The Method of Undetermined Coefficients

This method of solution applies to a very particular and frequently occurring differential equation. The equation must be linear, with constant coefficients and with a non-homogeneous term, $g(x)$, that is a solution of some homogeneous linear D.E., which also has constant coefficients. The D.E. takes the form:

(LCU) *a y g x ^k k k n u* () () = ∑ ⁼ 0 .

Note the non-homogeneous term, $g_u(x)$, is simply a linear combination of the two functions, $x^n e^{\alpha x} \sin \beta x$ and $x^n e^{\alpha x} \cos \beta x$, where $n \in \mathbb{N}$, and $\alpha, \beta \in \mathbb{R}$. {As a later "thought exercise" consider the generalization $\alpha, \beta \in \mathbb{C}$ and that of $n \in \mathbb{R}$

Recall that associated with (LCU) is a linear homogeneous equation with constant coefficients:

(HC)
$$
\sum_{k=0}^{n} a_k y^{(k)} = 0.
$$

Furthermore, (HC) will have *n*, easily determinable, linearly independent solutions, which are referred to as a fundamental set of (HC). These are determined indirectly by solving the auxiliary equation

$$
\text{(AE)} \qquad \sum_{k=0}^{n} a_k m^k = 0
$$

We will denote the fundamental set by $F = \{y_1, y_2, ..., y_n\}$. Now also the arbitrary linear combination $y_c = \sum c_k y_k$ *k n* = $\sum_{k=1}$ may be called either the general solution of (HC) or the complementary solution of (LCU).

For example associated with

 $(LCU4)$ $y^{(4)} + 4y^{(2)} = x^2 + xe^{-x} + \sin(x/2)$

is the auxiliary equation $m^4 + 4m^2 = 0$ with roots $m = \{0, 0, \pm 2i\}$ which reveals the fundamental set $F = \{1, x,$ cos (2*x*), sin (2*x*)} and the complementary solution $y_c = c_1 + c_2x + c_3\cos(2x) + c_4\sin(2x)$.

We now find it convenient to introduce the following.

Definition: Given $g_u(x)$, from (LCU), the initial "basic set", $B₀$, of this function is the set of functions with unit coefficients, such that all derivatives of $g_u(x)$, including $g_u(x)$ itself, can be written as a linear combination of the elements of the elements from this initial basic set.

For example if as in the above example $g_u(x) = x^2 + xe^{-x} + \sin(x/2)$, then

$$
B_0 = \left\{ x^2, x, 1, xe^{-x}, e^{-x}, \sin(x/2), \cos(x/2) \right\}.
$$

Notice that

$$
\frac{d(x^2)}{dx} = 2 \cdot x, \quad \frac{d^2(x^2)}{dx^2} = 2 \cdot 1, \quad \frac{d(xe^{-x})}{dx} = 1 \cdot e^{-x} - 1 \cdot xe^{-x}, \text{ and } \frac{d(\sin(x/2))}{dx} = 1/2 \cdot \cos(x/2).
$$

Definition: Given an initial basic set, B_0 , as above and a fundamental set, F, also as above, we determine a final basic set, B, by first taking all elements of B_0 that are not also in F are placed in a final basic set, B. The remaining elements of B_0 are repeatedly multiplied by x until they are unique and no longer repeat elements of F nor repeat an element already in the final basic. These modified elements are then also placed in B. Note the size(B_0) = size(B). Also notice how the initial basic set, B_0 , depends only on $g(x)$, but the final basic set, B, also depends on the fundamental set .

In the above example: $F = \{1, x, \cos(2x), \sin(2x)\}\$. $B_0 = \{x^2, x, 1, xe^{-x}, e^{-x}, \sin(x/2), \cos(x/2)\}\$. So we select the elements $\{x^2, xe^{-x}, e^{-x}, sin(x/2), cos(x/2)\}$, from B₀ which, are not repeated in F. Now the remaining

two elements of B_0 , $\{x, 1\}$ would be multiplied by x^3 so that they are unique and do not repeat any from F or those already selected from B_0 . Thus the final basic set would be:

B = {
$$
x^4
$$
, x^3 , x^2 , xe^{-x} , e^{-x} , $sin(x/2)$, $cos(x/2)$ }.

