|
Current
Issue | Issue Archives | Issue
59 | Order Back
Issues
From The National Interest No. 59
Extracts from
The Law of Increasing
Returns by Ronald
Bailey
Two hundred years after Thomas Robert Malthus published An Essay on
the Principle of Population, demographers, ecologists, economists,
biologists and policymakers still debate his theory of population. Leading
foundations spend scores of millions of dollars on population programs,
while the United Nations holds international conferences on the topic and
even has a specialized agency, the United Nations Population Fund, devoted
to the issue. Last year the Fund portentously declared that the world’s
population reached six billion on October 12. Every year, hundreds of
weighty studies and books pour from the universities and think tanks
discussing what is to be done.
Malthus advanced two propositions
that he regarded as completely self-evident. First, that "food is
necessary for the existence of man", and second, that "the passion between
the sexes is necessary and will remain nearly in its present state." Based
on these propositions, Malthus famously concluded that "the power of
population is indefinitely greater than the power in the earth to produce
subsistence for man. Population, when unchecked, increases in a
geometrical ratio. Subsistence increases only in an arithmetical ratio. A
slight acquaintance with numbers will show the immensity of the first
power in comparison with the second."
Malthus illustrated his
hypothesis using two sets of numbers: "the human species would increase in
the ratio of--1, 2, 4, 8, 16, 32, 64, 128, 256, 512, &c. and
subsistence as--1, 2, 3, 4, 5, 6, 7, 8, 9, 10, &c." He further
asserted that "population does invariably increase where there are the
means of subsistence." Malthus’ dismal summary of the situation in which
humanity finds itself is that some portion of mankind must forever be
starving to death; and, further, efforts to aid the starving will only
lead to more misery, as those initially spared from famine bear too many
children to feed with existing food supplies.
In his first edition
of the Essay, Malthus argued that there were two "checks" on
population, "preventive" and "positive." Preventive checks, those that
prevent births, include abortion, infanticide and prostitution; positive
checks include war, pestilence and famine. In later editions, he added a
third check that he called "moral restraint", which includes voluntary
celibacy, late marriage and the like. Moral restraint is basically just a
milder version of the earlier preventive check. If all else fails to keep
human numbers under control, Malthus chillingly concludes,
"Famine
seems to be the last, the most dreadful resource of nature. The power of
population is so superior to the power in the earth to produce subsistence
for man, that premature death must in some shape or other visit the human
race. The vices of mankind are active and able ministers of depopulation.
They are the precursors in the great army of destruction, and often finish
the dreadful work themselves. But should they fail in this war of
extermination, sickly seasons, epidemics, pestilence, and plague, advance
in terrific array, and sweep off their thousands and ten thousands. Should
success be still incomplete, gigantic inevitable famine stalks in the
rear, and with one mighty blow, levels the population with the food of the
world."
Malthus’ principle of population has proved to be one of
the most influential and contested theories in history. It provided a
crucial insight for Charles Darwin as he was developing his theory of
natural selection. In his autobiography, Darwin wrote that in October
1838,
"I happened to read for amusement Malthus on Population, and
being well prepared to appreciate the struggle for existence which
everywhere goes on, from long-continued observation of the habits of
animals and plants, it at once struck me that under these circumstances
favourable variations would tend to be preserved, and unfavourable ones
would be destroyed. The result of this would be the formation of a new
species. Here, then, I had at last got a theory by which to
work."
Naturalists, biologists and ecologists have since applied
Malthusian theory not only to animals and plants, but to humans as well.
Undeniably, his principle of population has an appealing simplicity, and
has proved a fruitful hypothesis for ecology and population biology. It
undergirds such biological concepts as carrying capacity, which is a
measure of the population that a given ecosystem can support. The Kaibab
Plateau deer, for example, is a famous case of an animal population
outstripping its food supply. In the 1920s, the deer population expanded
dramatically. In the absence of predators, a forage shortage ensued, which
in turn led to a dramatic reduction of the deer population.
If the
concept of carrying capacity can explain fluctuations in animal
populations, some intellectuals have reasoned in the second half of the
twentieth century, it should apply equally well to human populations. As
Stanford University entomologist Paul Ehrlich has explained: "To
ecologists who study animals, food and population often seem like sides of
the same coin. If too many animals are devouring it, the food supply
declines; too little food, the supply of animals declines. . . . Homo
sapiens is no exception to that rule, and at the moment it seems likely
that food will be our limiting resource."
