Dr. John Lukacs scored the 37 maxillary and 30 mandibular traits and performed significance tests
for sex dimorphism. I ran significance tests between left and right antimeres and calculated frequency tables
of total presence for each trait. The values for all of these tests are reported in figures A and B (The
significant p-values are in bold, alpha = 0.05).

Figure A Significance tests for sex dimorphism
Maxilla    trait        tooth        bhl            grs        raj
              CRV         I1         0.496     0.999     0.087
              WNG       I1         0.185     0.393     0.500
              SHV         I1         0.845     0.483     0.208
              SHV         I2         0.017     0.039     0.832
              SHV         C         0.157     0.079     0.902
              DSHV      I1         0.967     0.184     0.497
              DSHV      I2         0.341     0.455     0.865
              DSHV      C         0.198     0.755     0.677
              DSHV     P3         0.417     0.312     0.673
              IG            I1         0.311       **         0.540
              IG            I2         0.572     0.939     0.041
              TD           I1         0.669     0.044     0.896
              TD           I2         0.657     0.367     0.310
              TD           C         0.727     0.394     0.255
              CMR       C         0.654     0.007     0.485
              CDAR     C         0.858     0.116     0.155
              ME         M1       0.907     0.522     0.825
              ME         M2       0.247     0.613     0.058
              ME         M3       0.008     0.807     0.445
              HYP       M1       0.105     0.488     0.010
              HYP       M2       0.015     0.797     0.627
              HYP       M3       0.007     0.505     0.413
              C5          M1       0.006     0.495     0.713
              C5          M2       0.385     0.269     0.150
              C5          M3         **        0.821        **
              CAR       M1       0.113     0.312     0.002
              CAR       M2       0.442     0.288     0.005
              CAR       M3       0.001     0.416     0.061
              PAR       M1       0.159        **          **
              PAR       M2       0.989     0.951     0.382
              PAR       M3       0.002     0.241     0.061
              PEG         I2        0.654     0.400     0.816
              PEG       M3         **         0.071     0.095
              ABS         I2         **         0.717     0.527
              ABS        P4         **         0.585     0.744
              ABS       M3         **         0.090     0.011
              MDN        I         0.311     0.509     0.528

sig traits/ total                     7/37       3/37        5/37
frequency of significant
sex differences                  0.189     0.081      0.135
 

Figure B Significance tests for sex dimorphism
Mandible  trait        tooth         bhl            grs        raj
                SHV       C         0.392     0.126     0.721
                CDAR    C         0.000     0.003     0.006
                CNO      P3        0.298     0.816     0.289
                CNO      P4        0.166     0.945     0.363
                AFV       M1       0.949     0.790     0.000
                GRV       M1       0.165     0.697     0.232
                GRV       M2       0.371     0.972     0.003
                GRV       M3       0.212     0.123     0.335
                CNO      M1       0.568     0.609     0.178
                CNO      M2       0.795     0.006     0.211
                CNO      M3       0.708     0.052     0.296
                DWR      M1       0.245     0.604     0.205
                DWR      M2       0.244     0.009     0.630
                DWR      M3       0.050         **         **
                PRSD     M1       0.001     0.790     0.317
                PRSD     M2       0.131     0.827     0.694
                PRSD     M3       0.075     0.079     0.310
                C5          M1       0.370     0.083     0.747
                C5          M2       0.659     0.063     0.340
                C5          M3       0.633     0.409     0.715
                C6          M1       0.817     0.643     0.047
                C6          M2       0.322     0.642     0.242
                C6          M3       0.379       **        0.140
                C7          M1       0.455     0.429     0.835
                C7          M2       0.971     0.339     0.037
                C7          M3         **        0.773       **
                TSOM    M3       0.023     0.029     0.001
                ABS       I1          0.149     0.909       **
                ABS       P4         0.638       **          **
                ABS       M3       0.064     0.000     0.000

sig traits/ total                        4/30      5/30        7/30
frequency of significant
sex differences                     0.133    0.167     0.233

