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Abstract:

In evaluating population estimates, it is necessary to define measures of their quality.  Population estimates can be characterized by four aspects of quality: bias, scale, outliers and extreme errors.  This paper axiomatically examines each of these quality aspects and describes and criticizes statistics commonly used to measure them.  An important distinction is drawn between extreme errors and outliers: the former are simply the largest errors, while the latter, normally large, indicate possible problems with their data generation processes.  The entire framework is based on the assumption of nonidentically distributed errors, the implications of which are discussed.

Prepared for the 2002 meetings of the Population Association of America, Atlanta, GA.

1. Introduction
In order to evaluate population estimates, one must define and compute quality measures.  The quality measures are functions of the errors.  Estimates quality has four aspects: bias, scale (a.k.a. accuracy), outliers and extreme values.  Bias and scale are akin to the first two moments of a distribution and are most commonly reported.
  They describe the location and spread of a set of estimates, respectively.  Their measurability and testability are examined in this paper.  Outliers are suspicious observations that deviate greatly from some norm.  They either represent problems with their data generation processes or are true, but unusual, statements about reality.  A methodology for detecting outliers is described.  Extreme errors reflect the worst that an estimation procedure can perform.  A measure for these is described.  All of these aspects of quality are axiomatically addressed.  It is intended that evaluators of population estimates consider the material in this paper when doing their evaluations.

The statistical approach used in this paper is very different from usual statistical theory.  Statistical theory normally assumes the existence of a population, from which a sample is drawn to estimate parameters of interest in the population.
  Population estimates are generally produced by nonstatistical means.  The actual values are definitely not statistically produced.  They are not interchangeable: a population estimate for California cannot be sensibly substituted for a population estimate for Wyoming.  Each population estimate’s error is effectively a sample of size one generated by an unknown process. Population estimates’ error processes can vary by characteristic and have idiosyncrasies.  Even if the error processes were describable, many objective measures would be useless to the evaluator of population estimates, as the evaluator may have different criteria in mind.
  For example, an investor may evaluate population estimates according to rules implied by the profitability of his investments.  Analyst judgement enters into the evaluation of outliers:  the methodology of this paper cannot determine whether identified outliers have problematic data generation processes.  The analyst then has to use his subject matter expertise to decide whether the observations are truly problematic.


Population estimates are examples of cross-sectional data: they (at least for the purposes of this paper) lack time as a dimension.  The estimation units generally are defined geographically, such as subnational areas, but can include other dimensions, such as age, sex and ethnicity.  Even though the data may be indexed on multiple dimensions, the lack of the time dimension still makes them cross-sectional.  For the purposes of this paper, the units (e.g., geographic area x age x sex) will simply be called “units.”


Since population estimates are usually produced by nonstatistical means
 and populations are not statistically generated,
 population estimates errors are not assumed to be generated by independent, identically distributed (i.i.d.) processes.  An upshot of this is that classical i.i.d. statistical theory is unusable.  It is shown that it is impossible to develop a measure of a “typical” error, or bias.  However, this does not preclude testing for significant bias or differential bias using non-i.i.d (i.e., not i.i.d.) statistical theory.  That is, one can test whether a set of estimates is biased and whether two sets of estimates are biased relative to each other.  Non-i.i.d. statistical theory also permits testing whether one set of estimates is significantly more accurate than another, relative to a particular scale measure.  The non-i.i.d framework has a particular advantage in this context: it eliminates the sample-population problem. Statistical theory becomes unusable when the sample consists of the entire population.  Any inferences are meaningless.  This is the sample-population problem.  Since the errors themselves are assumed to be samples from multiple unknown populations, the sample-population problem is obviated and hypothesis testing can be done.  Section 2 expands upon the statistical framework, including describing tests that can be used in non-i.i.d. contexts.


Most measures of scale can be expressed in terms of loss functions, which measure the “badness” of errors.  Section 2 develops a general framework for loss functions.  Estimates errors are generally transformed to loss functions.  Loss functions are crucial to the measurement of scale, outlier detection and measuring extreme errors and are developed more fully and used in Sections 5-7.


Bias is expanded more fully in Section 4.  Bias can be either in median or mean.  Mean bias means that the expected value of the probability distribution generating an error is nonzero.  Median bias means that the median of this distribution is nonzero.  Tests are developed to detect the presence of bias in at least one observation.  Since the data are non-i.i.d., it is shown that no measure of the “typical” value of an error can be developed.


Section 5 begins by noting that, in the context of population estimates, scale is a subjective concept and axiomatically develops the requirements needed for a scale measure.  Various scale measures from the literature are examined for consistency with these axioms.  The scale measures are classified as a way to better understand their properties.  Constructing the total loss function by adding the individual losses is shown to satisfy several desirable properties.  It is also shown, for a large class of loss functions, that using levels and shares as arguments to the individual loss functions are asymptotically equivalent.  That is, as the number of units grows, the ratios of the total loss functions for different sets of estimates converge to the same number, regardless of whether levels or shares are used.


Section 6 uses loss functions to detect outliers in population estimates.  An outlier either indicates a problem with its data generation process or is a true, but unusual, statement about reality.  These need to be distinguished from extreme errors, which are covered in Section 7.  Extreme errors are simply the observations with the highest loss function values.  Since the data are non-i.i.d., they can be assumed to be heteroskedastic.  An extreme error may simply indicate that its underlying data generation process has greater variance than others.  Only when the outlier criterion used coincides with the loss function used to measure scale do the two concepts coincide.


Section 8 concludes this paper.

