Usability

[image: image11.wmf]
NAME Products Usability Overview

Table of Contents
3Table of Contents

4Change History

51.0
Usability Terms

51.1 What is User-Centered Design?

51.2 What is Usability?

51.3 Who is your user?

62.0 Overview

62.1 Background

62.2 Resources

62.3 Purpose

72.4 Benefits and ROI

72.5 Scope

72.6 Ask Us!

83.0 The User-Centered Design Process

83.1 User Experience Planning

83.2 User Research and Identification

93.3 Usability Goals Definition

93.2 User Interaction Mapping and Design

113.5 Usability Evaluation And Testing

144.0 A Overview to Usability

154.1 Windows User-Centered Design Principles

184.2 Design and Implementation Principles

194.3 Web Application Usability Checklist

21Appendix A

21Usability Deliverable Examples

24Appendix B

24Usability Tasks in the Development Lifecycle

25Appendix C

25Usability Task Matrix

Change History

The Change History table documents any significant changes made to this release definition by tracking all corresponding Revision Number changes.

	Revision

Date
	Revision

Number
	Change

	11-Nov-03
	Original
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

1.0 Usability Terms

1.1 What is User-Centered Design?
User-Centered Design (UCD) is a methodology that makes certain that the end user’s goals and objectives are supported throughout design and development.

· What tasks do the users need to accomplish? Different users have different needs.

· What assumptions have been about users? We study technical skill levels, cultural needs, and localization issues.

· Does the system meet the users’ goals? Users and their goals are the litmus test of phase of design and development – if the feature or the design does not meet the users’ needs, it is not used.

1.2 What is Usability?

Usability is the practice of designing and testing products to meet users’ expectations, so they perform well with maximum efficiency and minimum stress.

The practice of Usability means understanding what users need to know, do, think to accomplish a goal.

· How does the user approach a task?

· How does he/she accomplish that task now?

· How should he/she best accomplish the same task with the new product?

1.3 Who is your user?

Users are the individuals who will actually use NAME Products. Usability provides an understanding of who they are and how they work, and how groups have differing needs for NAME Products and/or Company products. There may be many groups of users that relate to your system, for example: administrators, engineers, or NAMErs. Usability researches users to understand what each group and individual needs.

[image: image12.png]
2.0 Overview

2.1 Background

The Usability Overview is developed to provide principles for usable interface and interaction development within Company’s NAME Products Group.

To maintain position in an increasingly difficult market, the software that is easiest to use has the competitive advantage. Sales support staff report that NAME Products customers are clamoring for products that are user-friendly, consistent and pleasing as well as functional. The NAME Products Technical Roadmap sets the need for a premier user experience as a primary driver, highlighting the points in the development cycle where design and testing are crucial.

The Usability Group answered the call for greater usability to date by deploying usability practices tactically to improve interface/interaction designs in specific locations on specific products. We have conducted prototype evaluations to inform design, interfaced with developers and provided creative design leadership for recent releases of some products.

However, we are far from making full use of standard User-Centered Design principles to create a complete user experience. We have many design and usability challenges before us, including:

· Creating consistency in user experience across products and for Company overall,

· Creating accessible and usable interfaces and interactions, and

· Fully implementing a solid set of standards with a methodology.

This will allow Company to produce a suite of products that will truly boast usability as its competitive advantage.

2.2 Resources

To accomplish our user experience goals, we will require the use of resources that are available to us. Robust use of the User-Centered Design process requires:

· Access to real customers and users of the system, to research and test with subjects who are not tainted with design bias or marketing interests.
· Standard lab-based testing, possibly in Company’s own Usability Lab, or Web-Ex based testing for remote and international testing.
· Support of stakeholders and participants of the User-Centered Design process throughout the development cycle.
User-centered Design bridges communication gaps to create a loop of user-driven input into the design process.
2.3 Purpose

The purpose of this Overview is to provide information and tools for NAME and Company Technology to create a superior experience for the Company customer by utilizing recognized Usability and User-Centered Design practices to evaluate and design our products.