 The overall level of asymmetry was not significant, so I used the traits from the left side to perform
chi-square tests (Figures C and D) for significant differences between frequencies for all three groups and for
combinations of two groups (Bhil- Garasia, Rajput-Garasia, and Garasia-Bhil). The chi-square test for
significant differences yields a low p-value when the presence frequencies for the three groups are
significantly different from one another. The test revealed that although the three groups appear similar in
many respects, the differences for almost all of the traits were significant at alpha= 0.05. Because the groups
were significantly different from one another, I went ahead and included all of the traits in my first analysis.
 To test the distance between the three groups, I used the presence frequencies of the 67 mandibular
and maxillary traits in a Euclidean distance matrix, cluster analysis, and MMD (Figures E,F, and G
respectively). The Euclidean distance cluster shows that the closest relationship exists between the Garasias
and the Bhils, confirming the results obtained by Hemphill and Lukacs (1993). However, the discrete traits
do not assign the Garasia to a position intermediate to the Bhils and Rajputs. The Bhils and the Rajputs
appear closer and the Garasia are furthest removed from the Rajputs. This result is confirmed by the Mean
Measure of Divergence test. The MMD was taken from Berry and Berry (1967) and is calculated with the
formula MMD= (01 - 02)2 - SE. 01= sin -1 (1- 2p), the SE = (1/n1 + 1/n2), the variance for the MMD = 4D2
(SE)).
 By calculating the MMD across all of the traits, an assumption is made that the traits are not highly
correlated between traits. To justify this assumption, I calculated interclass correlations using Spearman
coefficients for rank ordered data as suggested by Turner and Scott (1997). Using graded ordinal data, I
measured the correlation of individual teeth within and between tooth fields for each trait. I also measured
the inter-trait correlation for the Hypocone and Carabelli’s trait (Figure J) because they are usually
considered to be the most highly correlated traits (Turner and Scott, 1997). Almost every trait had
significantly correlated interactions within tooth classes for the Bhils, Garasias and the Rajputs (Figures H
and I). This fact was considered in the second data reduction which I will explain later.
 
 
 
 
 

Figure C Test for significant differences between groups: Presence Frequencies and Chi-square P-values
(The insignificant p-values are emboldened, alpha = 0.05)
Maxilla                             Raj-Bhl       Bhl             Bhl-Grs                   Grs           Raj-Grs           Raj                  3 Groups
   trait          tooth                    p             %               p                             %                 p                %                       p
 CRV             I1                     0         72.115           0                         75.124             0             68.269                     0
 WNG           I1                     0         0.481          0.025                     37.313         0.025             0.962                 0.025
 SHV             I1                     0         86.538           0                         82.09               0             78.846                     0
 SHV             I2                 0.002      61.058        0.005                     46.766             0.006      50.962                  0.006
 SHV             C                 0.001     56.731          0.001                     53.731         0.001         60.096                   0.002
 DSHV          I1                 0.009     14.904         0.008                     7.96              0.001         11.538                   0.009
 DSHV          I2                     0        10.096         0                            2.985               0             3.365                        0
 DSHV         C                  0.033     19.712         0.031                     11.94             0.006         13.462                  0.035
 DSHV         P3                     0         1.923             0                         4.478               0             6.250                         0
 IG                I1                     0         0.481             0                             0                   0             0.481                         0
 IG                I2                     0         3.846             0                          3.98                 0             6.250                         0
 TD               I1                 0.011     46.154         0.011                     45.274         0.012         45.673                    0.017
 TD               I2                 0.014     13.942         0.005                     9.95             0.009         15.385                    0.014
 TD               C                 0.035     52.885         0.014                     41.294         0.047         34.615                     0.049
 CMR           C                     0         2.404             0                         3.98                 0              4.808                         0
 CDAR         C                     0         66.827           0                         68.159             0             59.615                        0
 ME             M1                   0         99.038           0                         99.502             0             97.596                        0
 ME             M2                   0         89.423           0                         87.562             0             86.538                        0
 ME             M3                   0         4.808             0                          4.478              0             3.365                          0
 HYP           M1                   0         99.519           0                         99.005             0             98.558                        0
 HYP           M2                   0         85.577           0                         82.587             0             75.962                        0
 HYP           M3                   0         1.923             0                         5.473               0             1.442                          0
 C5              M1             0.107         26.442         0.08                     36.816         0.08            27.885                     0.134
 C5              M2             0.054         26.923         0.057                   12.935         0.003          87.500                     0.057
 C5              M3                   0         0.962             0                         0.498               0             0.000                          0
 CAR           M1                   0         56.731         0.003                   49.254         0.003          68.750                     0.003
 CAR           M2                   0         3.365             0                         2.985               0             2.404                          0
 CAR           M3                   0         0.481             0                             0                  0             0.000                          0
 PAR           M1                    0         0.962             0                             0                  0             0.000                          0
 PAR           M2                    0         0.962             0                             0                  0             0.481                          0
 PAR           M3                    0         0.000             0                             0                  0             0.000                          0
 PEG             I2                 0.002     7.692             0                         8.458          0.002          12.019                     0.002
 PEG            M3                   0         0.000             0                             0                  0             0.000                          0
 ABS             I2                    0         0.000             0                         1.99                 0             0.481                          0
 ABS            P4                    0         0.000             0                             0                  0             0.481                          0
 ABS            M3                   0         0.000             0                             0                  0             0.000                          0
 MSD            I                      0         0.481             0                         1.493               0             0.481                          0