2. Non-i.i.d. Random Variables
It is assumed that each estimate error is a single observation of an unknown distribution, each of which may be different.  The errors are thus non-i.i.d.  In the limit, a set of errors constitute n samples of size 1 from n unknown, nonidentical distributions.  These distributions may be dependent, especially spatially.  The problem of spatially correlated observations is beyond the scope of this present work.
  That estimates errors are non-i.i.d. is clearly observable in many instances.  Areas with small populations tend to have small numeric errors, but large relative errors.  Statistically, variance increases with size, but the coefficient of variation decreases.  For example, it would be bizarre for an area with 1,000 persons to have an error of 10,000 or 1,000 per cent, but the same error in an area of 1,000,000 persons is only 1 per cent.  Even after standardization for the size of an area, there is no guarantee that the unknown distributions are the same.


Given the interpretation of a set of estimates errors as being a set of n samples of size 1, the sample-population problem disappears.
  Each observation comes from some unknown population.  I.i.d. statistical theory becomes unusable, as it assumes that a set of population estimates errors is a sample equivalent to the population.  However, non-i.i.d. statistical theory makes inference possible.  Normally, statistical theory assumes n i.i.d. random variables.  This is like spinning one roulette wheel n times and then making inferences about the wheel.  Non-i.i.d. theory, on the other hand, observes one spin from each of n roulette wheels and can infer if, say, one of the wheels is unfair.  Subsection 2.1 develops a few variants of the Sign Test for difference in median.  Subsection 2.2 develops the matched-pairs t-test for differences in mean with a particular focus on non-i.i.d. observations.


An important quality of estimators is breakdown: the amount of contamination they can resist. Every known estimator achieves breakdown in the non-i.i.d. scenario described herein.  That is, given a particular distribution, these estimators can only tolerate so much contamination from other distributions before the bias from the different distributions can potentially be infinite.  Given a sample of n i.i.d. observations Z = {x1,…,xn}, an estimator T(Z) and another sample Z' in which m of the original observations in Z have been replaced by arbitrary values, denote the maximum bias caused by the substitution of Z' for Z as
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where Z' is any possible sample in which m of the observations in Z have been replaced by different values.
  If this bias is infinite, the estimator “breaks down.”  That is, any contamination of Z by m different values can produce an unbounded change in the value of T.   Formally, the (finite-sample) breakdown point of the estimator T at sample Z is
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The largest known value of 
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, asymptotically, is 50 per cent for the median.  However, when each observation comes from a different distribution, then m = n – 1, implying that m/n is approximately 1, so that every T achieves breakdown.  This eliminates the ability to estimate “typical” values of the errors (or their transformations).  However, one can still test for differences between sets of errors, due to the elimination of the sample-population problem.  The tests are explored below.

2.1 The Sign Test for Differences in Median
The Sign Test is a very well-known test for differences in median when the differences are independent.
 Given two samples of independent observations of size n, Z = {x1,…,xn} and Z' = {y1,…,yn}, the two-sided version tests the null hypothesis
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against the alternative
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where M is the median operator. The one-sided alternative is
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Letting Fi(xi) and Gi(yi) be the probability distribution functions of xi and yi, respectively, H0 states that the medians of the Fi and Gi are pairwise identical.
  Note, that this is not equivalent to saying that Fi = Gi for all i.  This is ultimately untestable without making the i.i.d. assumption.


Let n+ and n– be the number of observations in which xi > yi and xi < yi, respectively.  Also, let the observations be independent.  Then, the two-sided alternative (2.4) is tested by McNemar’s M:
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whose p-values are obtained from the null probability distribution 
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where nt = n+ + n–.  Asymptotically, 
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The one-sided alternative (2.5) can simply be tested using n+, which is simply the familiar statistic %POS by another name.  It has a binomial distribution with parameters ½ and n.
  Asymptotically, this distribution can be approximated by the normal distribution with mean ½ and variance 1/(4n).  If one wishes to reverse the inequality in (2.5), then n–  = %NEG is the appropriate test statistic, with the same distribution.

2.2 The Matched-Pairs t-Test for Differences in Mean
The traditional matched-pairs t-test can be used for testing differences in mean.  Let 
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and s are the sample mean and sample standard deviation, respectively.  Then, t is asymptotically normal under a wide variety of conditions.
  This asymptotic robustness does not extend to small samples when the data are not i.i.d. normal (Tiku, Tan and Balkrishnan, 1986, pp. 2-3).  However, Coleman (2001a) shows that the bootstrap and wild bootstrap can be used to find p-values under these circumstances using assumptions that are generally true of population estimates.
,
 The matched-pairs t-test can then be used to test hypotheses (2.3)-(2.5), when M is replaced by E, the expectation operator.  Again, it is impossible to test whether Fi = Gi for all i without assuming i.i.d. errors.

3. Loss Functions
Almost every scale measure can be expressed in terms of loss functions.
  A loss function for an observation measures that observation’s “badness.”  Total loss functions summarize the overall scale of estimates errors.  Loss functions are also used in this paper to detect outliers.  Given an estimate E and an actual value A, one can define the loss function L(E,A) as a measure of the estimate’s badness.  Let ε = E – A, then the loss function is assumed symmetric:

Assumption 3.1:  L(A + ε, A) = L(A – ε, A).

This assumption is both conventional and very strong, but implicit in the scale measures of Section 5.  It can be relaxed to detect outliers, when the direction of error is important, as is done in Section 6.