2.4 Benefits and ROI

Company NAME Products will enjoy both benefits and return on investment by supporting UCD. By utilizing Usability and User-Centered Design, Company Technology will benefit by:

· Spending less development time configuring and reconfiguring the user interface and interaction layers,

· Creating applications that require less implementation, training and maintenance time, and

· Increasing consistency within and across applications.

Company customers will increase their ability to:

· Learn new applications quickly,

· Accomplish tasks with minimal errors and frustration (creating greater satisfaction), and

· Be more productive by finding and using information faster and better. Customers will use our tools more powerfully with less training and support.

Return on Investment may be measurable. The later any design problem is encountered and fixed, the more expensive the problem will be to rectify. A dollar spent in the design phase to fix a usability problem likely has a 100-fold cost saving fix the same problem at release. Authors Bias and Mayhew explains the benefit of early UCD:

For each dollar a company invests in developing the usability of a product, the company receives $10-$100 in benefits and wins customer satisfaction and continued business. Furthermore, industry data shows that for each dollar spent to fix a problem during product design, $10 is spent to fix the same problem in product development, and $100 or more are spent to fix the same problem after product release.

Usability cost-benefit data shows that including usability in product development actually cuts the time to market and increases sales because usability and ease of use build quality into products and catch many expensive problems early on in the cycle when they can be addressed at lower cost. Finally, working with users from the beginning of a product cycle ensures that the product is being designed so that users will be satisfied.

Involving users in as systematic, defined methodology such as User-Centered Design helps secure these returns.

2.5 Scope

This document will apply to all applications available in the NAME Products suite. It articulates procedures might apply in every phase of software development, from scoping and analysis, through development and into deployment and beyond.

2.6 Ask Us!

Email your questions about usability, style or user interface and interaction to: NAMEusability@Company.com.
3.0 The User-Centered Design Process

User Experience and User-Centered Design takes place throughout – and even outside of – the development lifecycle.

[image: image1.png]
Effective interface and interaction design requires an ongoing commitment to a user-centered design methodology. User-centered design consists of the following steps:

· User Experience Planning

· User Research and Identification

· Usability Goals Definition

· User Interaction Mapping and Design

· Interface design

· Usability evaluation and testing

· User Feedback

User-centered interface/interaction design is an iterative process. Usability testing and/or evaluation are recommended at each stage of development and the results used to improve the design. Waiting to test until the design is complete frequently results in expensive and time-consuming changes.

3.1 User Experience Planning

Every great effort begins with great planning. User Experience Planning is performed at the beginning of the development cycle. [image: image2.png]
Planning is driven from the strategies set in the Technical Road Map. Decisions about what must be done for each release; which deliverables will be engaged and using what timelines complete this task.

3.2 User Research and Identification

User Research is a key activity that begins as a project is initiated, through the Release Definition process.

[image: image3.png]
The initial work on the design for an application is critical. In User-Centered Design, the process begins with users. Users are identified, profiled and their goals understood. User identification involves not only defining the objectives and features for NAME Products, but also understanding who the users are as well and their goals for using the application. User research allows the team to understand how the user expects to interact with a system.

User Profiles give us the measuring stick that User-Centered Design needs to create all remaining deliverables. The output of this activity includes a set of profiles of users, mapping important characteristics of groups of users and defining their goals.

Another deliverable of specific type of user research is a Contextual Task Analysis. Users are observed and/or interviewed to learn how actual interaction with the system happens currently with a methodology common to anthropologists.

3.3 Usability Goals Definition

How will we know we’ve been successful? We know we have achieved success we can document that we have met our goals. Early goal setting gives us a measurement for success, and a decision point throughout the process.

[image: image4.png]
The NAME Products Technical Roadmap defines goals for ease of use and Usability for each release. These goals may be quantitative and measurable or qualitative. These goals serve as the measure of user interface/interaction success.