Figure D Presence Frequencies and Chi-square P-values: (The insignificant p-values are emboldened, alpha = 0.05)
Mandible                          Raj-Bhl        Bhl            Bhl-Grs        Grs                 Raj-Grs        Raj          3 Groups
   trait           tooth                    p            %                   p              %                      p              %                   p
 SHV               C                 0.027      18.750         0.033         15.347             0.011         12.500         0.036
 CDAR            C                 0.102      29.808         0.1             30.198             0.101         25.000         0.152
 CNO             P3                     0         91.346           0              85.149                 0             78.125             0
 CNO             P4                 0.055      28.846         0.054         52.475             0.004         49.479         0.056
 AFV             M1                 0.008      44.231         0.008         57.426                 0             63.542        0.008
 GRV             M1                     0         72.115           0             71.287                  0             70.313             0
 GRV             M2                     0         81.731           0             79.208                  0             78.646             0
 GRV             M3                     0         5.288             0             2.970                    0             3.646               0
 CNO             M1                     0         91.827           0             95.545                  0             97.917            0
 CNO             M2                     0         91.827           0             91.584                  0             91.667             0
 CNO             M3                     0         6.250             0             2.970                    0             4.687               0
 DWR             M1                 0.089     30.769            0.089     32.673     `        0.083         32.813         0.13
 DWR             M2                     0         2.885             0             2.475                    0             0.000               0
 DWR             M3                     0         0.000             0             0.000                    0             0.000               0
 PRSD             M1                 0.013     16.346         0.013         3.960               0.001         10.417        0.013
 PRSD             M2                     0         3.846             0             1.485                   0             2.604               0
 PRSD             M3                     0         0.962             0             0.495                   0             0.000               0
 C5                  M1                     0         80.288           0             82.178                 0             82.813             0
 C5                  M2                 0.003      12.981         0.004       10.396              0.001         6.771         0.004
 C5                  M3                     0         2.885             0             0.495                   0            0.521                0
 C6                  M1                     0         6.731             0             6.436                   0            5.729                0
 C6                  M2                     0         1.923             0             0.495                   0            1.042                0
 C6                  M3                     0         0.962             0             0.000                   0            0.000                0
 C7                  M1                     0         8.173             0             7.426                   0            8.854                0
 C7                  M2                     0         0.962             0             0.495                   0            0 1.042             0
 C7                  M3                     0         0.000             0             0.495                   0            0.000                0
 TSOM            M3                     0         0.481             0             0.000                   0            0.521                0
 ABS                 I1                      0         0.481             0             0.495                   0            0.000                0
 ABS                P4                      0         0.000             0             0.000                   0            0.000                0
 ABS                M3                     0         0.000             0             0.000                   0            0.000                0
 

Figure E  Euclidean Distance Cluster
  

Figure F  Euclidean Distance Matrix:
                          Bhil      Garasia       Rajput
Bhil                    0.0
Garasia            7.035             0.0
Rajput             9.337       10.872            0.0
 
 

Figure G   Mean Measure of Divergence: Variance given in parentheses
                 Bhil                         Garasia                         Rajput
Bhil               --
Garasia  0.0152 (0.00003)           --
Rajput   0.0227 (0.00006)       0.0457 (0.00025)           --
 
 

Figure H   Interclass Correlation
Spearman Coefficients between two members of a tooth district for a single trait
Maxilla                               Bhils        Garasias   Rajputs
 Trait (Tooth)                         r                 r           r
 SHV (ULI1-ULI2)           0.589        0.459      0.437
 SHV (ULI1-ULC)            0.303        0.294      0.304
 SHV (ULI2-ULC)            0.311        0.327      0.375
 DSHV (ULI1 - ULI2)       0.461        0.323      0.286
 DSHV (ULI1 - ULC)        0.074       0.268      0.373
 DSHV (ULI1 - ULP3)      0.031      -0.062      0.038
 DSHV (ULI2 - ULC)       0.200        0.259      0.175
 DSHV (ULI2 - ULP3)      0.060      -0.035      0.074
 DSHV (ULC - ULP3)       0.118       0.177      0.269
 IG (ULI1- ULI2)                  **           **         0.267
 TD (ULI1 - ULI2)            0.218        0.214      0.333
 TD (ULI1 - ULC)            0.357        0.361       0.299
 TD (ULI2 - ULC)            0.157        0.000       0.323
 ME (ULM1 - ULM2)      0.742          **          0.167
 ME (ULM1 - ULM3)      0.108          **         -0.255
 ME (ULM2 - ULM3)      0.326        0.624       0.255
 HYP (ULM1 - ULM2)    0.213        0.410       0.214
 HYP (ULM1 - ULM3)    0.135        0.491       0.450
 HYP (ULM2 - ULM3)    0.719        0.473      -0.031
 Cusp 5 (ULM1 - ULM2) -0.216       **              **
 Cusp 5 (ULM1 - ULM2) -0.216       **              **
 Cusp 5 (ULM1 - ULM2) 0.959         **              **
 CAR (ULM1- ULM2)     0.378         **              **
 CAR (ULM1- ULM3)     0.379         **              **
 CAR (ULM2- ULM3)     0.728         **              **
 
