Лекция 2
ВВЕДЕНИЕ В
ADSP1.1 ОБЗОР
Семейство
ADSP-2100 представляет собой ряд программируемых процессоров и микрокомпьютеров на одном кристалле, которые объединяет общая базовая архитектура, оптимизированная для цифровой обработки сигналов и других операций в области высокоскоростной обработки цифровых данных. Отличие различных процессоров семейства друг от друга заключается в числе и виде дополнений к базовой архитектуре, а именно: внутренней памяти на кристалле, таймере, последовательных и параллельных портов. Кроме того, процессоры ADSP-21msp58/59 имеют на кристалле аналоговый интерфейс для обработки смешанных аналоговых/цифровых сигналов.В руководстве представлена вся информация, необходимая, чтобы на основании сравнения базовой архитектуры различных процессоров семейства определить, какой из них наиболее соответствует задачам конкретного применения. Вместе с техническими описаниями отдельных устройств это руководство обеспечивает пользователя всей необходимой информацией при проектировании устройств на основе процессоров семейства ADSP-2100. В руководство включен полный справочный материал по программированию процессоров.
1.1.1 Функциональные устройства
В таблице 1.1 на следующей странице перечислены все главные функциональные устройства, входящие в базовую архитектуру семейства ADSP-2100, и отмечено, какие из них входят в состав каждого из выпускаемых на сегодняшний день процессоров.
• Вычислительные устройства - Каждый процессор семейства содержит три независимых вычислительных устройства с полным набором функциональных возможностей: арифметико-логическое устройство (АЛУ), умножитель-накопитель (умножитель) и устройство (циклического) сдвига. Вычислительные устройства обрабатывают данные разрядностью 16 бит и поддерживают вычисления с повышенной точностью.
•Генераторы адреса данных и программный автомат - Два генератора адреса данных и программный автомат генерируют адреса для доступа к памяти на кристалле или внешней памяти. Программный автомат поддерживает команды условного перехода за один цикл и организует выполнение циклов программы с нулевыми затратами ресурсов. Два генератора адреса данных позволяют
одновременно генерировать адреса для выборок двух операндов. Программный автомат и генератор адреса данных обеспечивают постоянную загрузку вычислительных устройств, максимизируя, таким образом, их производительность.
• Память - В семействе ADSP-2100 используется модифицированная гарвардская архитектура, при которой данные хранятся в памяти данных, а память программы содержит как команды, так и данные. Все процессоры семейства ADSP-2100 имеют ОЗУ на кристалле, которое включает часть пространства памяти программы и часть пространства памяти данных. Быстродействие памяти на кристалле позволяет процессору выбирать два операнда (один - из памяти данных, и один - из памяти программы) и команду (из памяти программы) за один цикл.
• Последовательные порты - Последовательные порты обеспечивают полное сопряжение с аппаратными средствами реализации компандирования. Поддерживается компандирование и с А-, и с ^-характеристикой. Порты непосредственно сопрягаются со многими типами последовательных устройств. Каждый порт может генерировать программируемые внутренние тактовые синхроимпульсы или принимать внешние тактовые синхроимпульсы.
• Таймер - Программируемый таймер/счетчик с предварительным делителем частоты разрядностью 8 бит обеспечивает генерацию периодических прерываний.
• Порт интерфейса хост-машины - Порт интерфейса хост-машины обеспечивает прямое соединение (без буферных логических схем) с хост-процессором. Порт интерфейса хост-машины имеет 16 выводов для данных и 11 управляющих выводов. Порт интерфейса хост-машины - чрезвычайно гибкое устройство, у которого есть возможности, позволяющие осуществлять простое сопряжение с множеством хост-процессоров. Например, процессоры Motorola 68000, Intel 8051, или другие процессоры семейства ADSP-2100 легко подсоединяются к порту интерфейса хост-машины.