3.2 User Interaction Mapping and Design

Once user research is complete, the next step is to map and design user interaction. How the user will act and react with a system is mapped and designed, beginning as early as the research stage, and is conducted throughout design and development. Usage Scenarios and Product Task Flow aid this effort.

[image: image5.png]
Usage Scenarios

Representative examples of they will use the application can be developed with Usage Scenarios. These would be told like a story or scenario. A scenario, as defined by usability expert Jakob Nielsen, is a narrative of:

· An individual user

· Interacting with a specific set of system facilities

· To achieve a specific outcome under specified circumstances

· Over a certain time interval.

These scenarios can be used throughout the development process to refine system goals and determine features, define tasks for testing and match development to user needs.

These important questions will be asked about users:
· What mental models do they use?

· What real world objects do they use?

· What is their computer experience/expertise?

· What other software tools do they use?

· What other interaction models and metaphors do they already understand? 1
Product Task Flow

NAME users need to perform tasks that are integral to their work. They want to accomplish their task efficiently. They expect that certain tasks will be performed in the order of their mental understanding. It is essential that the application structure that is employed match the tasks and expectations the users. To do this, the usability specialist can map the Product Task Flow.

In analyzing the data from group meeting or interviews, usability specialists look for the answers to questions like:

· Who are the users?

· What are the priorities of a user when encountering the application?

· What does a user want or to do first, second, third, and so on?

· Will the proposed flow of information support or complicate a user's progression?

· What should a user see on the screen first, second, third, and so on?

The activities help organize the system so that the features that users need most often is the easiest to find and access. Commonly accessed information and features will be optimized to keep the process as simple as possible. Users must be aware of their relationship to the process at all times; the flow of work within the process will be visible.

Committing a planned design to a written format not only provides a valuable reference point and form of communication, but also often helps make the design more concrete and reveals issues and gaps. As the system requirements are developed the process is mapped to include each users' steps, decision points, system response, errors and error handling. A visual map allows designers to recognize and eliminate unnecessary steps.

3.4 Interface Design

Interface design often involved all design participants (usability specialists, developers, and stakeholders) in a series of activities from Release Definition through development.

Good interface design makes a user efficient and creates a sense of comfort and satisfaction. The goal of interface design is to understand how users model the task in their mind, and to support that model within the interface, understanding how users act and react with a system.

Once features and flow are determined, the interface designer must arrange required elements and features in a proposed design, considering carefully whether metaphors are appropriate across cultures, whether the use of color supports culturally and ability differences (including color blindness), whether graphics meet appropriate standards, etc. Wireframe Prototypes can be developed to evaluate the proposed design and reach consensus between designers and developers.

Designs may be evaluated, preferably iteratively, to be certain that the design will meet users’ goals and expectations, following testing methods outlined below. At the end of this process the Interface Design is captured and documented.

3.5 Usability Evaluation And Testing

User-centered design involves the user in the design process through evaluation and testing. There are four types of evaluation that may be conducted: Heuristic Evaluation, Card Sorting, Prototype Evaluation, and User Testing, each with a place within the development cycle and even beyond.

[image: image6.png]
Usability evaluation and testing is different than quality assurance testing in that, rather than finding programming defects, we assess how well the interface and interaction fits user needs and expectations. Usability testing a design, or a particular aspect of a design, provides valuable information and is a key part of an application's success. There are several types of recognized evaluation testing available.

Heuristic Evaluation (Usability Inspection)

A Heuristic Evaluation is typically conducted by 2-3 people versed in usability on an existing system or a robust working prototype. The evaluators typically review (either together or separately) every screen, function and feature of a system, noting where the system deviates from established usability standards.

Card Sorting

With large bodies of data, Card Sorting validates the user's mental model of the data and helps drive information design. Users are asked to sort index-type cards (or may use an automated tool) to sort various categories and/or subjects of information.