Given Assumption 3.1, one can define the loss function in terms of ε and A: 
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.  The vector of losses is denoted as L = {L1, …,Ln}.  A standard vector inequality is also needed:

Inequality 3.1:  L' > L whenever 
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Common choices for L are the absolute percentage (or relative) error (APE) |Ei – Ai|/Ai and the absolute error (AE) | Ei – Ai |.  Most of the scale measures described in Subsction 5.2 use these. Subsubsection 5.2.5 axiomatically constructs L = 
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 where p > 0, q < 0 and p + q > 0.  Both APE and AE are versions of this loss function in which the latter two inequalities are made weak.  Their respective vectors will be denoted by APE and AE.


The total loss function L has a convenient interpretation in terms of von Neumann-Morgenstern (1944) utility theory.  It is simply the negative of the utility of a set of estimates.  Moreover, L is order-isomorphic to taking the product of the Li (Coleman, 2001c).  That is, it produces the same rankings of total loss as a multiplicative total loss function.  Coleman (2001c) also shows that L satisfies a large number of fairness criteria, such anonymity and impartiality.  Anonymity means that an individual area’s identity does not matter to the computation of total loss.  Impartiality means that all areas are treated equally.

4. Bias
As Section 2 stated, in the non-i.i.d. framework, it is impossible to develop a measure of the “typical” error, or, more formally, location.
  However, the obviation of the sample-population problem makes it possible to test for bias.  Differential bias, that is, differences between two sets of estimates are also testable.  The tools for these tests are the Sign Test and the matched-pairs t-test.  Letting di = xi – yi be the difference, hypotheses (2.3)-(2.5) can be rewritten as:
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and
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where X is either E or M, the expectation or median.  The interpretation of the hypotheses depends on the meanings of the xi and yi.  In this paper, xi will always be a population estimate.  If yi is the actual value, then di is observations i’s error.  The two-sided alternative hypothesis (4.2) is appropriate for testing for the presence of bias in a set of estimates.  If yi is another population estimate, then the hypothesis to test depends on knowledge of the actual values.  If the actual values are unknown, (4.2) is still the appropriate alternative hypothesis.  The tests can be interpreted as tests of significant differences between the xi and yi.  If the actual values are known, then both the xi and yi can be tested for bias relative to the truth.  If both sets are shown to be biased, then they can be tested for differential bias relative to the actual values.  Alternative hypothesis (4.3) is the appropriate hypothesis, but care is required in its construction.  First, assume the bias test statistic is greater in absolute value for the xi.  If it is of the same sign as the statistic for the xi, then di = |xi – yi| is the proper difference to be tested.  If, on the other hand, bias is suspected in opposite directions, then di = |xi + yi| should be used.
  The reason for the addition is that it really tests the hypotheses (assuming that the xi have been found to be positively biased):
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and
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The negation of yi accounts for the different direction of its bias.

5. Scale
Scale, more commonly known to demographers and others as “accuracy,” measures the “closeness” of a set of estimates to the truth.  Scale is a subjective concept (Coleman, 2001b).   Even if an objective measure could be found, say, for known error generation processes, the user of the estimates may value errors differently than the measure.  Noting this proviso, scale is essential component of estimates quality.  Many scale measures have been proposed.  This Section examines these axiomatically.  First, Subsection 5.1 lays out the criteria for a measure to be scale measure.  Then, it examines other desirable properties of scale measures for estimates.  Subsection 5.2 creates a typology of scale measures.  It also considers various proposals for scale measures, noting whether they are, in fact, scale measures.  Section 5.3 shows that, for a limited class of loss functions, using levels and shares are asymptotically equivalent.  Implications for common share-based measures are discussed. Section 5.4 shows how to test for differences in scale, relative to a particular loss function, when the losses are additive.

5.1  Requirements for a Scale Measure

Given a nonnegative vector of losses L, a statistic T is a scale measure if Conditions 5.1 and 5.2 hold

Condition 5.1 [Scaling]:  T(bL) = bT(L) for all b ≥ 0.

Condition 5.1 implies that a scale measure can take on any nonnegative value.

Condition 5.2 [Weak Monotonicity]:  a ≤ L ≤ b implies a ≤ T(L) ≤ b and vice versa.

Appendix A shows that Condition 5.2 implies 

Condition 5.2': T(L') ≥ T(L) for all L' > L.

Condition 5.1 assures that the scale measure is a scale measure in the traditional sense.  Condition 5.2 permits T to have descriptive values across different families of distributions.

For the purposes of population estimates evaluation, weak monotonicity should be strengthened to strict monotonicity:

Condition 5.3 [Strict Monotonicity]:  a < L < b implies a < T(L) < b and vice versa.

Again, Appendix A shows that Condition 5.3 implies

Condition 5.3':  T(L') > T(L) for all L' > L.

The reasoning for strict monotonicity is straightforward.  Given two estimates sets A and B, with respective losses {1, 1, 1} and {1, 1, 100}, A is clearly better than B, relative to the chosen loss function.  However, if one uses, for example, the median loss for T, the two estimates sets are considered to perform equally well, with a median loss of 1.  The reason for this is that the median is weakly monotonic.  As an extreme observation changes, the median is completely unaffected.  While this is useful property in the context of robust statistics, in which an estimator’s resistance to contamination is desired, in the non-i.i.d. setting, resistance is meaningless, as a result of the lack of anything to estimate.  Moreover, intuitively, set A should be preferred since all of its values are less than or equal to the values in set B.  In the extreme, the third value in set B could wander off to infinity without affecting the median, a highly undesirable outcome in the context of population estimates.