• Порты прямого доступа к памяти - Имеющиеся в процессоре ADSP-2181 порт прямого доступа к внутренней памяти (IDMA) и порт прямого побайтового доступа к памяти (BDMA) обеспечивают эффективную передачу данных в и из внутренней памяти. Внутренний порт доступа к памяти имеет 16-разрядную мультиплексированную шину адреса и данных и поддерживает работу с 24-разрядной памятью программы. Запись данных в этот порт осуществляется асинхронно и не влияет на быстродействие процессора ADSP-2181. Порт прямого доступа к памяти с байтовой организацией позволяет осуществлять начальную загрузку и хранение данных и команд программы.
• Аналоговый интерфейс - Некоторые процессоры семейства имеют на кристалле средства поддержки обработки смешанных аналоговых/цифровых сигналов. Эти средства включают аналогово-цифровой преобразователь (АЦП), цифро-анало-говый преобразователь (ЦАП), аналоговые и цифровые фильтры и средства параллельного сопряжения с базовой архитектурой процессора. Преобразователи используют сигма-дельта модуляцию для получения выборки из сигнала с избыточной дискретизацией.
Архитектура процессоров семейства ADSP-2100 имеет высокую степень параллелизма, отвечающую требованиям цифровой обработки сигналов. За один цикл любой процессор семейства может:
• Сгенерировать новый программный адрес.
• Выбрать следующую команду.
• Выполнить одну или две операции пересылки данных.
• Обновить один или два указателя адреса данных
• Выполнить вычисление.
В течение одного и того же цикла процессоры, имеющие соответствующие функциональные устройства, могут:
23
• Принять и/или передать данные через последовательный(ые) порт(ы).
• Принять и/или передать данные через порт интерфейса хост-машины.
• Принять и/или передать данные через аналоговый интерфейс.
• Принять и/или передать данные через
DMA порты.1.1.2 Интерфейс системы и памяти
В каждом процессоре семейства ADSP-2100 внутренняя память соединяется с другими функциональными устройствами посредством четырех расположенных на кристалле шин: шины адреса памяти данных, шины данных памяти данных, шины адреса памяти программы и шины данных памяти программы. Одна внешняя шина адреса и одна внешняя шина данных выводятся вне кристала; эти шины могут использоваться для доступа либо к памяти программы, либо к памяти данных.
Внешние устройства могут управлять шинами, формируя сигналы запроса/предоставления шины (BR и BG). Процессоры семейства ADSP-2100 могут продолжать работу, даже если шины предоставлены другому устройству управления, до тех пор, пока не потребуются операции с внешней памятью.
Все процессоры семейства поддерживают отображенные в карте памяти периферийные устройства при помощи генерации программируемых состояний ожидания.
Цепь загрузки обеспечивает автоматическую загрузку памяти программы на кристалле после запуска. Это может быть сделано или через интерфейс памяти с одного СППЗУ, или через порт интерфейса хост-машины с хост-процессора, или через порт прямого побайтового доступа к памяти процессора ADSP-2181. Многочисленные программы могут быть отобраны и загружены без каких-либо дополнительных аппаратных средств.
Процессоры семейства ADSP-2100 отличаются по их ответу на прерывания, инициированные пользователем. Во всех случаях программный автомат позволяет процессору обработать прерывание с минимальной задержкой. Прерывания могут быть расположены в порядке их приоритета без дополнительной задержки. Внешние прерывания могут быть настроены на срабатывание по фронту или по уровню. Внутренние прерывания могут генерироваться таймером, портом интерфейса хост-машины, последовательными портами и портом прямого побайтового доступа к памяти.
1.1.3 Набор команд
Семейство ADSP-2100 имеет унифицированный единый набор команд, постепенно расширяющийся сверху вниз с увеличением степени интеграции. Процессоры ADSP-2171, ADSP-2181 и ADSP-21msp58/59 имеют ряд дополнительных и усовершенствованных команд.