Iterative Prototype Testing

Iterative Prototype Testing places specific designs before users to evaluate how intuitive their function may be. The prototype is adjusted based on input and reevaluated with new users, until it appears that the design is maximized. This is considered a formative type of evaluation, that is, it is used largely to form a design. The process typically involves testing a specific feature or function to confirm design and development decisions. For example, prototype installations may be evaluated as they are designed and improved to be certain that design continues to meet user goals.

Usability Testing

Usability Testing places carefully chosen users (who have no design bias) to represent the true user population, before a beta or robust prototype in a controlled lab setting. Users are asked to complete tasks that map to the goals of the system (which should also harmonize with the users’ goals.) This most vital testing process provides important input regarding hidden usability issues prior to release or in anticipation of the next release.

Usability Testing is considered summative, that is, it provides an overall view of the new or proposed system from the users’ perspective. It provides stakeholders with user feedback to assure that the system developed meets the users’ goals and expectations prior to release, or allows the opportunity to fix an unrecognized usability problem in an earlier and less expensive phase of the project.

3.6 User Feedback

[image: image7.png]
After deployment of a product, User Feedback provides an important pipeline to optimize future product release, to learn how the user morphs the product for previously unrecognized goals, and to spot the undetected usability issues that may surface post-release.

Feedback may happen via a customer survey, from customer service or from sales support staff. The most scientifically robust method, surveys, provides specific metrics for user satisfaction.

Input from both customer service and sales support provides important but weighted qualitative information for the usability specialist. Open communication with all stakeholders allows the User-Centered Design process to a complete the loop.

A complete map of Usability Tasks and Deliverables is contained in Appendix B. A complete matrix of Usability Tasks, including dependencies may be found in Appendix C.

4.0 A Guide to Usability

This Guide to Usability provides practical information regarding established usability standards, practices and principles, including:

· Windows User Centered Design principles from Weinschenk’s “Uniface Guidelines” developed for Company,

· Jakob Nielsen’s Design and Implementation Rules, and

· Web Application Checklist by Jodi Bollaert. (Most principles will apply to all types of applications.)

Company Technology utilizes these tested-and-true principles throughout the design and development process. Questions regarding usability may be emailed to NAMEplanning&usability@Company.com.
4.1 Windows User-Centered Design Principles

These principles are valuable when designing software for Windows.

4.1.0 User in Control

An important principle of user interface/interaction design is that the user should always feel in control of the software rather than feeling controlled by the software. This principle has a number of implications:
· The operational assumption is that the user — not the computer or software — initiates actions. The user plays an active rather than reactive role. You can automate tasks, but implement the automation in a way that allows the user to choose or control it.

· Because of their widely varying skills and preferences, users must be able to personalize aspects of the interface. The system software provides user access to many of these aspects. Your software should reflect user settings for different system properties, such as colors, fonts, or other options.

· Your software should be as interactive and responsive as possible. Avoid modes whenever possible. A mode is a state that excludes general interaction or otherwise limits the user to specific interactions. When a mode is the best or only design alternative — for example, for selecting a particular tool in a drawing program — make sure the mode is obvious, visible, the result of an explicit user choice, and easy to cancel.

Here are some other suggested ways of keeping your application's design interactive:
· Use modeless secondary windows wherever possible.

· Segment processes, such as printing, so you do not need to load the entire application to perform an operation.

· Run long processes in the background, keeping the foreground interactive. For example, when a document is printing, the user should be able to minimize the window even if the document cannot be altered. The multitasking support in Windows allows you to define separate processes, or threads, in the background.

4.1.2 Directness

Design your software so that users can directly manipulate software representations of information. Whether they are dragging an object to relocate it or navigating to a location in a document, users should see how their actions affect the objects on the screen. Visible information and choices also reduce the user’s mental workload. Users can recognize a command more easily than they can recall its syntax.

Familiar metaphors provide a direct and intuitive interface for user tasks. By allowing users to transfer their knowledge and experience, metaphors make it easier to predict and learn the behaviors of software-based representations.