In the late 1960s,
Ehrlich was one of many biologists and agronomists who began to issue dire
warnings about human "overpopulation", the most famous of which appeared
in his book, The Population Bomb (1968). "The battle to feed all of
humanity is over", Ehrlich wrote. "In the 1970s, the world will undergo
famines--hundreds of millions of people are going to starve to death in
spite of any crash programs embarked on now." Later, in an article for the
first Earth Day in 1970, Ehrlich outlined a horrific scenario in which 65
million Americans and 4 billion other people would die of starvation in a
"Great Die-Off" between 1980 and 1989. And in 1990 Ehrlich and his wife
Anne published The Population Explosion, where they once again
asserted that, "One thing seems safe to predict: starvation and epidemic
disease will raise the death rates over most of the planet." In these
gloomy forecasts, Ehrlich was far from alone. In 1967, William and Paul
Paddock asserted in their book, Famine 1975!, that, "The famines
which are now approaching . . . are for a surety, inevitable. . . . In
fifteen years the famines will be catastrophic." Today, the Worldwatch
Institute, a Washington, dc environmentalist advocacy group chaired by
Lester Brown, still has a solid Malthusian focus.
Food is not the
only resource said to be in short supply. In 1972 the Club of Rome, a
group of politicians, businessmen and senior international bureaucrats,
famously commissioned The Limits to Growth report, which concluded:
"If the present growth trends in world population, industrialization,
pollution, food production, and resource depletion continue unchanged, the
limits to growth on this planet will be reached sometime in the next one
hundred years. The probable result will be a rather sudden and
uncontrollable decline in both population and industrial
capacity."
This is Malthus writ large: not only will humanity run
out of food, but it will also run out of non-renewable resources like
minerals and fossil fuels. . . .
The Primacy of
Ideas
For decades, economists essentially used a two-factor
model in which economic growth was accounted for by adding more labor and
more capital to create more goods. The problem with this model is that
over time growth must halt when the marginal value of the goods produced
equals the cost of the labor and capital used to produce them. This
neoclassical model of economic growth was elaborated in the 1950s by
Nobelist Robert Solow and his colleagues, and was later incorporated into
The Limits to Growth computer model. Relying on it, MIT researchers
predicted eventual collapse as the inevitable result of continued economic
and population growth.
In the last two decades, economic
forecasters, following the lead of economist Paul Romer, have made a
conceptual breakthrough that has enabled them to describe more rigorously
and accurately--and differently--how economic growth occurs and how, with
the proper social institutions, it can continue for the foreseeable
future. Romer explains this approach, which has come to be known as the
New Growth Theory:
"New growth theorists now start by dividing the
world into two fundamentally different types of productive inputs that can
be called ‘ideas’ and ‘things.’ Ideas are nonrival goods that could be
stored in a bit string. Things are rival goods with mass (or energy). With
ideas and things, one can explain how economic growth works. Nonrival
ideas can be used to rearrange things, for example, when one follows a
recipe and transforms noxious olives into tasty and healthful olive oil.
Economic growth arises from the discovery of new recipes and the
transformation of things from low to high value
configurations."
Decoding the clunky economic terminology, "rival"
goods are simply things that cannot be used by two or more persons at
once, e.g., cars, drill presses, computers, even human bodies and brains.
"Nonrival" goods can be used by any number of people simultaneously, e.g.,
recipes for bread, blueprints for houses, techniques for growing corn,
formulas for pharmaceuticals, scientific principles like the law of
gravity, and computer programs.
To understand the potency of ideas,
consider that a few decades ago silicon was used primarily to make glass.
Today it is a crucial component in microchips and optical fibers. Again,
until fairly recently petroleum was known mainly as a nuisance for people
engaged in drilling water wells; its use as a cheap lighting replacement
for increasingly scarce whale oil only began in the 1890s, and soon after
came the internal combustion engine.
We make ourselves better off,
then, not by increasing the amount of resources on planet earth--that is,
of course, fixed--but by rearranging resources we already have available
so that they provide us with more of what we want. This process of
improvement has been going on ever since the first members of our species
walked the earth. We have moved from heavy earthenware pots to ultrathin
plastics and lightweight aluminum cans. To cook our food we have shifted
from wood-intensive campfires to clean, efficient natural gas. By using
constantly improving recipes, humanity has avoided the Malthusian trap
while at the same time making the world safer and more comfortable for an
ever larger portion of the world’s population.
In fact,
increasing, rather than diminishing, returns characterize many
economic activities. For example, it may cost $150 million to develop the
first vial of a new vaccine to prevent Lyme disease. Yet every vial after
that is essentially free. The same is true for computer programs: it may
cost Microsoft $500 million for the first copy of Windows 98, but each
subsequent copy is merely the cost of the disk on which it is stored. Or
in the case of telecommunications, laying a fiber optic network may cost
billions of dollars, but once operational it can transmit millions of
messages at virtually no added cost. And the low costs of each of these
inventions make it possible for the people who buy them to be even more
productive in their own activities--by avoiding illness, expediting word
processing, and drastically increasing the tempo of information
exchanges.
