SOLUTIONS. Biometric Solutions

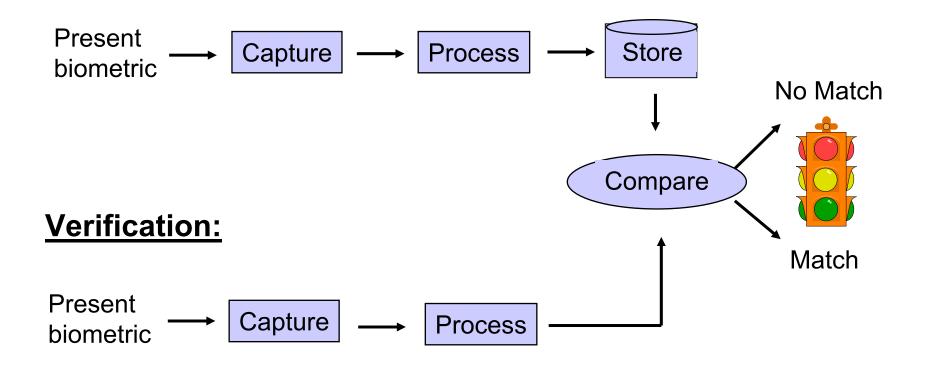
Wireless Business Solutions

www.vast.com

Agenda

- Biometrics Overview
- Biometric system requirements
- Privacy and Ethics
- Planning & Engineering a Biometric System
- Biometric Planning Considerations
- Biometric System Design

Biometric overview


- What are Biometrics?
 - Measurements of certain physical or biological characteristics of an individual to create an unique identifier which can be electronically stored, retrieved, and compared for positive identification purposes
- Examples of Biometric Types:
 - Fingerprint
 - Facial features
 - Voice
 - Signature
 - Iris
 - Retina

- Hand geometry
- Facial thermography
- Keystroke dynamics
- Palm print
- Vein patterns
- DNA

How do biometrics work?

Enrollment:

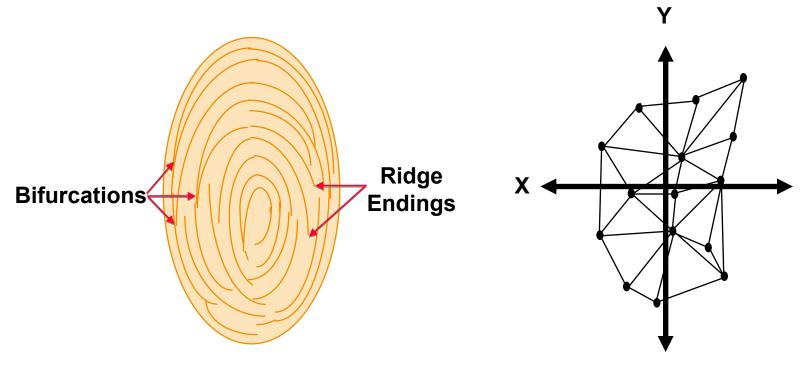
Three basic processes

- Enrollment
 - Adding a biometric identifier to the database
- Verification (1:1)
 - Matching against a single record
 - Answers "Am I whom I claim to be?"
- Identification (1:N)
 - Matching against all records in the database
 - Answers "Who am I?"

Primitive processes

Capture

- Measuring/sampling the raw biometric data using a sensing device
- Raw data may be a bitmapped image, audio stream, etc.
- A series of samples may be captured
- Sometimes includes a quality value


Processing

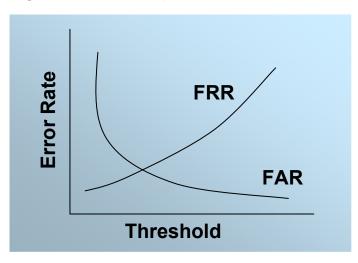
- Converting the raw data into a numeric identifier (generally a binary record)
- Generally involves "feature extraction", but can also include other manipulations (sample averaging/weighting, statistics calculations, "cohort lists", etc.)