When using metaphors, you need not limit a computer-based implementation to its real-world counterpart. For example, unlike its paper-based counterpart, a folder on the Windows desktop can be used to organize a variety of objects such as printers, calculators, and other folders. Similarly, a Windows folder can be sorted in ways that its real-world counterpart cannot. The purpose of using metaphor in the interface is to provide a cognitive bridge; the metaphor is not an end in itself.

Metaphors support user recognition rather than recollection. Users remember a meaning associated with a familiar object more easily than they remember the name of a particular command.

4.1.3 Consistency
Consistency allows users to transfer existing knowledge to new tasks, learn new things more quickly, and focus more attention on tasks. This is because they do not have to spend time trying to remember the differences in interaction. By providing a sense of stability, consistency makes the interface familiar and predictable.

· Consistency is important through all aspects of the interface, including names of commands, visual presentation of information, operational behavior, and placement of elements on the screen and within windows. To design consistency into software, you must consider the following:

· Consistency within an application. Present common functions using a consistent set of commands and interfaces. For example, avoid implementing a Copy command that immediately carries out an operation in one situation but in another displays a dialog box that requires a user to type in a destination. As a corollary to this example, use the same command to carry out functions that seem similar to the user.

· Consistency within the operating environment. By maintaining a high level of consistency between the interaction and interface conventions provided by Windows, your software benefits from the users’ ability to apply interactive skills they have already learned.

· Consistency with metaphors. If a particular behavior is more characteristic of a different object than its metaphor implies, the user may have difficulty learning to associate that behavior with an object. For example, an incinerator communicates a different model than a wastebasket as far as recovering the objects placed in it.

4.1.4 Forgiveness
Users like to explore an interface and often learn by trial and error. An effective interface allows for interactive discovery. It provides only appropriate sets of choices and warns users about potential situations where they could damage the system or data, or better, makes actions reversible or recoverable.

Even in the best-designed interface, users can make mistakes. These mistakes can be both physical (accidentally pointing to the wrong command or data) and mental (making a wrong decision about which command or data to select). An effective design avoids situations that are likely to result in errors. It also accommodates potential user errors and makes it easy for the user to recover.

4.1.5 Feedback
Always provide feedback for a user's actions. Good feedback helps confirm that the software is responding to input and communicates details that distinguish the nature of the action. Effective feedback is timely and is presented as close to the point of the user's interaction as possible. Even when the computer is processing a particular task, provide the user with information about the state of the process and how to cancel the process if that is an option. Nothing is more disconcerting to users than a "dead" screen that is unresponsive to input. A typical user will tolerate only a few seconds of an unresponsive interface.

It is equally important that the type of feedback you use be appropriate to the task. You can communicate simple information through pointer changes or a status bar message; for more complex feedback, you may need to display a progress control or message box.

4.1.6 Aesthetics
Visual design is an important part of an application’s interface. Visual attributes provide valuable impressions and communicate important cues to the interactive behavior of particular objects. At the same time, it is important to remember that every visual element that appears on the screen potentially competes for the user's attention. Provide a coherent environment that clearly contributes to the user’s understanding of the information presented. The skills of a graphics or visual designer can be invaluable for this aspect of the design.

4.1.7 Simplicity
An interface should be simple (not simplistic), easy to learn, and easy to use. It must also provide access to all functionality of an application. Maximizing functionality and maintaining simplicity work against each other in the interface. An effective design balances these objectives.

One way to support simplicity is to reduce the presentation of information to the minimum required to communicate adequately. For example, avoid wordy descriptions for command names or messages. Irrelevant or verbose phrases clutter your design, making it difficult for users to extract essential information easily. Another way to design a simple but useful interface is to use natural mappings and semantics. The arrangement and presentation of elements affects their meaning and association.

Simplicity also correlates with familiarity; things that are familiar often seem simpler. Whenever possible, try to build connections that draw on your users’ existing knowledge and experiences.