Набор команд семейства ADSP-2100 обеспечивает гибкость в пересылке данных. Многофункциональные команды соединяют одну или более пересылки данных с вычислениями. Каждая команда может быть выполнена за один цикл процессора. В языке ассемблер для читаемости и легкости кодирования используется алгебраический синтаксис. Имеется набор программных и аппаратных средств, обеспечивающих отладку программы.
1.1.4 Рабочие характеристики цифровых сигнальных процессоров
Из-за высоких требований, обусловленных специфическими областями применения сигнальных процессоров, их архитектура и рабочие характеристики отличаются от архитектуры других микропроцессоров и микроконтроллеров. Кроме высокой скорости выполнения команд, цифровой сигнальный процессор должен обладать следующими свойствами:
• Способность быстрого и гибкого выполнения арифметических операций - Базовая архитектура семейства ADSP-2100 обеспечивает вычисление за один цикл операций умножения, умножения с накоплением, произвольной величины сдвига и стандартных арифметико-логических операций. Кроме того, арифметические устройства позволяют осуществлять вычисления в любой последовательности, поэтому не требуется дополнительно модифицировать алгоритм цифровой обработки сигнала.
• Расширенный динамический диапазон - Большие суммарные результаты, типичные в цифровой обработке сигналов, аппаратно поддерживаются в умножителе-накопителе процессоров семейства ADSP-2100. Сумматор разрядностью в 40 бит обеспечивает восемь бит защиты от переполнения при последовательном сложении, и тем самым гарантирует, что не произойдет ни потери данных, ни их диапазона; чтобы произошла потеря старшего разряда, требуется 256 переполнении. Имеются специальные команды для выполнения масштабирования данных с блочной плавающей точкой.
• Возможность выбора двух операндов за один цикл - Для обеспечения вычислений с расширенными суммарными результатами требуется два операнда в каждом цикле. Все члены семейства ADSP-2100 способны поддерживать выполнение двух операндов данных, независимо от того, хранятся ли данные на или вне кристалла.
• Аппаратная поддержка циклических буферов - Для целого класса алгоритмов цифровой обработки сигналов, включая фильтры, требуется реализация циклических буферов. Базовая архитектура процессоров семейства ADSP-2100 включает аппаратное обеспечение циклического возврата указателя адреса, упрощая использование циклических буферов в памяти как на, так и вне кристалла и сокращая потери на их организацию (и, следовательно, увеличивая производительность).
• Организация циклов и условных переходов с нулевыми потерями времени -Алгоритмы цифровой обработки сигналов содержат повторы и в большинстве своем выражаются логически как циклы. Программный автомат в процессорах семейства ADSP-2100 поддерживает код цикла с нулевыми потерями, обеспечивая одновременно отличные рабочие характеристики и ясную структуру программы. Подобным же образом, без потерь ресурсов, организуются условные переходы.
1.2 БАЗОВАЯ АРХИТЕКТУРА
В этом разделе описывается базовая архитектура процессоров семейства ADSP-2100, показанная на рис. 1,1.
Рис. 1.1 Базовая архитектура
1.2.1. Вычислительные устройства
Каждый процессор семейства ADSP-2100 содержит три независимых вычислительных устройства с полным набором функциональных возможностей:
арифметико-логическое устройство (АЛУ), умножитель-накопитель (умножитель) и устройство циклического сдвига. Вычислительные устройства обрабатывают данные разрядностью в 16 бит и поддерживают вычисления с повышенной точностью.
В АЛУ выполняются стандартные арифметические и логические операции и примитивы деления. В умножителе за один машинный цикл выполняются операции умножения, умножения/сложения и умножения/вычитания. Устройство сдвига выполняет операции арифметического и логического сдвига, нормализации, денормализации и нахождения порядка числа. Устройство сдвига осуществляет управление числовыми форматами, включая представления чисел, состоящих из нескольких слов, числами с плавающей точкой. Вычислительные устройства соединяются таким образом, что выход любого из этих устройств может быть входом в любое из этих устройств в следующем цикле. Для этого служит внутренняя шина результатов (Р шина) напрямую соединяющая вычислительные устройства.
