next up previous
Next: About this document Up: Alpha Shapes: Definition and Previous: Data Structures

References

1
B. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793-800, 1934.

2
C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes. In Proceedings of the 9th Annual Symposium on Computational Geometry, pages 232-239, 1993.

3
D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica, 4(1):3-32, 1989.

4
H. Edelsbrunner. A new approach to rectangle intersections, Part I. International Journal of Computer Mathematics, 13:209-219, 1983.

5
H. Edelsbrunner. The union of balls and its dual shape. In Proceedings of the 9th Annual Symposium on Computational Geometry, pages 218-231, 1993.

6
H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, IT-29(4):551-559, 1983.

7
H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66-104, 1990.
http://www.geom.umn.edu/locate/cglist/GeomDir/sos90.html

8
H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1):43-72, 1994.
http://www.geom.umn.edu/locate/cglist/GeomDir/shapes94.html

9
H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. Algorithmica, 15:223-241, 1996.

10
P. J. Giblin. Graphs, Surfaces, and Homology. Second edition. Chapman and Hall, London, 1981.

11
H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag, Berlin, 1957.

12
E. P. Mücke. Shapes and Implementations in Three-Dimensional Geometry. PhD thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, Ubana, Illinois, 1993. Technical report UIUCDCS-R-93-1836.
ftp://cs.uiuc.edu/pub/TechReports/UIUCDCS-R-93-1836.ps.Z

13
M. F. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng., 6:151-176, 1977.

14
R. Schneider. Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press, 1993.


next up previous
Next: About this document Up: Alpha Shapes: Definition and Previous: Data Structures

<epm@ansys.com> 07-Sep-96
1