You can also help users NAME complexity by using progressive disclosure. Progressive disclosure involves careful organization of information so that it is shown only at the appropriate time. By hiding information presented to the user, you reduce the amount of information the user must process. For example, you can use menus to display lists of actions or choices, and you can use dialog boxes to display sets of options.

Progressive disclosure does not imply using unconventional techniques for revealing information, such as requiring a modifier key as the only way to access basic functions or forcing the user through a longer sequence of hierarchical interaction. This can make an interface more complex and cumbersome.

4.2 User Interface Design Principles

The following 10 principles, or heuristics, apply to the design and implementation of interfaces, whether for GUI environments or for the Web.

Match the system to the real world. The system should speak the users' language, using familiar words, phrases and concepts. Follow real-world conventions, ordering information in a natural, logical order. Effective interfaces are transparent to the user. Avoid system-oriented terms.

Display the system’s status. The system should always keep users informed about what is going on through appropriate feedback within a reasonable time. Keep status information up to date and within easy view. Users should be able to see at a glance their work environment and an approximation of the state and workload.

Give users control and freedom. Users learn more quickly and gain a greater sense of mastery when they are "in charge" of their application. Good interfaces give users well-marked roads and landmarks. Users often choose system functions by mistake. Provide a clearly-marked "emergency exit" so users can leave the unwanted area without having to go through an extended dialog.

Make actions reversible. Users navigate and explore in unexpected ways. Sometimes they want to find out what would happen if they carried out some potentially risky action. Sometimes they do not plan to experiment, but do it by accident. By making actions reversible, work is continuously protected and saved, and users can undo mistakes or missteps at any time.

Design with consistency. Users should not have to wonder whether different words, graphics or actions have identical meanings. Use the graphics and words consistently. Follow platform conventions and style guides.

Design for recognition rather than recall. Make objects, actions and options visible. Users should not have to remember information from one area to another. Instructions for using the system should be visible or easily retrievable.

Design for flexibility and efficiency of use. Let users customize and save frequent actions, personal preferences and settings.

Provide only information that is useful and necessary. Screens should not contain irrelevant or rarely needed information. Every extra unit of information on the interface competes with the relevant units of information and diminishes their relative visibility.

Help users recognize, diagnose and recover from errors. Error messages should be expressed in plain language and without codes. Indicate precisely the problem, and constructively suggest a solution.

Design to prevent errors. Even better than good error messages is a careful design that prevents a problem from occurring in the first place.

Provide help and documentation. Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. All such information should be easy to search, focused on the user's task, list concrete steps to be carried out and not be too long.
Protect users’ work. Protect users from losing their work as a result of an error on their part. This is especially important on the web where the users may frequently use Back and Forward buttons to navigate. The interface should communicate to the user what part of their work will be saved or discarded as a result of their action.

4.3 Web Application Usability Checklist

Users will find the application useful (and valuable) if:
· Achievement of THEIR goals is possible (in addition to business and other stakeholder goals).

Users will find the application intuitive if:
· They immediately understand its purpose upon launch.

· The work/task flow required to achieve their goals is obvious.

· The work/task flow matches their mental model.

· Terms and language are familiar.

· Information is grouped logically and in reasonable amounts.

· Standard GUI/web conventions are used when they exist (e.g. checkboxes are used when more than one option can be selected from a handful of options).

· Controls are matched to their skill level (e.g. multi-select list boxes that require combination keystrokes vs. single select list boxes placed to the right and left of each other that require single mouse clicks).

· What is (and is not) possible is clearly evident (e.g. enabled vs. disabled options).

· Icons clearly indicate their function (through affordances or based on prior experience).

· Acronyms and abbreviations are explained.

· Text is legible.

· Text is clear and concise.

· Link labels are explicit.

· Link labels match associated page titles.

· Instructive interaction is offered without being distracting.

Users will find the application easier to learn if:

· Memory load is minimized (e.g. offers wizards for infrequently performed, complex tasks; allows options to be selected rather than prompting for open-ended input requiring precise recall).