 

Figure I   Interclass Correlation
Spearman Coefficients between two members of a tooth district for a single trait
(Correlations not significantly different from zero are emboldened, alpha=|0.05|)
Mandible     Bhils Garasias   Rajputs
 Trait (Tooth)                       r        r                  r
 CNO (LLP3 - LLP4)      -0.451   -0.270    0.821
 CNO (LLP3 - LLM1)     -0.126      **      -0.429
 CNO (LLP3 - LLM2)     -0.413      **       **
 CNO (LLP3 - LLM3)     -0.421    0.424    0.000
 CNO (LLP4 - LLM1)      0.527      **      -0.458
 CNO (LLP4 - LLM2)      0.310      **        **
 CNO (LLP4 - LLM3)       0.724   -0.135  0.303
 CNO (LLM1 - LLM2)    -0.123     **        **
 CNO (LLM1 - LLM3)     0.450     **       0.189
 CNO (LLM2 - LLM3)     0.273     **        **
 PRSD (LLM1 - LLM2)   -0.091   0.734     **
 PRSD (LLM1 - LLM3)   -0.133   0.734     **
 PRSD (LLM2 - LLM3)    0.638   1.000     **
 Cusp 5 (LLM1 - LLM2)   0.099     **        **
 Cusp 5 (LLM1 - LLM3)   0.597   0.167    0.366
 Cusp 5 (LLM2 - LLM3)   0.067     **        **
 Cusp 6 (LLM1 - LLM2)  -0.091    **        **
 Cusp 6 (LLM1 - LLM3)   0.674     **        **
 Cusp 6 (LLM2 - LLM3)   0.674     **        **
 Cusp 7 (LLM1 - LLM3)    **       1.000     **

Figure J   Inter-trait Correlation
Spearman correlation matrix for Hypocone and Carabelli’s traits
                            Hypocone
               ULM1     ULM2     ULM3
Carabelli’s
Bhil
ULM1   -0.073        0.424        0.703
ULM2    0.050        0.476        0.693
ULM3    0.333        0.482        0.465

Garasia
ULM1    0.138        0.718        0.498
ULM2       **     **       **
ULM3       **     **       **

Rajput
ULM1   0.000      -1.000           **
ULM2       **          **              **
ULM3       **          **              **

 I used a principle components analysis to understand the relationships between traits and to identify
the components of the variance between groups. For the principle components analysis, I used the graded
ordinal data for each individual by each trait, for both jaws (Figures K). The principle components analysis is
primarily used to understand the underlying components of variance in morphometric tooth studies but
Mizoguchi (1985) used the analysis with discrete traits. Mizoguchi’s components consisted of high loadings
for individual tooth classes and inter-trait correlations. His analysis suggested a high level of independence
between traits but dependence within tooth fields (Turner and Scott, 1997).
 One difference between using this type of analytical procedure on metric versus non-metric traits,
seen in both Mizoguchi (1985) and this study, is that there are many components loaded with fewer variables
and explaining less variance each when compared to the usual results of the analysis on morphometric data
(Turner and Scott, 1997). One difference between Mizoguchi (1985) and this study is that these traits were
segregated by class rather than by field. Only the first five components were included here as they had
eigenvalues greater than one. These five components explained 45% of the variance in the maxilla and 60%
in the mandible.
 
 

Figure K   Component Loadings from Principle Components Analysis (varimax rotation)
Maxilla                                                        Components
   traits                                1           2               3              4             5
   PAR_ULM3              0.909      -0.021       0.045       0.002       0.022
   CAR_ULM3              0.885      -0.028       0.073      -0.007      -0.050
   HYP_ULM3              0.881       0.029       0.030       0.010       0.003
   ABS_ULM3              0.844       0.008       0.040       0.019       0.026
   PEG_ULM3              0.842       0.012       0.041       0.024       0.030
   C_5_ULM3              0.807       0.007       0.032      -0.003       0.004
   ME_ULM3                0.805       0.018       0.013       0.003       0.015
   IG_ULI1                    0.045       0.852      -0.004       0.047       0.018
   TD_ULI1                  -0.037      0.779      -0.009       0.144       0.014
   IG_ULI2                    0.034       0.743      -0.005       0.059       0.070
   TD_ULI2                 -0.013       0.655      -0.052       0.073       0.089
   SHV_ULI1                0.022       0.548       0.020       0.255       0.069
   ME_ULM2               0.005       0.013       0.865       0.000       0.014
   HYP_ULM2             0.075      -0.002       0.829      -0.004      -0.000
   CAR_ULM2             0.014      -0.011       0.825       0.062       0.032
   PAR_ULM2             0.027       0.008       0.806       0.050       0.055
   C_5_ULM2              0.127      -0.043       0.749       0.030      -0.053
   CMR_ULC               0.036       0.158       0.013       0.774       0.090
   SHV_ULC                0.012       0.251       0.039       0.741       0.037
   DSHV_LC                0.009      -0.006       0.053       0.726       0.033
   CDAR_ULC            -0.047      -0.107      -0.033      0.652       0.072
   TD_ULC                   0.035       0.172       0.097       0.605      -0.042
   ABS_ULI2                0.013       0.055      -0.016       0.119       0.915
   ABS_ULP4               0.017       0.116       0.059       0.068       0.876
   PEG_ULI2                 0.023      -0.029       0.000      -0.008       0.712
   DSHV_LP3               0.041      -0.048       0.066       0.401       0.089
Variance Explained      13.939       8.544       9.170       7.630       6.086

