GeomDir/sos90.html
- 8
-
H. Edelsbrunner and E. P. Mücke.
Three-dimensional alpha shapes.
ACM Transactions on Graphics, 13(1):43-72, 1994.
http://www.geom.umn.edu/locate/cglist/GeomDir/shapes94.html
- 9
-
H. Edelsbrunner and N. R. Shah.
Incremental topological flipping works for regular triangulations.
Algorithmica, 15:223-241, 1996.
- 10
-
P. J. Giblin.
Graphs, Surfaces, and Homology.
Second edition. Chapman and Hall, London, 1981.
- 11
-
H. Hadwiger.
Vorlesungen über Inhalt, Oberfläche und Isoperimetrie.
Springer-Verlag, Berlin, 1957.
- 12
-
E. P. Mücke.
Shapes and Implementations in Three-Dimensional Geometry.
PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Ubana, Illinois, 1993.
Technical report UIUCDCS-R-93-1836.
ftp://cs.uiuc.edu/pub/TechReports/UIUCDCS-R-93-1836.ps.Z
- 13
-
M. F. Richards.
Areas, volumes, packing, and protein structure.
Ann. Rev. Biophys. Bioeng., 6:151-176, 1977.
- 14
-
R. Schneider.
Convex Bodies: the Brunn-Minkowski Theory.
Cambridge University Press, 1993.
Next: About this document
Up: Alpha Shapes: Definition and
Previous: Data Structures
<epm@ansys.com> 07-Sep-96