65. In the radioactive decay of Eq. 21-13, a 238 U nucleus transforms to 234 Th and an ejected 4 He. (These are nuclei, not atoms, and thus electrons are not involved.) When the separation between 234 Th and 4 He is 9.0×10^{-15} m, what are the magnitudes of (a) the electrostatic force between them and (b) the acceleration of the 4 He particle?

The radioactive decay mentioned is $^{238}U \rightarrow ^{234}Th + {}^{4}He.$

²³⁴Th has 90 protons and ⁴He has 2.

Charge of a proton is $e = 1.602 \times 10^{-19}$.

The electrostatic force between Th and He is thus the electrostatic force between 90 protons and 2 protons.

$$F = k \frac{q_1 q_2}{r^2} = (8.99 \times 10^9) \frac{(90 \times 1.602 \times 10^{-19})(2 \times 1.602 \times 10^{-19})}{(9.0 \times 10^{-15})^2} = 5.1 \times 10^2 N$$

Proton mass $m_p = 1.67 \times 10^{-27} kg$. Neutron mass $m_n = 1.68 \times 10^{-27} kg$.

⁴He has 2 protons and 2 neutrons (we don't take into consideration the electrons as the question tells us that no electrons are involved).

Thus, mass of ⁴He particle is

$$m_{He} = 2m_p + 2m_n = 2 \times 1.67 \times 10^{-27} + 2 \times 1.68 \times 10^{-27} = 6.70 \times 10^{-27} kg$$

 $a_{He} = \frac{F}{m_{He}} = \frac{5.1 \times 10^2 N}{6.70 \times 10^{-27} kg} = 7.7 \times 10^{28} \frac{m}{s^2}$