· Terms are used consistently.

· Screen design and layout is consistent.

· Easy-to-use, task-oriented help is readily available.

· Feedback is consistently provided (e.g. system status, confirmations, error messages).

Users will find the application easy to navigate if:
· Primary, secondary and tertiary navigation options are obvious.

· Navigation labels are easily understood.

· Users understand where they are, how they got there, and how to return to where they were at any point in the application (e.g. breadcrumbs).

· Shortcuts are provided for experienced users (e.g. customization opportunities, short-cut keys).

· Entrances and exits are clearly marked.

Users will find the application efficient if:
· The application structure is organized so as not too be too broad or too deep (from a user’s perspective).

· Visual cues like headings, subheadings, bullets, and bold are used to promote scanability.

· Graphic file sizes are minimized (e.g. less than 10k).

· Page download times are reasonable (e.g. less than 10 seconds).

· Horizontal scrolling is avoided.

· Excessive vertical page scrolling is avoided (more than 2-3 pages).

· Shortcuts are provided for experienced users (e.g. customization opportunities, short-cut keys).

· Errors are prevented (e.g. required fields are clearly indicated).

· Error messages are clear, concise and prescriptive.

· Error recovery is intuitive.

Users will find the application flexible if:
· Screen integrity is maintained on different platforms, browsers, screen resolutions, etc.

· Font size is adjustable through the browser.

· Actions are easily undone.

Users will find the application accessible if:
· Default font types and text sizes are large enough to be easy-to-read (the optimal size varies depending on users’ age).
· All images include alt tags (also known as tooltips).
· Graphics can be turned off and still allow task completion.

Users will find the application culturally sensitive if:
· Metaphors are avoided or at least tested for universal understanding.

· Slang, idiomatic expressions, acronyms, and abbreviations are avoided.

· Colors do not have negative connotations for end-users in other cultures.

· Sounds are non-offensive. For example, a beep to let users know when a mistake is made may be acceptable. In some locations, users may find beeps embarrassing.

· Humor is avoided, as it is culturally dependent and typically does not translate well.

· References to sports, utensils, and national monuments, are avoided. These images may have no meaning or a different meaning in other countries.

· Symbols are tested for understanding and correct interpretation. For example, the owl is a symbol of knowledge in the US but is a symbol of witchcraft in Central America.

· Representations of religious symbols, mythological symbols, and national emblems are avoided.

· Images of people, hand gestures and body language are tested for interpretation.
· Graphics that represent holidays or seasons are avoided. Not all countries celebrate the same holiday, or it may not be celebrated in the same way, or on the same date.
The application will be optimized for translation/localization if:
· Text is clear and concise and can expand considerably in translation.
· Letters on graphics are avoided since they cannot be machine-translated.

· Alphabetical ordering is avoided when the target language does not have a letter equivalent (e.g. Arabic).
· Graphics are used conservatively as they add to page download times. High bandwidth technology is not often available in other countries.

· The system is designed to display dates, measurements, numbers, and currency in country-specific formats.

· Entry for different address and telephone number formats is accommodated.

Appendix A

Usability Deliverable Examples

1. User Profile

Network Administrator

[image: image8.jpg]
Mike
Network Administrator

Age: 30

Mike is a Network Administrator in the IT department of a medium-sized financial services firm. He makes certain that network is architected properly, that the network services are running and optimized.

Mike has responsibility for a complex LAN and WAN architecture as well as the company’s intranet and Internet connections. The network is a hodgepodge of Unix and .Net running on a variety of systems. Applications include out of the box big name programs like SAP as well as a series of homegrown C++ programs that interface with their mainframes. The network operates smoothly most of the time. Occasionally, however, challenges to the network have made optimization difficult. Recent challenges to the network have included a DoS virus and the migration of business services from the corporate headquarters to a new remote location. Mike also needs to help his boss recognize when to grow, and when to say no to a new application.

