by James Thomas Lee, Jr. 12/25/97 Copyrighted 1995 by James Thomas Lee, Jr. Copyright Number: XXx xxx-xxx
The technique used was multiple linear regression, where the dependent variable, latitude of the estimated point (yi), was estimated as a function of the longitude of the estimated point (x1i), the time of the point (x2i), and confidence radius of the point (x3i). The equation to be solved was as follows:
f = SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b)**2 Taking the partial with respect to m1, m2, m3, and b yields the following expressions: Partial(f) 1. ---------- = 2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x1(i)) = 0 Partial(m1) which becomes, SUM(x1(i)y(i)) = m1SUM(x1(i)**2) + m2SUM(x1(i)x2(i)) + m3SUM(x1(i)x3(i)) + bSUM(x1(i)) ----------------------------------------------------------------------------------------------- Partial(f) 2. ---------- = 2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x2(i)) = 0 Partial(m2) which becomes, SUM(x2(i)y(i)) = m1SUM(x1(i)x2(i)) + m2SUM(x2(i)**2) + m3SUM(x2(i)x3(i)) + bSUM(x2(i)) ----------------------------------------------------------------------------------------------- Partial(f) 3. ---------- = 2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-x3(i)) = 0 Partial(m3) which becomes, SUM(x3(i)y(i)) = m1SUM(x1(i)x3(i)) + m2SUM(x2(i)x3(i)) + m3SUM(x3(i)**2) + bSUM(x3(i)) ----------------------------------------------------------------------------------------------- Partial(f) 4. ---------- = 2 SUM (y(i) - m1x1(i) - m2x2(i) - m3x3(i) - b) (-1) = 0 Partial(b) which becomes, SUM(y(i)) = m1SUM(x1(i)) + m2SUM(x2(i)) + m3SUM(x3(i)) + nb ----------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------- Solving the 4x4 matrix required the following special lettered notation: A = SUM(x1(i)**2) B = SUM(x1(i)x2(i)) C = SUM(x1(i)x3(i)) D = SUM(x1(i)) E = SUM(x2(i)**2) F = SUM(x2(i)x3(i)) G = SUM(x2(i)) H = SUM(x3(i)**2) J = SUM(x3(i)) K = n L = SUM(x1(i)y(i)) M = SUM(x2(i)y(i)) N = SUM(x3(i)y(i)) P = SUM(y(i)) | | | | | | | A B C D | | m1 | | L | | | | | | | | B E F G | | m2 | | M | | | | | | | | C F H J | | m3 | = | N | | | | | | | | D G J K | | b | | P | | | | | | | denominator (den) = A[E(HK-J**2) - F(FK-GJ) + G(FJ-GH)] -B[B(HK-J**2) - F(CK-DJ) + G(CJ-DH)] +C[B(FK-GJ) - E(CK-DJ) + G(CG-DF)] -D[B(FJ-GH) - E(CJ-DH) + F(CG-DF)] ----------------------------------------------------------------------------------------------- m1 = (LE-BM)(HK-J**2) + (CM-FL)(FK-GJ) + (GL-DM)(FJ-GH) + (JN-HP)(DE-BG) + (GN-FP)(CG-DF) + (BF-CE)(KN-JP) ------------------------------------------------------- den m2 = (AM-BL)(HK-J**2) + (FL-CM)(CK-DJ) + (DM-GL)(CJ-DH) + (HP-JN)(BD-AG) + (KN-JP)(BC-AF) + (CG-DF)(CP-DN) ------------------------------------------------------- den m3 = (BL-AM)(FK-GJ) + (BM-EL)(CK-DJ) + (GL-DM)(CG-DF) + (FP-GN)(AG-BD) + (KN-JP)(AE-B**2) + (CP-DN)(DE-BG) ------------------------------------------------------- den m4 = (AM-BL)(FJ-GH) + (EL-BM)(CJ-DH) + (CM-FL)(CG-DF) + (HP-JN)(AE-B**2) + (GN-FP)(AF-BC) + (CE-BF)(DN-CP) ------------------------------------------------------- den
Appendix H. SDC Letter of Appreciation
Send email to: tlee6040@aol.com