What modern Malthusians who fret about the depletion of
resources miss is that it is not oil that people want; they want to cool
and heat their homes. It is not copper telephone lines that people want;
they want to communicate quickly and easily with friends, family and
businesses. They do not want paper; they want a convenient and cheap way
to store written information. In short, what is important is not the
physical resource but the function to be performed; and for that, ideas
are the crucial input. Robert Kates notes that technological discoveries
have "transformed the meaning of resources and increased the carrying
capacity of the Earth"; economist Gale Johnson concludes that history has
clearly confirmed that "no exhaustible resource is essential or
irreplaceable"; and economist Dwight Lee asserts that "the relevant
resource base is defined by knowledge, rather than by physical deposits of
existing resources."
Romer sums it up this way: "Every generation
has perceived the limits to growth that finite resources and undesirable
side effects would pose if no new recipes or ideas were discovered. And
every generation has underestimated the potential for finding new recipes
and ideas. We consistently fail to grasp how many ideas remain to be
discovered. The difficulty is the same one we have with compounding.
Possibilities do not add up. They multiply."
This, it should be
noted, is the mirror image of Malthus’ argument about exponential growth.
Here, however, ideas grow much faster than population.
By using a
number of simple calculations, Romer illustrates the point that the number
of possible discoveries and inventions is incomprehensibly vast. Take, for
example, the chemical combinations one can derive from the periodic table
of elements. There are about 100 different elements and if one serially
combined any four, one would get about 94 million combinations. Romer
further assumes that these elements could be combined in differing
proportions ranging from 1 to 10. This yields 3,500 proportions times 94
million combinations and provides 330 billion different recipes in total.
At the rate of 1,000 recipes per day, it would take scientists nearly a
million years to evaluate them all. What is more, this vastly
underestimates the actual number of combinations available, since one
could combine more than four elements, in different proportions, at
different temperatures and pressures--and so on and on.
Again,
consider the number of computer programs that could be installed on a
single computer hard disk drive. Romer calculates that the number of
distinct software programs that can be put on a one-gigabyte hard disk is
roughly one followed by 2.7 billion zeros. By comparison, the total number
of seconds that have elapsed since the beginning of the universe is only
about 1 followed by 17 zeros, and the total number of atoms in the
universe is equal to about 1 followed by 100 zeros.
In short, then,
people possess a nearly infinite capacity to rearrange physical objects by
creating new recipes for their use. Yet some committed Malthusians object
that Romer and others who hold that economic growth is potentially
limitless not only violate the law of diminishing returns but transgress
an even more fundamental physical law: the second law of thermodynamics.
According to the second law, in a closed system disorder tends to
increase. Think of a droplet of ink as a highly ordered pigment that is
diluted when it is dropped into a ten-gallon aquarium. When the pigment’s
molecules spread evenly throughout the water, disorder is at a
maximum--that is, it becomes virtually impossible to reconstitute the
droplet. The idea, then, is that the maintenance of order in one part of
the system (heating a house) requires an increase of disorder elsewhere
(burning oil).
In fact, the solution to the puzzle of life and of
a growing economy is that the earth is not a closed system--the
energy that drives it comes principally from the sun. It is true that the
sun’s energy is being dissipated. But it will not burn out for another
four to five billion years. Hence, the recipes that humans could devise
for obtaining and using energy are for all practical purposes limitless.
Until medieval times, people inefficiently heated and cooked with open
fires in their homes. Then someone in Europe invented the chimney, which
dramatically increased the efficiency of heating and cooking. In the
eighteenth century, Benjamin Franklin invented the cast iron stove, which
again boosted efficiency--and so on, to today’s modern electric heat pumps
and gas furnaces. And new ideas and designs continue to be developed all
the time, among them passive solar homes, solar cells, fuel cells and
nuclear power plants. It seems safe to conclude that so long as the sun
shines, the second law of thermodynamics is not terribly
relevant.
Indeed, trying to forecast today the energy mix for the
next hundred years, especially given the current rate of technological
innovation, is as fruitless as someone in 1900 trying to predict our
current energy requirements. A person in 1900 would surely not have
anticipated scores of millions of automobiles and trucks, thousands of jet
planes, and millions of refrigerators. Because of this, the wisest course
is for humanity to support institutions and incentive systems that will
encourage future scientists, inventors and entrepreneurs to discover,
finance and build the technologies that will supply human needs and
protect the natural world in the coming century.
Reframing the
Problems
Insights from New Growth Theory reframe many
environmental problems and suggest some surprising solutions. For example,
one of the global environmental problems most commonly attributed to
population and economic growth is the loss of tropical forests. But is
growth really to blame? According to the Consultative Group on
International Agricultural Research, the chief factor that drives
deforestation in developing countries is not commercial logging but "poor
farmers who have no other option to feeding their families other than
slashing and burning a patch of forest. . . . Slash-and-burn agriculture
results in the loss or degradation of some 25 million acres of land per
year."