Example - finger imaging

Minutiae Based Algorithm

Physical Characteristics

Numerical Result


Benefits of biometrics

- Convenient nothing to carry or remember
- Accurate positive authentication
- Becoming socially acceptable
- Prevents impersonation
 - Protects against identity theft
- Strong authentication
 - System/network access, encryption keys/digital certificates
 - Can't be guessed, stolen, shared, lost, forgotten, written down, forged
- Protects privacy
- Provides audit trail
- Inexpensive
- Biometrics link the event to a particular individual, not just to a password or token, which may be used by someone other than the authorized user

Accuracy

- Generally defined in terms of two parameters:
 - False Rejection Rate (FRR):
 - Measures how often an authorized user, who should be recognized by the system (granted access), is not recognized
 - Also called "False Non-Match Rate"
 - False Acceptance Rate (FAR):
 - Measures how often a non-authorized user, who should not be recognized by the system, is falsely recognized (and granted access)
 - Also called "False Match Rate"
 - Equal Error Rate (EER):
 - Point where FRR = FAR
- FAR/FRR inversely related

Thresholds

- Types of thresholds
 - System threshold
 - Single default threshold applied to all matches
 - Individual threshold
 - Different threshold applied to each subject
 - Dynamic threshold
 - Threshold set as a function of conditions
- Can have separate thresholds for 1:N and 1:1
- Threshold setting single most important settable system parameter
 - Access to tuning of this value should be carefully considered

Additional quality measurement

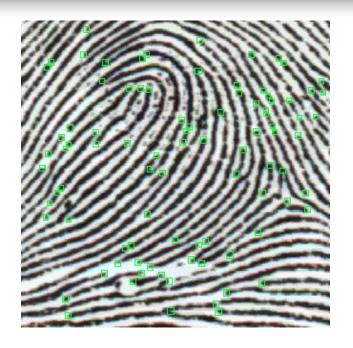
- Failure to Enroll Rate (FER)
 - Measures how often users are unable to enroll a biometric record
 - Physical characteristic of user prevents creation of template
 - User is not capable or willing to present biometric properly
 - Sensitive to demographics of user population

Adaptation

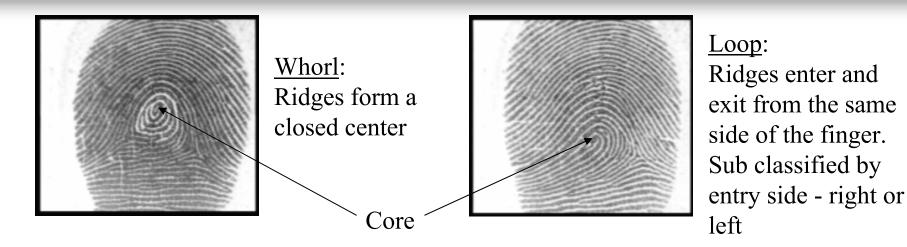
- Model/template adaptation
 - Upon a successful match, the biometric technology module/engine may return an updated template
 - Generally combines old + new data
 - Keeps registered enrollment data "fresh"
 - Accommodates change in measured characteristic over time
 - Examples:
 - Aging of face/voice
 - Changes in writing style

Biometric system requirements

- What do I need to make it work?
 - Capture device
 - Finger scanner, microphone, video camera
 - Algorithms
 - Processing (feature extraction)
 - Matching (1:1 or 1:N comparisons)
 - Repository
 - Database to store enrolled biometric identifier records (for later comparison)
 - Should be protected (secure area, encrypted)


Fingerprints

- Measures characteristics associated with the friction ridge pattern on the fingertip
- One of the oldest and most used technologies
- Capture techniques
 - Ink & paper, "inkless" with subsequent scan
 - Electronic: single digit flat scan, "10-printers" (rolled)
- Sensor types
 - Optical
 - Silicon chip
 - Capacitive, thermal, e-field
 - Ultrasonic


Fingerprints (cont'd)

- Two general algorithm categories
 - Minutiae based
 - Maps the points where individual ridges start/stop or bifurcate (branch)
 - Image based
 - Aligns and "overlays" images to determine similarity
- Other measurements
 - Pattern type
 - Ridge counts
 - Distance between ridges
 - Pores

Fingerprint patterns

Arch:

Ridges enter from one side of the finger and exit the other side.

