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5.III Nilpotence

The goal of this chapter is to show that every square matrix is similar to one
that is a sum of two kinds of simple matrices. The prior section focused on the
first kind, diagonal matrices. We now consider the other kind.

5.III.1 Self-Composition

This subsection is optional, although it is necessary for later material in this
section and in the next one.

A linear transformations t : V → V , because it has the same domain and
codomain, can be iterated.∗ That is, compositions of t with itself such as t2 = t◦t
and t3 = t ◦ t ◦ t are defined.

~v

t(~v )

t2(~v )

Note that this power notation for the linear transformation functions dovetails
with the notation that we’ve used earlier for their square matrix representations
because if RepB,B(t) = T then RepB,B(tj) = T j .

1.1 Example For the derivative map d/dx : P3 → P3 given by

a+ bx+ cx2 + dx3 d/dx7−→ b+ 2cx+ 3dx2

the second power is the second derivative

a+ bx+ cx2 + dx3 d2/dx2

7−→ 2c+ 6dx

the third power is the third derivative

a+ bx+ cx2 + dx3 d3/dx3

7−→ 6d

and any higher power is the zero map.

1.2 Example This transformation of the space of 2×2 matrices

(

a b
c d

)

t7−→
(

b a
d 0

)

∗ More information on function interation is in the appendix.
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has this second power
(

a b
c d

)

t27−→
(

a b
0 0

)

and this third power.
(

a b
c d

)

t37−→
(

b a
0 0

)

After that, t4 = t2 and t5 = t3, etc.

These examples suggest that on iteration more and more zeros appear until
there is a settling down. The next result makes this precise.

1.3 Lemma For any transformation t : V → V , the rangespaces of the powers
form a descending chain

V ⊇ R(t) ⊇ R(t2) ⊇ · · ·

and the nullspaces form an ascending chain.

{~0 } ⊆ N (t) ⊆ N (t2) ⊆ · · ·

Further, there is a k such that for powers less than k the subsets are proper (if
j < k then R(tj) ⊃ R(tj+1) and N (tj) ⊂ N (tj+1)), while for powers greater
than k the sets are equal (if j ≥ k then R(tj) = R(tj+1) and N (tj) = N (tj+1)).

Proof. We will do the rangespace half and leave the rest for Exercise 13. Recall,
however, that for any map the dimension of its rangespace plus the dimension
of its nullspace equals the dimension of its domain. So if the rangespaces shrink
then the nullspaces must grow.

That the rangespaces form chains is clear because if ~w ∈ R(tj+1), so that
~w = tj+1(~v), then ~w = tj( t(~v) ) and so ~w ∈ R(tj). To verify the “further”
property, first observe that if any pair of rangespaces in the chain are equal
R(tk) = R(tk+1) then all subsequent ones are also equal R(tk+1) = R(tk+2),
etc. This is because if t : R(tk+1)→ R(tk+2) is the same map, with the same
domain, as t : R(tk)→ R(tk+1) and it therefore has the same range: R(tk+1) =
R(tk+2) (and induction shows that it holds for all higher powers). So if the
chain of rangespaces ever stops being strictly decreasing then it is stable from
that point onward.

But the chain must stop decreasing. Each rangespace is a subspace of the one
before it. For it to be a proper subspace it must be of strictly lower dimension
(see Exercise 11). These spaces are finite-dimensional and so the chain can fall
for only finitely-many steps, that is, the power k is at most the dimension of
V . QED

1.4 Example The derivative map a + bx + cx2 + dx3 d/dx7−→ b + 2cx + 3dx2 of
Example 1.1 has this chain of rangespaces

P3 ⊃ P2 ⊃ P1 ⊃ P0 ⊃ {~0 } = {~0 } = · · ·
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and this chain of nullspaces.

{~0 } ⊂ P0 ⊂ P1 ⊂ P2 ⊂ P3 = P3 = · · ·

1.5 Example The transformation π : C3 → C
3 projecting onto the first two

coordinates





c1
c2
c3





π7−→





c1
c2
0





has C3 ⊃ R(π) = R(π2) = · · · and {~0 } ⊂ N (π) = N (π2) = · · · .

1.6 Example Let t : P2 → P2 be the map c0 + c1x+ c2x
2 7→ 2c0 + c2x. As the

lemma describes, on iteration the rangespace shrinks

R(t0) = P2 R(t) = {a+ bx
∣

∣ a, b ∈ C} R(t2) = {a
∣

∣ a ∈ C}

and then stabilizes R(t2) = R(t3) = · · · , while the nullspace grows

N (t0) = {0} N (t) = {cx
∣

∣ c ∈ C} N (t2) = {cx+ d
∣

∣ c, d ∈ C}

and then stabilizes N (t2) = N (t3) = · · · .

This graph illustrates Lemma 1.3. The horizontal axis gives the power j
of a transformation. The vertical axis gives the dimension of the rangespace
of tj as the distance above zero — and thus also shows the dimension of the
nullspace as the distance below the gray horizontal line, because the two add to
the dimension n of the domain.

0 1 2 j n

n

rank(tj)

As sketched, on iteration the rank falls and with it the nullity grows until the
two reach a steady state. This state must be reached by the n-th iterate. The
steady state’s distance above zero is the dimension of the generalized rangespace
and its distance below n is the dimension of the generalized nullspace.

1.7 Definition Let t be a transformation on an n-dimensional space. The
generalized rangespace (or the closure of the rangespace) is R∞(t) = R(tn) The
generalized nullspace (or the closure of the nullspace) is N∞(t) = N (tn).
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