Desarrollo:
Shewhart Chart
Cálculos en Mathematica
<<Statistics`ContinuousDistribution`
t=NormalDistribution[0,1]
NormalDistribution[0, 1]
Para mu=1 1-(-CDF[t,-5.417173413]+CDF[t,3.417173413]) -----> p(mu)= 0.000316405
Para mu=2 1-(-CDF[t,-6.417173413]+CDF[t,2.417173413]) -----> p(mu)= 0.00782078
Para mu=3 1-(-CDF[t,-7.417173413]+CDF[t,1.417173413])
-----> p(mu)= 0.0782161
<<Statistics`DiscreteDistribution`
bdist=NegativeBinomialDistribution[1,1-0.99999]
Quantile[bdist,0.01]
NegativeBinomialDistribution[1, 0.00001]
1005
Mean[bdist]
100000
bdist=NegativeBinomialDistribution[1,0.000316405]
Quantile[bdist,0.99]
NegativeBinomialDistribution[1, 0.000316405]
14552
bdist=NegativeBinomialDistribution[1,0.00782078]
Quantile[bdist,0.99]
NegativeBinomialDistribution[1, 0.00782078]
586
bdist=NegativeBinomialDistribution[1,0.0782161]
Quantile[bdist,0.99]
NegativeBinomialDistribution[1, 0.0782161]
56
Decimos también que los ARL para los Gráficos de Walter Shewhart son aproximadamente igual a la media ya que para una distribución binomial negativa :
mu=k*q/p
donde k será la cantidad de falsas alarmas, p la probabilidad de defectuosos y q=1-p y decimos que
ARL= k/p (corregir resto de valores)
19.may.1999
Pulsar tecla de vuelta
Glosario de Carlos von der Becke.