Mandible                                                     Components
traits                                  1               2              3              4              5
   C_6_LLM3              0.970       0.032      -0.004      -0.028      -0.046
   C_5_LLM3              0.936       0.014       0.015      -0.033      -0.060
   CNO_LLM3            0.930       0.037       0.013      -0.032      -0.044
   C_7_LLM3              0.922       0.038       0.007      -0.015      -0.060
   GRV_LLM3             0.849       0.038       0.034      -0.038      -0.028
   DWR_LLM3           0.821      -0.028      -0.059       0.068       0.103
   PRSD_LM3             0.789       0.037       0.023      -0.023      -0.067
   C_6_LLM2              0.034       0.943       0.097       0.076       0.044
   CNO_LLM2             0.029      0.905       0.155       0.046       0.037
   C_5_LLM2              0.052       0.904       0.105       0.027       0.028
   C_7_LLM2              0.022       0.856       0.106       0.131      -0.018
   PRSD_LM2             0.055       0.779       0.149       0.112       0.032
   GRV_LLM2            -0.029       0.638       0.034       0.015       0.178
   CNO_LLM1            -0.002       0.122       0.894       0.047       0.104
   C_6_LLM1              0.036       0.112       0.852       0.163       0.147
   C_5_LLM1             -0.059       0.088       0.796      -0.092       0.023
   C_7_LLM1              0.005       0.100       0.734       0.228       0.103
   PRSD_LM1             0.054       0.186       0.622       0.207       0.111
   ABS_LLI1              -0.032       0.189       0.251       0.906       0.063
   ABS_LLP4             -0.033       0.189       0.252       0.906       0.066
   DWR_LLM1          -0.062       0.047       0.188       0.011       0.852
   DWR_LLM2          -0.011       0.488      -0.095       0.034       0.696
   AFV_LLM1            -0.025       0.041       0.169       0.026       0.592
   TSOM_LM3          0.465       0.020      -0.055       0.040       0.006
Variance Explained   19.698      15.596      11.586       6.665       6.391

 After analyzing the whole body of data collected, I attempted to reduce the data and simplify the
analysis. I originally decided to look at the results using the key teeth for each trait. However, this method
neglected both the results of the chi-square statistic of relatedness and the frequency of trait expression. The
results of that analysis are included as well as the second data reduction which I attempted using two
criteria: a significant p-value from the chi-square test as well as a trait frequency of greater than or equal to
30% in at least one of the three groups.

 The following are the statistical test results for the two data reductions. The first reduction was
based solely on looking at the so called “key teeth” for each trait, the tooth where the greatest level of
expression would be expected given Dahlberg’s morphogenic field idea (Turner and Scott, 1997).  I then
reduced the data a second time using a different set of criteria because the results of the original reduction
contradicted the results from using all of the traits combined. I felt that it might be more accurate reduce the
data using two criteria: a significant p-value in the chi-square test for significant differences as well as a trait
presence frequency of 30 % or greater for at least one population. The results of those tests follow.

Figure L   Trait list for trait reduction #1 (key teeth)
mandible
 SHV-LIC CDAR-LLC CNO-LLP3 AFV-LLM1 GRV-LLM1 CNO-LLM1
 DWR-LLM1 PRSD-LM1 C5-LLM1  C6-LLM1  C7-LLM1  TSOM-LM3
 ABS-LLI1 ABS-LLP4  ABS-LLM3
maxilla
   CRV_UI1 WNG_LI1  SHV_LI1  DSHV_LI1 IG_LI1  TD_LI1
 CMR_LC CDAR_LC ME_LM1  HYP_LM1  C_5_LM1  CAR_LM1
 PAR_LM1 PEG_LI2  PEG_LM3  ABS_LI2  ABS_LP4  ABS_LM3
 MESIODENS

The trait reduction based solely on the idea of key teeth yielded very different distance statistics. The
Euclidean cluster (Figure M) and distance matrix (Figure N) still showed the Garasias as most closely related
to the Bhils and the Garasia were still most distant to the Rajputs. However, in this analysis the Rajputs and
Bhils were most closely linked inside the larger cluster which related to the Garasia. This relationship was
again confirmed by the Mean Measure of Divergence statistics (Figure O).