Mike used Network NAME and Client NAME alerting to isolate the virus before it had the opportunity to impact the network. He used Visualizer View to track and NAME the move of various routers, hubs and servers for the users moving to the new location.

Mike’s Needs

· I need to fix network problems and bottlenecks before they happen.

· If I can’t predict the problem, I need to find it quickly, isolate it and fix it quickly.

· I need to be certain that I’ve found the most fundamental cause for my network problems, whether my network hardware, servers, or clients.

· I need to see my availability and performance status at a glance.

· I need a simple interface to set up and NAME my reporting and maintenance.

2. Contextual Task Analysis

Preface:

This purpose of this document is to describe users of a particular software or web application, their goals, and the tasks required to achieve those goals. This information should be used to design a product that will help users achieve their goals in an intuitive and efficient manner.

User and Task Analysis:

Who are the primary and secondary users of this application? What job titles do they typically have? What are their typical roles and responsibilities? What are their goals relative to this application? What are their values? (A primary user typically represents the largest percentage of the user audience. A goal is broader than a task. For example, a user’s goal might be to “maintain a stable network.” A user’s values are the ideals that are important to them as they work to achieve their goals, e.g. speed.)

	User Group
	Other Job Titles
	Primary Role/Responsibilities
	Potential Goals
	Values

	“Power User”

Software Developer

System Administrator

	Network Engineer, System Engineer, IT Engineer, Desktop Support, Helpdesk Support, Software Developer, Programmer, Database Administrator, IT Administrator
	Install NAME View and NAME products

Administration - set up NAME View Monitoring, Alerts, Reports and Visualizer Views for self (Personal Folders) and others (Public Folders)

Access Personal Folders to view saved reports, Monitoring Views, Alerts, and Visualizer Views

Share important performance-related information with others
	Prevent problems from occurring or fix them quickly

Demonstrate technical competency to NAMEment by meeting their information needs (e.g. reports)
	Accuracy

Ease-of-Use

Reliability

Speed

Bug-free

Appearance

3. Product Task Flow

4. Wireframe Prototype

[image: image9.png]
5. Heuristic Evaluation

	Critical - User cannot complete task. Item must be corrected before next release.

	Serious - User can complete task, but will be significantly annoyed. Item should be fixed before next release.

	Serious - User can complete task, but will be significantly annoyed. Item should be fixed before next release.

	Cosmetic - User can complete task, but may be somewhat annoyed. Item should be fixed as time and budget permit.

	Idea - A suggestion by a user or stakeholder which must be validated in a usability test before implementation.

	Good Design - A design or element of a design that worked particularly well for the user.

	
	
	
	
	
	

	No.
	Item Name
	Observation
	Usability Rating
	Recommendation
	Prioritization

	1
	Home Page/General
	The homepage does not effectively communicate the "context". No information is provided about what and where and how goals and tasks may be accomplished, leaving users to guess.
	Cosmetic
	Implication: A home page that does not provide enough information and does not help users complete key tasks does not maximize its potential. Recommendation: Plan to incorporate a home page product. Refine the home page to include information about where data is coming from.
	

Appendix B
Usability Tasks in the Development Lifecycle

[image: image10.png]
The Usability Task timelines show the timing of usability tasks within the NAME Products Development Lifecycle. While not every task may be performed for a given project, each has its role during specific parts of the lifecycle.

A complete review of usability tasks, their purpose and methodology is contained in Appendix C: Usability Task Matrix.

Appendix C

Usability Task Matrix

	
	
	
	
	
	
	
	

NAME Products Usability Overview

The goal is an application that is efficient, easy to use and has selling appeal.

Failing to test may result in costly fixes at the end of the development lifecycle.

Users should learn their business, not the system.

� Claire Marie Karat A business case approach to usability cost justification.�In, R. Bias and D. Mayhew, Eds. Cost-Justifying Usability, Academic Press, NY, 1994.

� Molich and Nielsen, Usability Inspection Methods, 1986.

� Courtesy: Jodi Bollaert

