MILP -Bombones - minimizante - Opciones 1º, 4º y 5º.
verbose mode
print after reinverting
trace pivot selection
int: x2
int: x1
**********Data read**********
Rows : 3
Columns : 2
Nonnuls : 8
NAME LPPROB
ROWS
N r_0
G C1
G r_2
L r_3
COLUMNS
x1 r_3 2 x1 r_2 16 x1 C1 1 x1 r_0 0.2 x2 r_3 1 x2 r_2 8 x2 C1 1 x2 r_0 0.1 RHS RHS r_0 0 RHS C1 35 RHS r_2 320 RHS r_3 65 RANGES BOUNDS ENDATA problem name: lp x1 x2 Minimize 0.20 0.10 C1 1.00 1.00 >= 35.00 r_2 16.00 8.00 >= 320.00 r_3 2.00 1.00 <= 65.00 Type Int Int upbo Inf Inf lowbo 0.00 0.00 Solving Start Invert iter 0 eta_size 0 rhs[0] 0.0000 End Invert eta_size 0 rhs[0] 0.0000 Start at infeasible basis Extrad = 0.000000 row_dual: 2, rhs of selected row: -320.0000000000 col_dual: 4, pivot element: -16.0000000000 Theta = 20 Iteration: 1, variable 4 entered basis at: 20.0000000000 feasibility gap of this basis: 15.0000000000 row_dual: 1, rhs of selected row: -15.0000000000 col_dual: 5, pivot element: -0.5000000000 Theta = 30 Iteration: 2, variable 5 entered basis at: 30.0000000000 feasibility gap of this basis: 0.0000000000 row_dual: no infeasibilities found Inverting: Primal = 1 Start Invert iter 2 eta_size 2 rhs[0] 4.0000 End Invert eta_size 2 rhs[0] 4.0000 col_prim: no negative reduced costs found, optimality! level 1 OPT INT value 4.000000 *** new best solution: old: 1e+24, new: 4 *** Value of objective function: 4 x1 5 x2 30 Actual values of the constraints: C1 35 r_2 320 r_3 40 Dual values: C1 0 r_2 0.0125 r_3 0 Branch & Bound depth: 1 Nodes processed: 1 Simplex pivots: 2
16.may.1999
Pulsar tecla de vuelta
Glosario de Carlos von der Becke.