Figure M   Euclidean Distance Cluster for key teeth

 Figure N    Euclidean Distance Matrix
                      BHIL      GARASIA       RAJPUT
 BHIL                 0.0
 GARASIA       0.077          0.0
 RAJPUT          0.055        0.079           0.0

Figure O    Mean Measure of Divergence
                           Bhil                              Garasia                               Rajput
Bhil                     **
Garasia       0.08732  (0.04236)              **
Rajput        0.04651   (0.02256)             0.08022  (0.03891)                **

 These tests from the key tooth reduction not only indicated a different set of relationship between
the three groups, they also indicated a new level of distance. The MMD now appears to suggest that the
Garasia are equally distant to the Bhils and the Rajputs, a figure almost twice as large as the distance
between the Bhils and Garasias. Concern that these results conflicted so greatly with the results obtained by
the original analysis with all of the traits, as well as uncertainty about the usefulness of the criteria whereby I
had created this data reduction, forced me to step back and form a new set of more useful criteria by which
to reduce the data before performing any more tests.
 I decided that the reduction should account for 1.) significant p-values in the chi-square test for
differences between the three groups, 2.) a presence frequency equal to or greater than 30% for a given trait
in at least one population, and 3.) consideration of intra-class correlations. The traits included in the third
(and final) analysis are given in Figure P. I performed the chi-square test again to get revised p-values, given
the difference in expected counts with the new table.

Figure P   Significant Traits with a >30% frequency in at least one group
Test for significant differences between groups:
Presence Frequencies and Chi-square P-values (alpha = 0.05)
                        Raj-Bhl            Bhl      Bhl-Grs       Grs       Raj-Grs        Raj      3 Groups
   trait                p-value             %       p-value         %        p-value         %        p-value
Mandible
 CNO-LLP3         0             91.346        0          85.149         0             78.125        0
 CNO_LLP4    0.02             28.846      0.02       52.475         0             49.479     0.02
 AFV-LLM1         0             44.231         0         57.426         0             63.542         0
 GRV-LLM1         0             72.115         0         71.287         0             70.313         0
 GRV-LLM2         0             81.731         0         79.208         0             78.646         0
 CNO-LLM1        0             91.827         0         95.545         0             97.917         0
 CNO-LLM2        0             91.827         0         91.584         0             91.667         0
 C5-LLM1            0             80.288         0         82.178         0             82.813         0
Maxilla
 CRV_UI1             0             72.115        0         75.124         0             68.269         0
 SHV_LI1             0             86.538         0         82.09           0             78.846         0
 SHV_LI2             0             61.058         0         46.766         0             50.962         0
 SHV_LC             0             56.731         0         53.731          0             60.096         0
 TD_LI1             0.001         46.154      0.001     45.274     0.001         45.673     0.001
 TD_LC             0.006         52.885      0.001     41.294     0.007         34.615     0.007
 CDAR_LC           0             66.827     0             68.159         0           59.615          0
 ME_LM1             0             99.038         0          99.502         0           97.596          0
 ME_LM2             0             89.423         0         87.562         0            86.538          0
 HYP_LM1          0             99.519          0         99.005         0           98.558           0
 HYP_LM2          0             85.577          0         82.587         0           75.962           0
 C_5_LM2        0.028         26.923      0.071     12.935     0.042         87.5          0.071
 CAR_LM1         0             56.731           0         49.254         0           68.75             0

 Once again I calculated the Euclidean distance between the three groups and the MMD. The
Euclidean distance cluster (Figure Q) positioned the Rajputs as most distant, the Bhils and Garasias as
closest though the Garasia are not intermediate. Given the more meaningful reduction criteria and the fact
that these results parallel those obtained in the original analysis, I think that this reduction analysis is more
accurate than the reduction by key teeth.  The Rajputs are almost equidistant to the Garasia and the Bhils
(see Figures R and S) with a slightly closer relationship to the Bhils, who are almost twice as close to the
Garasia.

Figure Q    Euclidean Distance Cluster
 

Figure R   Normalized Euclidean distances
                      BHIL      GARASIA       RAJPUT
 BHIL                0.0
 GARASIA       0.083        0.0
 RAJPUT         0.162        0.174        0.0
 

Figure S   Mean Measure of Divergence
                      Bhil                                   Garasia                                Rajput
Bhil                 **
Garasia       0.10624  (0.06557)                **
Rajput        0.14133   (0.08723)             0.23997  (0.14811)                 **

 To explain the variance between the three groups, I performed a new principle components
analysis, one that appears more useful to me in explaining the variance as it is not strictly divided along the
lines of individual teeth (see Figure T). Because of the reduced volume of data, I was able to combine both
jaws into one analysis. Nine components had eigenvalues above one and combined, they explain 65% of the
variance between the three groups.