Все три вычислительных устройства содержат регистры ввода и вывода, доступные по шине данных памяти данных (ДПД). Вычислительные устройства, как правило, берут операнды из регистров ввода и загружают результат в регистры вывода. Эти регистры являются буферами между памятью и вычислительными устройствами. Благодаря этому вводится один уровень конвейерной обработки при вводе и один
уровень - при выводе. Р шина позволяет использовать результат одного вычисления напрямую в качестве входного значения для другого вычисления. Это позволяет избежать задержки конвейерной обработки при выполнении серии различных вычислений.1.2.2. Генераторы адреса и программный автомат
Два специальных генератора адреса данных и программный автомат обеспечивают работу вычислительных регистров с максимальной производительностью. Генераторы адреса данных генерируют адреса памяти, когда данные памяти пересылаются в или из регистров ввода или вывода. Каждый генератор адреса сохраняет до четырех указателей адреса. Когда указатель используется для косвенной адресации, он модифицируется на величину, содержащуюся в заданном регистре. Имея два генератора адреса данных, процессор может одновременно генерировать два адреса для выборок двух операндов.
Каждому указателю может соответствовать значение длины буфера для реализации адресации по модулю при организации циклических буферов. (Свойство циклического буфера также используется в последовательных портах и аналоговом интерфейсе для автоматических передач данных. За дополнительной информацией обратитесь к главе о последовательных портах).
Генератор адреса данных 1 может генерировать адреса только для памяти данных. Генератор адреса данных 2 может генерировать адреса либо для памяти данных, либо для памяти программы. При установке бита соответствующего режима в регистре состояния режима
(MSTAT) биты выходного адреса генератора адреса данных 1 переставляются в обратном порядке перед их выводом на шину адреса. Это свойство облегчает организацию бит-реверсной адресации при выполнении быстрого преобразования Фурье (БПФ).Программный автомат посылает адреса команд в память программы. Программный автомат управляется регистром команд, в котором содержится текущая выполняемая команда. Регистр команд позволяет ввести один уровень конвейерной обработки в поток программы. Команды выбираются и загружаются в регистр команд за один цикл процессора и выполняются в течении следующего
цикла, в то время как подготавливается выбор следующей команды. Для сокращения количества холостых циклов программный автомат осуществляет поддержку условных переходов, вызовов подпрограмм и возврата в основную программу за один цикл. Благодаря счетчику циклов и стеку цикла процессор выполняет программу цикла с нулевыми потерями. Никаких дополнительных команд перехода для организации циклов не требуется.1.2.3. Шины
Внутренние элементы процессора связаны пятью внутренними шинами. Шины адреса памяти программы (АПП) и данных (АПД) используются для адресов, связанных с памятью программы и памятью данных. Шины данных памяти программы (ДПП) и памяти данных (ДПД) используются для передачи данных и кода команд из памят/ данных и памяти программы. Все шины мультиплексированы в одну внешнюю шину адреса и в одну внешнюю шипу данных; сигналы
BMS , DMS и PMS выбирают различные адресные пространства. По Р-шине промежуточные результаты напрямую передаются между вычислительными устройствами.Шина АПП разрядностью 14 бит обеспечивает прямую адресацию до 16К слов смешанного кода программы и данных. Шина ДПП разрядностью 24 бита позволяет передавать 24-битовые команды.
Шина АПД разрядностью 14 бит обеспечивает прямую адресацию до 16К слов данных. Шина ДПД имеет разрядность 16 бит. Шина ДПД обеспечивает передачу содержимого любого регистра в процессор для дальнейшей его передачи в любой другой регистр или любую ячейку памяти за один цикл. Адрес памяти программы может иметь два источника: абсолютное значение, заданное в коде команды (прямая адресация) и значение на выходе генератора адреса данных (косвенная адресация). Только косвенная адресация поддерживается для выборок данных из памяти программы.