Assumption 3.1 is generally unnecessary to scale measures.  However, some measures below require it for evaluation as they do not fit Conditions 5.1-5.3 neatly.  These measures violate Condition 5.1 (scaling) as well as Assumption 3.1, so it may be that Assumption 3.1 underlies Condition 5.1, a topic worth research.  Assumption 3.1 is related to Staudte and Sheather’s (1990, p. 122) Condition (iii) for dispersion measures.


Given Conditions 5.1-5.3' and a variety of other conditions on T(L), such as anonymity (the identity of the area is unimportant to the computation of T) and impartiality (the index of an area is irrelevant to the computation of T,) what form should T take?
  Coleman (2001c) argues that L and its positive monotonic transformations satisfy these assumptions.  That is, the individual losses should be summed or averaged.

5.2 Typologies of Scale Measures

This Subsection develops typologies of scale measures.  Many of the scale measures are either mean losses or positive monotonic functions of mean losses.  The first family, the power means, is discussed in Subsubsection 5.2.1.  The power means are generalizations of the familiar arithmetic mean.  Except for three special cases, they all contain summations.  Their arguments are generally either AE or APE.  The power p used in the power mean may be fixed a priori or be data-dependent.  Subsection 5.2.2 looks at quantile scale measures.  In these, a particular quantile of the losses, such as the median, or a linear combination of quantiles, is the scale measure.  Subsection 5.2.3 looks at M-estimators.  Subsection 5.2.4 looks at the β-trimmed mean loss.  Both of latter two measures come from the robust statistics literature.
  Subsection 5.2.5 looks at miscellaneous proposed scale measures, only one of which is a true scale measure.  Subsection 5.2.6 axiomatically develops Coleman’s (2001b) loss functions. 

5.2.1 The Power Means
For a positive vector a and p ( 0, the pth power mean of a is defined as
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When p > 0 
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 is well defined for nonnegative a.  It is important to note that, before exponentiation, one simply has the average of the 
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The 0th power mean of a nonnegative vector a is defined as the geometric mean
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Paragraph 5.2.1.4 shows that this is equivalent to summing the logarithms (to any base) of the ai, thus L/n can again be constructed.  This transformation also points out the source of the degeneracy that occurs whenever any of the ai = 0: 
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The power means have asymptotic limits:
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and
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That is, these are the maximum and the minimum of the ai.


All of these power means can be shown to be scale measures for p ( 0.  Condition 5.1 is violated when (( < p < 0.  Thus, these values cannot be used for scale measures.  This can be seen by noting that as any ai converges to zero, 
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In application, the value of p may be determined a priori or from the data.  Special cases of the former are described in Paragraphs 5.2.1.1-5.2.1.4 below.  One point to note is that commonly used measures are members of this class and that other measures can be obtained by varying p.  MAPE-R (Swanson, Tayman and Barr, 2000) is an attempt to select p using the data.

5.2.1.1 p = 1:  The Arithmetic Mean
The arithmetic mean is simply the 1st power mean of a.  In practice, these produce the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE).

5.2.1.2 p = 2:  The Root Mean Square
The formula for this can be written as
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Equation (5.5) is also known as the Euclidean norm of 
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. In practice, equation (5.5) produces the Root Mean Squared Error (RMSE) and the Root Mean Squared Percentage Error (RMSPE).

5.2.1.3 p = ((:  The Minimum and Maximum
As equations (5.3) and (5.4), these cases correspond to taking the minimum or maximum value of a.  Of these, only the maximum is of any interest, as it is related to minimax theory in statistical decision theory.  That is, statistical decision theory sometimes advocates taking the course of action that minimizes the maximum loss.

5.2.1.4 p = 0:  The Geometric Mean

The formula for this was already presented in equation (5.2).  Coleman (2001c) proves that (5.2) is equivalent
 to taking the logarithms (to any base > 1) of the ai:
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The degeneracy of the geometric mean can be seen in the representation (5.6).  The logarithm of 0 is –∞, thereby precluding the use of the geometric mean as a scale measure, unless the ai can be bound below by 1.

5.2.1.5 Choosing p Using the Box-Cox Transformation: MAPE-R

The Box-Cox transformation (Box and Cox, 1964) finds the value of p that maximizes the likelihood that the transformed data come from a normal distribution.  In practice, it is used to eliminate skewness from the data.  Swanson et al. (2000) note that the vectors APE are usually skewed.  They use the Box-Cox transformation to find the value of p that sets skewness equal to zero, average the transformed data (“transformed MAPE” or “MAPE-T”) and apply the inverse of the Box-Cox transformation to obtained “rescaled MAPE” or “MAPE-R.”  In effect, they are using the Box-Cox transformation to select the power p in 
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This approach suffers two defects.  The first is theoretical:  since the data must be positive, their distribution after transformation is left-truncated and, therefore, cannot be normal.  Thus, the Box-Cox transformation is really a quasi-maximum likelihood estimator.  The second, fatal defect is that MAPE-R is not monotonic.
  Charles Barr and this author (informal work) added an observation to the dataset used in Swanson et al. (2000) and varied it.  Over a certain range, as the new observation increases, MAPE-R decreases.  Thus, MAPE-R violates Condition 5.2 and is not a valid scale measure.  This result appears to be driven by extreme nonmonotonicity in the Box-Cox transformation.

5.2.2 Quantile Scale Measures
The quantile scale measures are quantiles of some vector of losses L.  Generally, APE is used.  The median (MedAPE) and the 90th percentile (90PE) have been used.
  These measures, if their arguments are constructed properly, are scale measures, but are only weakly monotonic.  Subsection 5.1 demonstrated weak monotonicity for the median.  The argument generalizes to other quantiles.  Finally, the robust literature suggests using linear combinations of quantiles, such as the interquartile range, which are types of L-estimators.
  Again, these are only weakly monotonic.