By contrast, the United States today farms less than half of
the land that it did in the 1920s but produces far more food now than it
did then. The key, of course, is technology. In fact, available farming
technology from developed countries could prevent, and in many cases
reverse, the loss of tropical forests and other wildlife habitat around
the globe. Unfortunately, institutional barriers, the absence of secure
property rights, corrupt governments and a lack of education prevent its
widespread diffusion and, hence, environmental restoration.
Another
environmental problem frequently attributed to population growth is
pollution. In 1972 The Limits to Growth computer model projected
that pollution would skyrocket as population increased: "Virtually every
pollutant that has been measured as a function of time appears to be
increasing exponentially." But once again, the new Malthusians had things
exactly backward. Since 1972, America’s population has risen 26 percent
and its economy has more than doubled. Western Europe and Japan have
experienced similar rates of growth. Yet, instead of increasing as
predicted, air pollutants have dramatically declined.
In fact, a
growing body of literature suggests that in most cases there are
thresholds of wealth at which the amount of a pollutant begins to decline.
Department of Interior analyst Indur Goklany calls these thresholds the
"environmental transition." What this means is that when people rise above
mere subsistence, they begin demanding amenities such as clean air and
water. The first environmental transition is clean drinking water. Goklany
has found that the level of fecal coliform bacteria in rivers, which is a
good measure of water pollution, peaks when average per capita incomes
reach $1,400 per year. The next transition occurs when particulates like
smoke and soot peak at $3,200. And again, levels of sulfur dioxide peak at
about $3,700.
Not surprisingly, committed Malthusians reject such
findings. Paul Ehrlich, for instance, stubbornly insists that, "Most
people do not recognize that, at least in rich nations, economic growth is
the disease, not the cure." [emphasis in original] To counteract the
"disease" of economic growth, Maurice King recommends that people in the
"privileged North" should engage in "the deliberate quest of poverty" to
curb their "luxurious resource consumption."
The favored target of
such critiques is the United States, whose citizens are supposedly
consuming more than their fair share of the world’s goods and causing more
than their fair share of its ills. The average American, however, is not
only a consumer but a producer of both goods and ideas. Americans and
Europeans get more done with relatively less because of their higher
levels of education, greater access to productive tools, superior
infrastructure, democratic governments and free markets. As a consequence,
output per hour of labor in the United States today is ten times what it
was a hundred years ago. Thus, the average Westerner creates far more
resources, especially knowledge and technology, than she or he consumes.
Thus, too, both Western economies and environments are improving
simultaneously.
All that said, if the right social institutions are
lacking--democratic governance, secure private property, free markets--it
is possible for a nation to fall into the Malthusian trap of rising
poverty and increasing environmental degradation. The economies of many
countries in Africa are declining, not because of high population growth
rates or lack of resources, but because they have failed to implement the
basic policies for encouraging economic growth: namely, widespread
education, secure property rights and democratic
governance.
Democratic governance and open markets have in fact
proved indispensable for the prevention of famine in modern times. Nobel
Prize-winning economist Amartya Sen notes that "in the terrible history of
famines in the world, there is hardly any case in which a famine has
occurred in a country that is independent and democratic, with an
uncensored press." Why is this? Because, says Sen, "So long as famines are
relatively costless for the government, with no threat to its survival or
credibility, effective actions to prevent famines do not have the urgency
to make them inescapable imperatives for the government."6 Along with
Romer and other theorists, Sen also argues that general economic growth,
not just growth in food output, is crucial to ending the threat of famine
in Africa. He calls "for measures to encourage and enhance technical
change, skill formation and productivity--both in agriculture and in other
fields."
Contemporary Malthusians liken humanity to a car
travelling one hundred miles per hour on a foggy road. And they warn of
dire consequences if we do not slow down. But if we adopt institutions and
regulations that slow the pace of innovation, we may find ourselves
depleting our current energy supplies before they can be replaced by new
ones. New Growth Theory suggests that a better analogy might be that human
society is an airplane cloaked in clouds flying at a speed of six hundred
miles per hour. If the plane slows down, it will lose air speed and may
crash before arriving safely at its destination.
We cannot deplete
the supply of ideas, designs and recipes. They are immaterial and
limitless, and therefore not bound in any meaningful sense by the second
law of thermodynamics. Surely no one believes that humanity has already
devised all of the methods to conserve, locate and exploit new sources of
energy, or that the flow of ideas to improve houses, transportation,
communications, medicine and farming has suddenly dried up. Though far too
many of our fellow human beings are caught in local versions of the
Malthusian trap, we must not mistake the situation of that segment as
representing the future of all of humanity and the earth itself; it is,
instead, a dwindling remnant of an unhappy past. Misery is not the
inevitable lot of humanity, nor is the ruin of the natural world a
foregone conclusion.
Back to Current
Issue |