Now a form for a particular solution of (N_U) may be formed as a linear combination of the elements of B. For the given example we have

$$
y_p = A \cdot x^4 + B \cdot x^3 + C \cdot x^2 + D \cdot xe^{-x} + E \cdot e^{-x} + F \cdot \sin(x/2) + G \cdot \cos(x/2)
$$

\n
$$
y'_p = 4A \cdot x^3 + 3B \cdot x^2 + 2C \cdot x - D \cdot xe^{-x} + (D - E) \cdot e^{-x} + (F/2) \cos(x/2) - (G/2) \cdot \sin(x/2)
$$

\n
$$
y''_p = 12Ax^2 + 6B \cdot x + 2C + D \cdot xe^{-x} + (E - 2D) \cdot e^{-x} - (F/4) \sin(x/2) - (G/4) \cdot \cos(x/2)
$$

\n
$$
y'''_p = 24A \cdot x + 6B - D \cdot xe^{-x} + (3D - E) \cdot e^{-x} - (F/8) \cos(x/2) + (G/8) \cdot \sin(x/2)
$$

\n
$$
y_p^{(4)} = 24A + D \cdot xe^{-x} + (E - 4D) \cdot e^{-x} + (F/16) \sin(x/2) + (F/16) \cdot \cos(x/2).
$$

Substitution into the DE $y^{(4)} + 4y^{(2)} = x^2 + xe^{-x} + \sin(x/2)$

$$
24A + D \cdot xe^{-x} + (E - 4D) \cdot e^{-x} + (F/16) \sin(x/2) + (F/16) \cdot \cos(x/2)
$$

$$
+ 48Ax^2 + 24Bx + 8C + 4D \cdot xe^{-x} + (4E - 8D) \cdot e^{-x} - F \sin(x/2) - G \cdot \cos(x/2)
$$

$$
= x^2 + xe^{-x} + \sin(x/2)
$$

Equating coefficients leads to

 $48A = 1$, $24B = 0$, $24A + 8C = 0$, $5D=1$, $5E-12D=0$, $-15F/16 = 1$, $-15G/16 = 0$. So $A = 1/48$, $B = 0$, $C = -1/16$, $D = 1/5$, $E = 12/25$, $F = -16/15$, $G = 0$. Thus $y_p = (1/48) \cdot x^4 - (1/16) \cdot x^2 + (1/5) \cdot xe^{-x} + (12/25) \cdot e^{-x} - (16/15) \cdot \sin(x/2)$

and the general solution of (LCU4) is given by $y = c_1 + c_2 x + c_3 \cos(2x) + c_4 \sin(2x) + (1/48) \cdot x^4 - (1/16) \cdot x^2 + (1/5) \cdot xe^{-x} + (12/25) \cdot e^{-x} - (16/15) \cdot \sin(x)$ $1 + c_2 \lambda + c_3 \cos(\lambda \lambda) + c_4$ $cos(2x) + c_4 sin(2x) + (1/48) \cdot x^4 - (1/16) \cdot x^2 + (1/5) \cdot xe^{-x} + (12/25) \cdot e^{-x} - (16/15) \cdot sin(x/2)$.

- 2.) Use these roots to determine the fundamental set of solutions, F.
- 3.) Form the complementary solution y_c as an arbitrary linear combination of the elements from F.
- 4.) Determine the basic set, B, for (LCU).
- 5.) A particular solution, y_p , for (LCU) may now be given as an undetermined linear combination of the elements of B.
- 6.) *y*p, is then differentiated as many times as is required and substituted into (LCU).
- 7.) Coefficients of the like terms are then equated resulting in an *N* X *N* linear system having the *N* undetermined coefficients as variables.
- 8.) Solving the system determines the coefficients and hence *y*_p, is determined.
- 9.) The general solution of (LCU) is then given as $y = y_c + y_n$

.