5.2.3 M-Estimators
M-estimators are “maximum likelihood-like estimators.”  They get their name because they resemble the solutions to maximum likelihood estimator equations (Staudte and Sheather, 1990, p. 126).  M-estimators can be created to jointly estimate location and scale (Staudte and Sheather, 1990, p. 126).  Given a “kernel” function ψ, M-estimators solve
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and
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(5.7b)

Equation (5.7a) is used to find the M-estimator of location, given a scale measure σ.  It is often used alone.       M-estimators generally iterate either equation (5.7a) alone or both equations (5.7a-b) until convergence.  The joint solution (μ, σ) to (5.7a-b) is an M-estimator of location and scale.  Since, in the non-i.i.d. framework, location cannot be estimated, M-estimators cannot be used.  Nonetheless, Tayman and Swanson (1999) use equation (5.7a) as a scale measure.  In effect, they use a location measure, which does not satisfy scale measure assumptions, to estimate scale.  Moreover, equation (5.7a), in this context, effectively requires an estimator of the fourth moment of a distribution, a notoriously unstable statistic.

5.2.4 The β-Trimmed Mean Loss
This measure is an L-estimator, consisting of discarding a proportion β of the losses and averaging the remainder:
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where Lβ is the loss corresponding to the βth quantile of losses, in descending order.  The idea is that a proportion β of the losses are considered to be outliers and discarded. L β is a scale measure, but, similar to quantile measures, is only weakly monotonic.

5.2.5 Miscellaneous Scale Measures

Armstrong (1985, Chap. 13) lists several accuracy measures.  Some of these, such as R2 and Theil’s U1 and U2, are really goodness-of-fit measures and are not considered here.
  Those that are considered here are the coefficient of variation (CV), adjusted MAPE (
[image: image38.wmf]MAPE

), and the accuracy ratio (
[image: image39.wmf]Q

).  Of these, only CV satisfies Conditions 5.1 and 5.2 to be a scale measure.

5.2.5.1 The Coefficient of Variation

The coefficient of variation is simply the root mean squared error scaled by the average actual value:
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Since this is merely a positive multiple of RMSE, it is equivalent to using RMSE, a valid scale measure.  For comparing multiple estimates sets to a particular set of actual values, there is no gain from the division.

5.2.5.2 Adjusted MAPE

This measure is designed to avoid the alleged bias of MAPE towards underestimates (Armstrong, 1985, p. 348).  It has also been called Symmetric MAPE (e.g., Tayman and Swanson, 1999).  The bias in MAPE arises because an underestimate can only contribute at most 100 per cent absolute percentage error, while an overestimate has no such bound.  Adjusted MAPE avoids this by changing the denominator of the ratio used in MAPE.  Adjusted MAPE’s values range between 0 and 2 (or 0 per cent and 200 per cent, after scaling).  This is the first indicator of its problem: it does not satisfy Condition 5.1 and is, thus, not a scale measure.  Formally, the formula for adjusted MAPE is



[image: image41.wmf]å

å

=

=

+

=

+

-

=

n

i

i

i

i

n

i

i

i

i

i

A

n

A

E

A

E

n

1

1

ε

2

ε

2

2

MAPE

.




(5.10)

Note that 
[image: image42.wmf]MAPE

 is not symmetric in εi.  Thus, it violates Assumption 3.1.

5.2.5.3 Accuracy Ratio

The accuracy ratio (
[image: image43.wmf]Q

) is defined as
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where
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 is bounded below by 1.  Thus, 
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 is not a scale measure.  The reader can also easily find instances in which Assumption 3.1 fails.

5.2.6 Coleman’s Loss Functions
Coleman (2001c) axiomatically derives loss functions for measuring scale by assuming Assumption 3.1 and Assumptions 5.1-5.2:

Assumption 5.1 [monotonicity in ε]:  
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Assumption 5.2 [monotonicity in A]:  
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Assumption 5.1 simply states that smaller errors are preferred to bigger ones.  Assumption 5.2 states that, for a given error, less weight is put on it as the actual value increases.  One the simplest functions that satisfies these assumptions and the simplest that admits Property 5.1 below is the Cobb-Douglas function
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or, equivalently,
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where p > 0 and q < 0.
  The reader can verify that the power means all use versions of this loss function, when p and q can be zero.


An additional desirable property is that, for a given relative (or percentage) error, loss increases in A.  Population counts by geographic area can span a wide range.  For example, county populations span the range (roughly) 100-10,000,000, five orders of magnitude.  Errors of 1 per cent at the extreme ends of this range correspond to numeric errors of 1 and 100,000, respectively.  The former is akin to a roundoff error, while the latter is quite substantial.  Moreover, it is generally true that the coefficient of variation of error decreases as the actual value increases.
  Constraining the loss function as mentioned here accounts for this fact.  Formally, we assert Property 5.1:

Property 5.1:  The loss associated with a given relative (or percentage) error rises in A.  This is assured in equations (5.13a-b) whenever p + q > 0.


While many of the previously scale measures satisfy Assumptions 3.1, 5.1 and 5.2, none satisfies Property 5.1.  When loss functions (5.13a-b) are used with L (or L /n), a scale measure is created.
  Coleman (2001b) develops a method to incorporate the preferences of an impartial decision-maker into the selection of the values of p and q.  However, an impartial decision-maker may not be available.  For this case, Paragraph 5.2.6.1 uses the apportionment literature to parametrize this loss function.