Figure T   Principle Components Analysis (no rotation)
Component loadings
                                                       Components
Traits                                    1           2               3              4             5
   SHV_ULI2              0.753       0.111       0.155       0.194       0.053
   SHV_ULC               0.749       0.014      -0.164       0.093      -0.088
   SHV_ULI1              0.730       0.136       0.283       0.071      -0.071
   TD_ULI1               0.564       0.269      -0.071      -0.103      -0.258
   TD_ULC                0.520       0.173       0.152       0.109       0.078
   CNO_LLM1          -0.393       0.665       0.027       0.312      -0.030
   C_5_LLM1            -0.384       0.655       0.194       0.145       0.082
   ME_ULM1             0.004       0.501       0.015      -0.394      -0.219
   CAR_ULM1           0.055      -0.068      -0.121      -0.465       0.169
   CNO_LLP4             0.071      -0.083       0.410      -0.015      0.349
   GRV_LLM2            0.030       0.272      -0.128       0.367      -0.173
   CRV_ULI1              0.004      -0.002       0.418      -0.191      -0.452
   HYP_ULM1           0.272       0.235      -0.355      -0.404       0.175
   CDAR_ULC           0.217       0.387       0.312      -0.019       0.150
   HYP_ULM2           0.168       0.217      -0.392      -0.313       0.374
   CNO_LLP3           -0.062      -0.011       0.426       0.005      0.492
   C_5_ULM2            0.186       0.296      -0.148       0.162       0.427
   AFV_LLM1          -0.169       0.371      -0.342       0.310       0.135
   GRV_LLM1           0.134      -0.039      -0.363       0.330      -0.279
   ME_ULM2           -0.136       0.491      -0.093      -0.415      -0.210
   CNO_LLM2         -0.114       0.246       0.419      -0.152      -0.141
Variance explained  13.456      10.101       7.544       6.778       6.220

                                                        Components
Traits                                6            7               8              9
   SHV_ULI2              0.193       0.143       0.022       0.071
   SHV_ULC               0.228      -0.008       0.008      -0.072
   SHV_ULI1              0.004      -0.034       0.142       0.037
   TD_ULI1              -0.016       0.019       0.020       0.050
   TD_ULC               -0.288      0.343       0.036      -0.127
   CNO_LLM1          0.128       0.231       0.071       0.042
   C_5_LLM1            0.004       0.049      -0.050       0.154
   ME_ULM1           -0.049       0.293      -0.123      -0.405
   CAR_ULM1          0.624      -0.102      -0.144       0.229
   CNO_LLP4           -0.046       0.257      -0.576       0.026
   GRV_LLM2          -0.165       0.048      -0.181       0.580
   CRV_ULI1            -0.030      -0.252       0.293       0.389
   HYP_ULM1         -0.007       0.126      -0.215       0.341
   CDAR_ULC          0.221      -0.481      -0.099      -0.217
   HYP_ULM2         -0.436      -0.116       0.049       0.156
   CNO_LLP3            0.301       0.142       0.290       0.156
   C_5_ULM2          -0.287      -0.490       0.186      -0.109
   AFV_LLM1           0.384      -0.056       0.045    -0.079
   GRV_LLM1           0.199      -0.199      -0.386      -0.078
   ME_ULM2            0.109       0.058       0.228      -0.077
   CNO_LLM2         -0.162      -0.385      -0.453      -0.003
Variance explained    5.947       5.426       5.240       4.774
 
 