Шина ДПП может также использоваться для передачи данных в и из вычислительных устройств напрямую или через устройство обмена данными между шинами ДПП и ДПД. Устройство обмена данными между шинами ДПП и ДПД позволяет согласовывать прохождение данных из одной шины в другую. Оно содержит аппаратные средства для преодоления разницы в 8 бит между разрядностью этих двух шин.
1.3. ДРУГИЕ УСТРОЙСТВА НА КРИСТАЛЛЕ
В этом разделе описываются дополнительные функциональные устройства, которые могут входить в состав процессоров семейства
ADSP-2100.1.3.1. Последовательные порты
Большинство процессоров семейства имеют один или два двунаправленных последовательных порта с двойной буферизацией для последовательной связи. Последовательные порты синхронны и используют синхронизирующие сигналы для управления потоком данных. Каждый последовательный порт может генерировать внутренние тактовые импульсы или использовать внешние. Синхронизирующие сигналы могут генерироваться внутренним или внешним устройством. Длины слов могут варьироваться от 3 до 16 бит. Один последовательный порт (SPORTO) обладает многоканальностью, что позволяет осуществлять прием и
передачу дополнительных слов данных из потока данных с 24- или 32-разрядными словами. Второй последовательный порт, SPORT1, может быть по желанию сконфигурирован как два дополнительных вывода внешних прерываний (IRQ1, IRQO) и выход флага "Flag Out" (FO) и вход флага "Flag In" (FI).
1.3.2 Таймер
Таймер с программируемыми интервалами обеспечивает генерацию периодических прерываний. 8-разрядный регистр предварительного деления позволяет осуществлять декрементирование регистра счетчика разрядностью 16 бит через число циклов от 1 до 256. Прерывание генерируется, когда регистр счетчика достигает 0. Регистр счетчика перезагружается из 16-битового регистра периода, и таймер возобновляет свою работу.
1.3.3 Порт интерфейса хост-машины (ADSP-2111, ADSP-2171, ADSP-21msp5x)
Порт интерфейса хост-машины (ХИП) - это параллельный порт ввода/ вывода, который позволяет легко соединять процессор с хост-процессором. Процессоры семейства
ADSP-2100 могут подсоединяться через ХИП и отображаться в карте памяти хост-машины как периферийные устройства. ХИП функционирует параллельно и асинхронно с базовой архитектурой процессоров семейства ADSP-2100. Порт интерфейса хост-машины состоит из регистров, через которые процессор семейства ADSP-2100 и хост-машина обмениваются данными и информацией о состоянии. ХИП может быть сконфигуророван для шины данных разрядностью 8 или 16 бит; мультиплексированной шины адреса/данных или отдельных шин адреса и данных; отдельных стробирующих сигналов записи и считывания или стробирующего сигнала записи/считывания и стробирующего сигнала данных.1.3.4 Порты прямого доступа к памяти
(ADSP-2181)Процессор ADSP-2181 имеет два порта прямого доступа к памяти: порт прямого доступа ко внутренней памяти
(IDMA) и порт прямого побайтового доступа к памяти (BDMA). Порт прямого доступа ко внутренней памяти является эффективным средством обмена данными между главной вычислительной системой и цифровым сигнальным процессором. Этот порт используется для доступа ко внутренней памяти программы и памяти данных цифрового сигнального процессора с потерями в один цикл за переданное слово. Порт IDMA имеет муль-типлексированную шину адреса и данных разрядностью 16 бит и поддерживает работу с 24-разрядной памятью программы. Запись данных в' порт IDMA осуществляется асинхронно и не влияет на быстродействие процессора.