5.2.6.1 Webster’s Rule

Taking the view that estimates are apportionments, one can use the apportionment literature to find a “fair” rule for measuring scale.  Often, estimates are literally apportionments: governments allocate revenues to lower-level governments in proportion to the latters’ population estimates.  Balinski and Young (1982) prove that the apportionment rule proposed by Daniel Webster satisfies a large number of fairness criteria.  It is the only known rule that satisfies them.
  Spencer (1986) proves that Webster’s Rule is equivalent to taking p = 2 and q = -1.  Cohen and Zhang (1986) referred to it as the “χ2” loss function, due to its similarity to the χ2 statistic.  However, this author believes that to be a misleading usage, as Webster’s Rule does not create a test statistic.  Moreover, the χ2-test is well-known for its lack of robustness to departures from i.i.d. normality, so that the χ2 distribution cannot be used for statistical testing.

5.3 Levels or Shares?  Asymptotic Equivalence

Any scale measure consisting of loss functions can take either levels or shares of the total as arguments.  The question is whether this makes any difference.  In the case of the weighted exponential loss functions, 
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 where Xi is either the estimate or actual value and Yi is the opposite member of this pair, 0 < p < , and w(Yi) can be factored as w(Yi) = w(yi)g(Ny) where 0 ≤ w(Yi) <  for all nonnegative arguments, 
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 and yi = Yi/Ny; the answer is, asymptotically, no.  That is, as n increases, a weighted difference of the mean loss functions converges to a constant.  This is asymptotic equivalence.  This and an equivalent concept, asymptotic ratio equivalence, are defined below.

Definition 5.1 [Asymptotic Equivalence]:  Let Lℓ and Ls be the level-based and share-based total loss functions, respectively.  Then Lℓ and Ls are asymptotically equivalent iff 
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Definition 5.2 [Asymptotic Ratio Equivalence]: Lℓ and Ls are asymptotically ratio equivalent iff 
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The upshot of asymptotic equivalence is that it demonstrates that seeming unrelated accuracy measures are, in fact, asymptotically the same.  For example, the index of dissimilarity (ID)
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where 
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 and 
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 are area i’s estimated and actual shares, is asymptotically equivalent to the Mean Absolute Error (MAE)
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and to the Total Amount of Misallocated Revenues (TAMR)
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where R is the amount of revenues to be disbursed.   In fact, TAMR = 2nR ID. The U.S. Census Bureau’s Population Estimates Branch has used ID to measure differences between sets of estimates.
  However, by asymptotic equivalence, it is the same as using MAE to measure differences, a highly questionable measure, as it does not account for size variations among geographic areas.


Another statistic of interest is φ2:
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φ2 is closely related to Pearson’s χ 2:  φ 2 = χ 2/n.  φ2 itself can be used as a goodness-of-fit statistic in addition to being a scale measure.  It is asymptotically equivalent to the Webster’s Rule loss function.

5.4 Testing for Differences in Scale
Given that a scale measure has an additive loss function representation, different sets of estimates can be pairwise tested for differences in scale using the techniques of Section 2.  The tests are performed using the individual losses.  It must be understood that scale can only be tested relative to one scale measure.  Thus, a finding of a significant difference according to one measure does not imply a significant difference according to another measure.

6 Outliers
Outliers are observations that arouse suspicion that they came from an anomalous data generation process.  An outlier may either indicate a problem with its data generation process or be a true, but unusual, statement about reality.  In the non-i.i.d. framework, it is impossible to use distributional assumptions for testing outliers, that is, do parametric testing, so nonparametric testing has to be used.  Subsection 6.1 develops the most basic loss function.  Subsubsection 6.1.1 looks at the problem of choosing q.  Subsection 6.2 generalizes outlier detection to asymmetric situations: that is, different criteria are used for positive and negative errors.

6.2 The Most Basic Loss Function

Using Assumptions 3.1, 5.1, 5.2 and Property 5.1, Coleman, Bryan and Devine (2002) develop the loss function
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or
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where 0 > q > -1.  Note that these are the same equations as (5.13a-b) without the parameter p.  Its disappearance and the tightening of the restriction on q is caused by a Lie symmetry.  For details, see Coleman et al. (2002), Section 2.


By considering the limits of q, one can interpret these loss functions.  q = 0 is equivalent to the absolute value of the difference between the estimated and actual values.  q = -1 is equivalent to absolute relative (or percentage) difference between the values.  Intermediate values of q, therefore, represent trade-offs between the absolute difference and the absolute relative difference.  A single value of q is equivalent to taking the product of positive powers of the absolute difference and the absolute relative difference. Consider the product of the rth power of the absolute difference and the sth power of the absolute relative difference, where r, s > 0: 
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.  This is equivalent to q = –s / (r + s).  In fact, an infinite number of pairs (r, s) correspond to any given q.


Given that a value q has been selected for the loss function, a critical value C has to be selected to declare an estimate to be an outlier.  An estimate is considered critical iff L ≥ C.  Criticality in itself does not indicate the estimate is truly an outlier.  Rather, it indicates that the estimate is a potential outlier and needs to be examined further.  C can be determined in many ways.  It can be determined a priori, say, by prior experience working with similar data, or by taking a particular quantile of the Li, or by simply eyeballing the data.