 In the second trait reduction, the distance statistics from the MMD calculation were narrower
which may be due to fewer possibilities for trait interactions. The principle components analysis is also more
accurate to the real causes of variance when the third molar and other teeth which were mostly absent were
not included. The third molar may have caused more variability because eruption is not complete until early
adulthood and this tooth is most subject to environmental influence. The final principle component analysis
suggests that the most variance between the three groups is explained by morphology of the anterior teeth.
The contrast between anterior and posterior morphology in the component analysis is similar to one of the
components of variance in the odontometric analysis (Hemphill and Lukacs, 1993).
 The results of this study suggest that the Garasia are related to both the Bhils and the Rajputs
though they are morphologically more similar to the Bhils. Though the Garasias do not occupy an
intermediate position between the Bhils and the Rajputs, the results do not definitively rule out the possibility
that they are descendants of the Rajputs with some genetic contribution from the Bhils. Their closer
proximity to the Bhils could be related to environmental and status differences between the Rajputs and the
other two groups, which are very pronounced and long-standing. The use of discrete traits as a test of
genetic relatedness is complicated because the traits are phenotypic representations of the genotype.
Additionally, the traits are estimated to have various modes of inheritance and most do not fall into a simple
autosomal dominant-recessive model (Turner and Scott, 1997).
  To further test the possibility that the Garasia are descendants of the Rajputs with some admixture
from the Bhils, I used a model from population genetics. I calculated the approximate allele frequencies for
the traits generally assumed to have a threshold model of dominant inheritance (Turner and Scott, 1997).
The Protostylid, Carabelli’s cusp, and Shovelling have an approximately normal phenotypic distribution
above the threshold of expression, or in other words if the total presence frequency is high it will have an
approximately normal distribution (ibid.). I used the chi-square test (Figure U) to look at the fit between the
observed counts of present traits as compared to the expected Hardy-Weinberg equilibrium counts (Hartl
and Clark, 1989). I used a model for one-way migration pt= p + ( po - p )( 1 - m ) where po is a donor
population into p and pt is the proposed hybrid population (ibid.).
 The model estimates the percentage of alleles donated by the Bhils to the Rajputs per generation, if
the Garasia are a hybrid population from their union. The model is based on the historical record that the
Garasias were hybrid descendants of both groups, whereby the Bhils had donated women in a hypergynous
flow into unions with Rajput men. If the Rajputs began establishing themselves in Gujarat in the 8th century
AD, the admixture potentially lasted for 1200 years (or 40 generations). The Protostylid had a low presence
count and was not included in the model in the hopes of capitalizing on the more normal distributions of the
other two traits with greater frequencies.

Figure U  Goodness of Fit to Hardy-Weinberg Expectations
Counts and (Expected Values) (df= 4, alpha = 0.05)
           Homozygous                 Homozygous
Population         Recessive          Heterozygous        Dominant             X2                    p-value
Protostylid M1    Grade 0                Grades 1-7             Grade 8
Bhils                  159 (171.86)            34 (20.8)               0 (0.34)             9.68                  p-value < 0.05
Garasias            185 (171.86)             8 (20.8)                0 (0.34)             9.23       0.05 < p-value < 0.10
Rajputs              160 (160.29)            19 (19.4)               1 (0.34)             1.46                  p-value > 0.25

Shovelling I1      Grade 0               Grades 1-4              Grade 5
Bhils                   19 (31.02)            180 (167.65)            0 (0.33)              5.90                  p-value > 0.20
Garasias              34 (31.02)            165 (167.65)            0 (0.33)              0.66                 p-value > 0.25
Rajputs               41 (31.96)            163 (172.70)            1 (0.34)              4.38                  p-value > 0.25

Carabelli's M1   Grade 0              Grades 1-6               Grade 7
Bhils                     89 (84.64)           118 (120.33)            0 (2.04)              2.32                   p-value > 0.25
Garasias               99 (80.96)            99 (115.09)             0 (1.95)              8.22        0.05 < p-value < 0.10
Rajputs                61 (83.41)           137 (118.58)             6 (2.01)            10.83       0.025< p-value < 0.05

 Using the migration model for Shovelling and Carabelli’s trait gave me low estimates for the Bhil
contribution to the Garasia heritage. To get the Garasias observed count for Shovelling, the Bhils would
only have had to contribute 3.94 % of alleles per generation to the Rajput gene pool. For Carabelli’s trait,
the observed Garasia counts would indicate a negligible and insignificant contribution from the Bhil gene
pool. The odontometric analysis positioned the Garasia as a hybrid  but they are probably not an even mix of
the Bhil and Rajput gene pools. I think that this analysis confirms the descent relationship for the Garasias
and Rajputs but places the Bhils in the position of less genetic and more environmental influences. The
cluster analysis in this study placed the Bhils as more intermediate. The Bhils are most certainly not a hybrid
group between the Garasia and the Rajputs, therefore I believe that the positioning and the accuracy of the
distance statistics were compromised by environmental influences which positioned the Bhils and Garasia
closer together.
 These results suggest that the Garasia could have been descendants of tribalised Rajputs and/or of
some Bhil-Rajput unions whether through hypergynous flow or intermarriage. The facts that the Garasia are
known in the historical record to have been occupying Gujarat as a distinct group from at least the 18th
century and that their status is more similar to the Bhils and other forest-dwelling peoples, give support to
their morphological similarities to the Bhils even if they once originated from the Rajput lineage. The
distance statistics show a fairly close relationship between all three groups and the one-way migration model
indicates that it would not require much admixture to produce the observed patterns if the Rajput gene pool
was supplemented with a small generational contribution from the Bhils. However, this model is based on
only two traits and has very specific assumptions which may not be valid, such as the number of generations
in which admixture took place. More work will certainly be required if the true nature of these relationships
is to be fully understood. Serological analysis, craniometrics, and archaeology are all components which
have yet to be included in this discussion of the history and origin of the people of Gujarat.
 
  1