Адрес внутренней памяти фиксируется и затем автоматически увеличивается на единицу после каждой передачи данных порта
IDMA. Таким образом, внешнее устройство может получить доступ к группе ячеек памяти с последовательными адресами, задав только один начальный адрес этой группы ячеек.Контроллер прямого доступа к памяти с байтовой организацией позволяет осуществлять загрузку и хранение данных и команд программы, используя пространство памяти с байтовой организацией. Внутренняя схема порта BDMA позволяет обращаться к пространству памяти с байтовой организацией при нормальной работе процессора с издержками в один цикл за переданное слово разрядностью 8, 16 или 24 бита.
1.3.5 Аналоговый интерфейс
Аналоговый интерфейс состоит из входных усилителей и сигма-дельта аналого-цифрового преобразователя (АЦП) разрядностью 16 бит, а также из сигма-дельта цифро-аналогового преобразователя (ЦАП) и выходных усилителей. Для управления аналоговой частью и для обмена данными между аналоговой частью и базовой архитектурой процессора используется набор отображенных в карте памяти регистров.
1.4 СИСТЕМА ПРОГРАММНО-АППАРАТНЫХ СРЕДСТВ ОТЛАДКИ ПРОЦЕССОРОВ СЕМЕЙСТВА ADSP-2100
Семейство ADSP-2100 поддерживается полным набором программных и аппаратных средств отладки. Система отладки процессоров семейства ADSP-2100 включает программные средства отладки, а также эмулятор и EZ-платы™ для устранения аппаратных неисправностей.
Программные средства отладки включают:
• Построитель системы - Построитель системы описывает архитектуру системы при отладке. Он определяет объем доступной внешней памяти ОЗУ/ПЗУ и отображенных в карте памяти портов ввода/вывода для разрабатываемых аппаратных средств, а также расположение памяти программы и данных.
• Ассемблер - Ассемблер компилирует исходный код и модули данных, а также поддерживает синтаксис высокого уровня набора команд. Кроме поддержки
1.2.2. Генераторы адреса и программный автомат
Два специальных генератора адреса данных и программный автомат обеспечивают работу вычислительных регистров с максимальной производительностью. Генераторы адреса данных генерируют адреса памяти, когда данные памяти пересылаются в или из регистров ввода или вывода. Каждый генератор адреса сохраняет до четырех указателей адреса. Когда указатель используется для косвенной адресации, он модифицируется на величину, содержащуюся в заданном регистре. Имея два генератора адреса данных, процессор может одновременно генерировать два адреса для выборок двух операндов.
Каждому указателю может соответствовать значение длины буфера для реализации адресации по модулю прк организации циклических буферов. (Свойство циклического буфера также используется в последовательных портах и аналоговом интерфейсе для автоматических передач данных. За дополнительной информацией обратитесь к главе о последовательных портах).
Генератор адреса данных 1 может генерировать адреса только для памяти данных. Генератор адреса данных 2 может генерировать адреса либо для памяти данных, либо для памяти программы. При установке бита соответствующего режима в регистре состояния режима (MSTAT) биты выходного адреса генератора адреса данных 1 переставляются в обратном порядке перед их выводом на шину адреса. Это свойство облегчает организацию бит-реверсной адресации при выполнении быстрого преобразования Фурье (БПФ).
Программный автомат посылает адреса команд в память программы. Программный автомат управляется регистром команд, в котором содержится текущая выполняемая команда. Регистр команд позволяет ввести один уровень конвейерной обработки в поток программы. Команды выбираются и загружаются в регистр команд за один цикл процессора и выполняются в течении следующего цикла, в то время как подготавливается выбор следующей команды. Для сокращения количества холостых циклов программный автомат осуществляет поддержку условных переходов, вызовов подпрограмм и возврата в основную программу за один цикл. Благодаря счетчику циклов и стеку цикла процессор выполняет программу цикла с нулевыми потерями. Никаких дополнительных команд перехода для организации циклов не требуется.