Core:

The highest point on the ridge with the maximum curvature

Sample fingerprint devices

Fingerprints (cont'd)

Features

- Long time use proven
- Relatively high accuracy
- General ease and speed of use
- Wide variety of applications
- Numerous vendor selection

Considerations

- Requires dedicated device
- Small % of population have poor prints due to injury, disease, or occupation
- Some lingering criminal connotation
- Overt action generally required
- 250 1KB identifier

Requirements Definition

- #1 first define the problem you are trying to solve
 - results you are trying to achieve
- Requirement come in various forms and sources
 - Tasking from management, other departments, marketing
 - Customer solicitation

May need to be elicited

Requirements state WHAT not HOW

Customer service

Audit

Security

Deter theft

Reduce fraud

Terrorist surveillance

Convenience

Track inmates

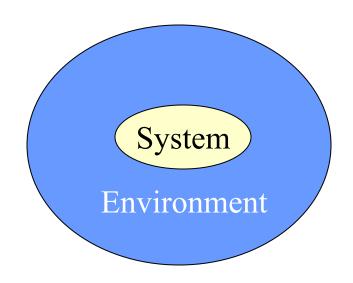
Speed processing

Find missing children

Requirements Definition

- Types of requirements
 - Physical (size, weight, material)
 - Functional (must do this, that)
 - Performance (how fast, how accurate)
 - Quality (reliability, workmanship, supportability)
- Good requirements
 - Clear, concise
 - Unambiguous
 - Testable (verifiable)

- -- Written down, tracked
- -- Agreed to by accepter


How do you know when you're done?

Requirements Definition

• Identify constraints

- Environment
- Interfaces
- Legacy systems
- Budget (initial + life cycle)
- Standards
- Physical
- Personnel
- Political/social/cultural/legal

Biometric Requirement Considerations

- Accuracy (FAR/FRR trade-off)
- Poor candidates/poor enrollments
- Interference sources
- Scalability
- DB size
- Response time
- Simultaneous requests
- Data protection/encryption
- Save or pitch raw data?
- Multiple biometrics?

- Interoperability/interchange
- Deployment considerations
 - Indoor/outdoor
 - Geographically dispersed (remote enrollment?)
- How tell if system working
- Use of standards
- Privacy issues
- Training
- Platform considerations
- Device issues
- Human factors

Biometric Requirements

- Know your
 - User population
 - Environment
 - Application
- Address the exception cases
 - How do I handle a false reject? A poor enrollment?
 - How do I detect a false accept?
 - What do I do with a subject with a poor biometric?
 - What happens if the device fails?
 - What if the person's biometric is temporarily unavailable (injury, laryngitis, etc.)

Biometric Project Risks

- Technology impacted by user behavior and environment
- System components new and unproven
- User perceptions can have unexpected impact
- Unrealistic expectations by stake holders
- Enrollment logistics
- Response times
- Vague requirements

PLUS - all normal system development project risks

Biometric Planning Considerations

- Education/awareness campaign prior to roll out
 - Perception dependent on how technology is introduced
- Have privacy policy in place in advance
- Need whole solution, not just hardware and software
- Early testing
- Set expectations
- Know target environment
- Agreement from customer on requirements/design
- Enrollment plan

Consider alternatives to biometrics

- Identification numbers or aliases
- Long term secrets
 - "Mother's Maiden Name"
 - Passwords
- Identification cards/badges
 - Descriptive information (biometric?)
 - Signature
 - Photograph
- Smart Cards
- Challenge/Response systems
- Digital Certificates
- Security guards
- Keys

Reasons to choose biometrics

- Convenient user always has it
- Accurate positive authentication
- Becoming socially acceptable
- Prevents impersonation protects identity
- Strong authentication
 - System/network access, encryption keys/digital certificates
- Protects privacy
- Audit trail
- Inexpensive