6.1.1 Which Value of q?

This author’s experience with population estimates and their inputs indicates that one should start with a value of –0.5.  If too many small errors with large actual values have high loss functions, then q should be raised.  Likewise, if too many observations with small errors occurring with small actual values are ranked highly, then q should be increased.  In this author’s experience, varying q by increments of –0.1 is sufficient.  In one special case, q = –0.5 is the only theoretically justified value (and the only time that a theory justifies a value).  Suppose that the Ei are generated by a sampling-like process so that their variances are proportionate to the Ai.  Then, Coleman et al. (2002, Subsection 2.4) proves that q = –0.5 is the appropriate value.  Finally, Coleman et al. (2002, Subsection 3.2) show how to convert discrete outlier criteria into the continuous form in this Section using regression.

6.2 The Signed Loss Function
The signed loss function can be used whenever one wishes to use the direction of the error in the analysis.  It also permits the use of different values of q and C for positive and negative data.  Thus, Assumption 3.1 can be seen to be purely technical in this context.   The signed loss function is defined as
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0 > q > –1.  Asymmetric outlier criteria are obtained by choosing q = q– and C = C– for negative errors and q = q+ and C = C+ for positive errors.

7 Extreme Errors

A desirable property of an estimation process is that it produces “well-behaved” estimates everywhere.  Another way of saying this is that the process produces few extreme errors.  An extreme error is a high value of the loss function used to measure scale.  It is different from an outlier in that no judgment is made as to whether it is coming from an anomalous data generation process.  For example, a particular observation may make a large contribution to MAPE, but not be recognized as an outlier by the outlier-detecting loss function.  Given a set of estimates, one would like to have a summary statistic to measure the extremeness of the most extreme errors.  Coleman and Martindale (2000) propose using the “anti-β-trimmed mean.”  This is the average of the proportion β of the most extreme errors, as measured by the loss function used to construct the scale measure.  It is, in a way, the opposite of the β-trimmed mean of Subsubsection 5.2.4; hence, the name.  The errors that are discarded by the scale measure are retained by the extreme value measure.  Formally, the anti-β-trimmed mean is written as



[image: image66.wmf](

)

å

>

>

=

b

b

b

L

L

i

i

i

L

L

L

O

#

1








(7.1)

where Lβ is the loss corresponding to the βth quantile of losses, in descending order.  
[image: image67.wmf]b
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 is a purely descriptive measure, so no statistical inferences can be made.


The choice of β is not simple.  A low value, in the limit, simply captures the largest error.  A large value captures many nonextreme, unremarkable observations.  Coleman and Martindale (2000) recommend β = 5 per cent as a reasonable tradeoff.

8 Summary

This paper has axiomatically covered the four aspects of population estimates quality: bias, scale (or accuracy), outliers, and extreme errors.  This has all been done in a non-i.i.d. framework, the weakest set of assumptions on estimates errors.  We have seen that the non-i.i.d. assumption, on the one hand, prevents the construction of location (or bias) estimators, while on the other hand, it eliminates the sample-population problem and permits the construction of tests for significant bias and differential bias.  Noting that scale is subjective in the context of population estimates, it has been defined axiomatically.  Several scale measures from the literature have been classified and tested for conformance to these axioms.  Many of these are power means of absolute errors or absolute percentage errors.  Other scale measures, such as the median absolute percentage error, a commonly used measure, have been examined.  Adding the properties that a scale measure be strictly monotonic and increase in the actual population for a given absolute relative error gives rise to Coleman’s (2001b and 2001c) loss function framework.  Individual losses for each observation are computed and then summed or averaged.  Asymptotically, it does not matter whether levels or shares be used.  Moreover, loss function-based scale measures are pairwise testable for significant differences, relative to the chosen loss function.  Thus, a set of estimates that appears more accurate than another relative to a given loss function can be tested to see if the difference is attributable to random error.  Loss functions also give rise to a method for detecting potential outliers.  A mathematical property makes these loss functions slightly simpler than those used to measure scale.  However, an analyst’s expert judgement is needed to determine of the observations identified are truly outliers.  Finally, a descriptive measure that summarizes extreme values has been constructed.  Given a loss function for measuring scale, it averages a predetermined fraction of the topmost losses.

Appendix A:  Proofs of Equality of Monotonocity Conditions

A.1  Condition 5.2 Implies Condition 5.2':

Suppose that (i) L' ≥ L and (ii) assume that T(L') > T(L).

From (i) and Condition 5.2, for all a ≤ L ≤ b, a ≤ T(L) ≤ b, and for all a' ≤ L' ≤ b', a' ≤ T(L') ≤ b'.  Now from (ii) one can choose a' ≤ T(L') ≤ b' < a ≤ T(L) ≤ b.  But this can only be done if L' < L, contradicting (i). QED

A.2  Condition 5.3 Implies Condition 5.3':

Suppose that (i) L' > L and (ii) assume that T(L') ≤ T(L).

From (i) and Condition 5.2, for all a < L < b, a < T(L) < b, and for all a' < L' < b', a' < T(L') < b'.  Now from (ii) one can choose a' < T(L') < b' ≤ a < T(L) < b.  But this can only be done if L' ≤ L, contradicting (i). QED
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� The most commonly used measures of bias and scale are the mean algebraic percentage error (MALPE) and the mean absolute percentage error (MAPE), respectively.  The Post-2000 Estimates Methodology Committee organized by the U.S. Census Bureau and the Federal-State Cooperative Program for Population Estimates included extreme errors in the evaluation of different population estimates methodologies.

� This paragraph uses “population” in two senses, but this is, unfortunately, unavoidable.

� In economic terms, the investor is interested in the utility of estimates.  The loss function framework of Subsubsection 5.2.6 is based explicitly on the evaluator’s utility function of a population estimate as a function of its error and actual value.  Utility theory also enters into the discussion of the total loss function in Section 3.

