Career, Family And Living For The Lord
-
A Twenty-Five Year History

by James Thomas Lee, Jr. 12/25/97 Copyrighted 1995 by James Thomas Lee, Jr. Copyright Number: XXx xxx-xxx

Appendices

Appendix G. My Best Estimated Position (BEPOS) Algorithm {263 words}

The technique used was multiple linear regression, where the dependent variable, latitude of the estimated point (yi), was estimated as a function of the longitude of the estimated point (x1i), the time of the point (x2i), and confidence radius of the point (x3i). The equation to be solved was as follows:


                f = SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b)**2


Taking the partial with respect to m1, m2, m3, and b yields the following expressions:

     Partial(f)
1.   ----------      =   2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x1(i))  =  0
     Partial(m1)

which becomes,

 SUM(x1(i)y(i))  =  m1SUM(x1(i)**2)  +  m2SUM(x1(i)x2(i))  +  m3SUM(x1(i)x3(i))  +  bSUM(x1(i))

-----------------------------------------------------------------------------------------------

     Partial(f)
2.   ----------      =   2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x2(i))  =  0
     Partial(m2)

which becomes,

 SUM(x2(i)y(i))  =  m1SUM(x1(i)x2(i))  +  m2SUM(x2(i)**2)  +  m3SUM(x2(i)x3(i))  +  bSUM(x2(i))

-----------------------------------------------------------------------------------------------



     Partial(f)
3.   ----------      =   2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x3(i))  =  0
     Partial(m3)

which becomes,

 SUM(x3(i)y(i))  =  m1SUM(x1(i)x3(i))  +  m2SUM(x2(i)x3(i))  +  m3SUM(x3(i)**2)  +  bSUM(x3(i))

-----------------------------------------------------------------------------------------------

     Partial(f)
4.   ----------      =   2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-1)  =  0
     Partial(b)

which becomes,

 SUM(y(i))  =  m1SUM(x1(i))  +  m2SUM(x2(i))  +  m3SUM(x3(i))  +  nb

-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------

Solving the 4x4 matrix required the following special lettered notation:

                               A = SUM(x1(i)**2)
                               B = SUM(x1(i)x2(i))
                               C = SUM(x1(i)x3(i))
                               D = SUM(x1(i))
                               E = SUM(x2(i)**2)
                               F = SUM(x2(i)x3(i))
                               G = SUM(x2(i))
                               H = SUM(x3(i)**2)
                               J = SUM(x3(i))
                               K = n
                               L = SUM(x1(i)y(i))
                               M = SUM(x2(i)y(i))
                               N = SUM(x3(i)y(i))
                               P = SUM(y(i))


                     |                 |   |    |     |     |
                     |  A   B   C   D  |   | m1 |     |  L  |
                     |                 |   |    |     |     |
                     |  B   E   F   G  |   | m2 |     |  M  |
                     |                 |   |    |     |     |
                     |  C   F   H   J  |   | m3 |  =  |  N  |
                     |                 |   |    |     |     |
                     |  D   G   J   K  |   | b  |     |  P  |
                     |                 |   |    |     |     |


denominator (den) =  A[E(HK-J**2) - F(FK-GJ) + G(FJ-GH)]

                    -B[B(HK-J**2) - F(CK-DJ) + G(CJ-DH)]

                    +C[B(FK-GJ) - E(CK-DJ) + G(CG-DF)]

                    -D[B(FJ-GH) - E(CJ-DH) + F(CG-DF)]

-----------------------------------------------------------------------------------------------

          m1 =  (LE-BM)(HK-J**2) + (CM-FL)(FK-GJ) + (GL-DM)(FJ-GH) + 
                (JN-HP)(DE-BG) + (GN-FP)(CG-DF) + (BF-CE)(KN-JP)
               -------------------------------------------------------
                                       den


          m2 =  (AM-BL)(HK-J**2) + (FL-CM)(CK-DJ) + (DM-GL)(CJ-DH) +
                (HP-JN)(BD-AG) + (KN-JP)(BC-AF) + (CG-DF)(CP-DN)
               -------------------------------------------------------
                                       den


          m3 =  (BL-AM)(FK-GJ) + (BM-EL)(CK-DJ) + (GL-DM)(CG-DF) +
                (FP-GN)(AG-BD) + (KN-JP)(AE-B**2) + (CP-DN)(DE-BG)
               -------------------------------------------------------
                                       den


          m4 =  (AM-BL)(FJ-GH) + (EL-BM)(CJ-DH) + (CM-FL)(CG-DF) +
                (HP-JN)(AE-B**2) + (GN-FP)(AF-BC) + (CE-BF)(DN-CP)
               -------------------------------------------------------
                                       den
 
  

Appendix H. SDC Letter of Appreciation

Back To The Table Of Contents

Back To TLEE's Home Page

Send email to: tlee6040@aol.com 1