(* The exact check out of SUM OF THE POWERS,EQUAL TO A POWER AT INFINITY.(Powers to Power at Infinity) theorem ; Theorem of Elhayy with two elements *) (*---------------------------------------------- *) n=850 ;(* n being a + integer *) (* As n-->Infinity El'Hayy holds true *) (*--------------------------------------------------*) t=5 ; (* t being a + integer *) d=1 ; (* d being a + or - integer (not zero) *) (* t>d for converging *) (*If d=1 then we have the famous FLT cond. *) (*----------------------------------------------- *) m1=2 ; (* This part generates the seed *) m2=5 ; (* of the integers a1,a2, b *) mT:=m1+m2 (* m1,m2 being + integers (or real numbers) *) (*----------------------------------------------- *) w1:=Sum[Binomial[n,t*r-d]*(m1^r), {r,Ceiling[d/2],Floor[(d+n)/2]}] w2:=Sum[Binomial[n,t*r-d]*(m2^r), {r,Ceiling[d/2],Floor[(d+n)/2]}] w3:=Sum[Binomial[n,t*r-d]*(mT^r), {r,Ceiling[d/2],Floor[(d+n)/2]}] z1:=Sum[Binomial[n,t*r]* (m1^r),{r,0,Floor[n/2]}] z2:=Sum[Binomial[n,t*r]* (m2^r),{r,0,Floor[n/2]}] z3:=Sum[Binomial[n,t*r]* (mT^r),{r,0,Floor[n/2]}] (*--------------------------------------------- *) an1:=z2*z3*w1 an2:=z1*z3*w2 bn:=z1*z2*w3 div:=GCD[an1,an2,bn] a1:=an1/div a2:=an2/div b:=bn/div pow:=(t/d) Hayy2:=(a1^pow+a2^pow)/(b^pow) N[Hayy2 ,70] 1.