� For example, the U.S. Census Bureau’s Population Estimates Branch uses the cohort-component method, which uses nonstatistical estimates of the components of population change to estimate total population change.

� This does not mean that one cannot model statistically the evolution of populations, but this is beyond the scope of the present paper.

� The interested reader may wish to read Anselin (1999) for an introduction to spatial regression.

� McCloskey and Ziliak (1996, p. 106) are cognizant of the sample-population problem.

� “Sup” is the mathematical symbol for “supremum,” the least upper bound of a set of numbers.  The supremum may coincide with the maximum.  A formal definition of supremum is beyond the scope of this present work and can be found in numerous mathematics textbooks.

� The discussion here is based on Rousseeuw and Leroy (1989, pp. 9-10).

� More weakly, one can assume uncorrelated medians (Coleman, 1999, p. 254, fn. 14).  That is, for a sequence of n random variables, the median of any one variable’s distribution does not depend on any of the other variables.  For example, assume that the variances of a set of symmetric distributions are dependent, but not their medians (which equal their means.)  The random variables generated by these distributions are uncorrelated in median.

	Falk and Kohne (1984) have robustified the Sign Test to one type of dependence: strictly stationary ψ-mixing processes.  This is well beyond the scope of this paper.

� Alternatively, H0 can be expressed as � EMBED Equation.3  ��� for all i.

� For a fuller discussion of the Sign Test, see Gibbons (1982). Conover (1999, pp. 157-164) places the Sign Test into a non-i.i.d. context.

� That is, it is the sum of n i.i.d. Bernoulli random variables with mean ½.

� See, for example, Coleman (2001a) and Tiku et al. (1986, pp. 2-3) for discussions of the asymptotic robustness of the t-test.

� Population estimates errors generally have finite supports, so all of the moment conditions of Coleman (2001a) are satisfied.

� See Coleman (2001a) for a discussion of these bootstrap procedures.

� The loss function was developed by Wald (1947, pp. 81-82) as the “weight” function.  It is commonly used in statistics and statistical decision theory.  It is also known as the “cost” or “penalty” function in other literatures, such as operations research.

� See Staudte and Sheather (1990, p. 110) for a discussion of location measures.

� Coleman (2000b) provides more detail about the test construction.

� a and b are arbitrary constants in this Subsection.

� These conditions are based on Staudte and Sheater (1990, p. 68), which contains a fuller description of these properties.  The “vice versa” part emphasizes that these are really bijections. This statement asserts that L and T(L) lie on the same interval.  It is impossible for T(L) to lie above or below the bounds on L.

� Dispersion measures are functions of both the location and scale measures.

� Assumption 3.1 is irrelevant to this argument.

� See, for example, Staudte and Sheather (1990).

� Formally, these are order-isomorphic.

� For a variable x, constant c and transformation parameter λ, the generalized Box-Cox transformation (Box and Cox used c = 1 for continuity in λ at λ = 0; Swanson et al. (2000) used c = λ) y(x;λ) has the form

� EMBED Equation.3  ���.

Applying this to APE (assuming that λ ≠ 0) and averaging obtains MAPE-T(c):

� EMBED Equation.3  ���.

For λ ≠ 0, the inverse Box-Cox transformation is

� EMBED Equation.3  ���.

The reader can verify that � EMBED Equation.3  ���.

� Thomas Bryan (personal correspondence) has found the same using another power transformation to normality.

� See Smith and Sincich (1992) for an example of the use of 90PE.

� L-estimators are linear combinations of quantiles.

� Since Lβ is the average of the quantiles up to (1 – β), it is an L-estimator.

� φ2 in Subsubsection 5.2.7 can be considered to be a goodness-of-fit measure, as well as a scale measure.

� Usually, the CV is presented as the square of equation (5.7).  This difference, in this context, is immaterial.

� National Research Council (1980) obtained the same result, albeit with weak inequalities, by generalizing from specific examples.  NRC (1980), moreover, points out that these are special cases of the loss functions � EMBED Equation.3  ���, where � EMBED Equation.3  ���.  This latter formulation, however, makes it difficult, if not impossible to satisfy Property 5.1.

� For example, see Smith (1987), Davis (1994) and Tayman, Schafer and Carter (1998) for empirical evidence and Beaumont and Isserman (1987) for theoretical explanations.

� Coleman (2000a) contains an example demonstrating the merits of using loss functions compared to MAPE.  Webster’s Rule, described in Paragraph 5.2.6.1 below, is used to parametrize the loss function.

� This paragraph is based on Coleman (2002).

� However, Ernst (1992) finds that other rules satisfy other fairness criteria and opines that there is no optimal apportionment rule that satisfies all conceivable fairness criteria.  This result is similar to Arrow’s (1950) Nobel prize-winning proof of the nonexistence of a social welfare function aggregating individuals’ ordinal preferences that simultaneously satisfies five mild and reasonable conditions.  Still, Webster’s Rule is the only apportionment rule considered by Balinski and Young (1982) and Ernst (1992) that can be represented by minimizing the sum of loss functions satisifying Assumptions 3.1, 5.1, 5.2 and Property 5.1  Spencer (1986).  I would like to thank Gregg Diffendahl for informing me of Ernst (1992).

� This Subsection is based on Coleman (2001d).

� More precisely, the Census Bureau has used ID to measure “dissimilarity.”  Dissimilarity is an ill-defined concept.  See Coleman (2001d) for a discussion of it.

� If one is using q to detect outliers, then the loss function for measuring scale with parameters p and pq generates the same rankings of observations.
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