Programa similar para programación lineal on-line (MILP)
Desarrollo: Thank you for using web optimization!
MILP - planta de dos productos y tres talleres -
maximizante - Opciones 1º,4º y 5º.
verbose mode
print after reinverting
trace pivot selection
int: x2 int: x1 **********Data read********** Rows : 3 Columns : 2 Nonnuls : 8 NAME LPPROB ROWS N r_0 L C1 L r_2 L r_3 COLUMNS x1 r_3 4 x1 r_2 1 x1 C1 2 x1 r_0 1 x2 r_3 2 x2 r_2 2 x2 C1 2 x2 r_0 1.5 RHS RHS r_0 0 RHS C1 160 RHS r_2 120 RHS r_3 280 RANGES BOUNDS ENDATA problem name: lp x1 x2 Maximise 1.00 1.50 C1 2.00 2.00 <= 160.00 r_2 1.00 2.00 <= 120.00 r_3 4.00 2.00 <= 280.00 Type Int Int upbo Inf Inf lowbo 0.00 0.00 Solving Start Invert iter 0 eta_size 0 rhs[0] 0.0000 End Invert eta_size 0 rhs[0] 0.0000 Start at feasible basis Extrad = 0.000000 col_prim: 5, reduced cost: -1.5000000000 row_prim: 2, pivot element: 2.0000000000 Theta = 60 Iteration: 1, variable 5 entered basis at: 60.0000000000 objective function value of this feasible basis: 90.0000000000 col_prim: 4, reduced cost: -0.2500000000 row_prim: 1, pivot element: 1.0000000000 Theta = 40 Iteration: 2, variable 4 entered basis at: 40.0000000000 objective function value of this feasible basis: 100.0000000000 col_prim: no negative reduced costs found, optimality! level 1 OPT INT value 100.000000 *** new best solution: old: -1e+24, new: 100 *** Value of objective function: 100 x1 40 x2 40 Actual values of the constraints: C1 160 r_2 120 r_3 240 Dual values: C1 0.25 r_2 0.5 r_3 0 Branch & Bound depth: 1 Nodes processed: 1 Simplex pivots: 2
16.may.1999
Pulsar tecla de vuelta
Glosario de Carlos von der Becke.