1.2.3. Шины
Внутренние элементы процессора связаны пятью внутренними шинами. Шины адреса памяти программы (АПП) и данных (АПД) используются для адресов, связанных с памятью программы и памятью данных. Шины данных памяти программы (ДПП) и памяти данных (ДПД) используются для передачи данных и кода команд из памят^ данных и памяти программы. Все шины мультиплексированы в одну внешнюю шину адреса и в одну внешнюю шину данных; сигналы
BMS, DMS и PMS выбирают различные адресные пространства. По Р-шине промежуточные результаты напрямую передаются между вычислительными устройствами.Шина АПП разрядностью 14 бит обеспечивает прямую адресацию до 16К слов смешанного кода программы и данных. Шина ДПП разрядностью 24 бита позволяет передавать 24-битовые команды.
Шина АПД разрядностью 14 бит обеспечивает прямую адресацию до 16К слов данных. Шина ДПД имеет разрядность 16 бит. Шина ДПД обеспечивает передачу содержимого любого регистра в процессор для дальнейшей его передачи в любой другой регистр или любую ячейку памяти за один цикл. Адрес памяти программы может иметь два источника: абсолютное значение, заданное в коде команды (прямая адресация) и значение на выходе генератора адреса данных (косвенная адресация). Только косвенная адресация поддерживается для выборок данных из памяти программы.
Шина ДПП может также использоваться для передачи данных в и из вычислительных устройств напрямую или через устройство обмена данными между шинами ДПП и ДПД. Устройство обмена данными между шинами ДПП и ДПД позволяет согласовывать прохождение данных из одной шины в другую. Оно содержит аппаратные средства для преодоления разницы в 8 бит между разрядностью этих двух шин.
1.3. ДРУГИЕ УСТРОЙСТВА НА КРИСТАЛЛЕ
В этом разделе описываются дополнительные функциональные устройства, которые могут входить в состав процессоров семейства
ADSP-2100.1.3.1. Последовательные порты
Большинство процессоров семейства имеют один или два двунаправленных последовательных порта с двойной буферизацией для последовательной связи. Последовательные порты синхронны и используют синхронизирующие сигналы для управления потоком данных. Каждый последовательный порт может генерировать внутренние тактовые импульсы или использовать внешние. Синхронизирующие сигналы могут генерироваться внутренним или внешним устройством. Длины слов могут варьироваться от 3 до 16 бит. Один последовательный порт (SPORTO) обладает многоканальностью, что позволяет осуществлять прием и
полной диагностики системы, ассемблер обеспечивает гибкую обработку макрокоманд, включаемых файлов и отладку модульной программы.
• Редактор связей - Редактор связей соединяет отдельно проассемблированные модули. Он отображает скомпонованную программу и выходные данные в аппаратную часть разрабатываемой системы, как задается построителем системы.
• Моделирующая программа (Симулятор) - Симулятор выполняет моделирование конфигурации аппаратных средств, заданной построителем системы, на уровне команд в диалоговом режиме. Он выдает сообщение о некорректных операциях и поддерживает выполнение команд ассемблера.
• Программа разбиения для ППЗУ (Сплиттер) - Этот модуль считывает выходной код редактора связей и генерирует совместимые с программатором ППЗУ файлы.
• Компилятор С - Компилятор С считывает исходный файл С и выводит исходный код процессоров семейства ADSP-2100 готовым к ассемблированию. Он также поддерживает линейный код ассемблера.
Эмуляторы EZ-ICE® обеспечивают аппаратную отладку систем семейства ADSP-2100. Эмуляторы выполняют внутрисхемную эмуляцию, используя процессоры семейства ADSP-2100 в режиме самоэмуляции, с небольшими или нулевыми
потерями рабочих характеристик процессора. Лабораторные платы EZ-LAB® -это дешевые базовые системы для оценки созданных приложений.
Дополнительную информацию о системе отладки можно найти в техническом описании
"ADSP-2100 Family Development Tools Data Sheet".