Description of Solution and Code for udp file transfer program.

dated

12/6/2001
for

Tele2310

to

Dr. Stanley Jedrus

By

Anirban Ghosh

Gayatri Mehta

Ramachandra Raju

Sohail Hirani

Table of Contents

2Table of Contents

31.
Description of protocols and algorithms:

32.
Server Side Implementation:

32.1
ServerDeamon.c

32.2
getServant.c

42.3
putServant.c

42.4
permission.h

42.5
packet.h

52.5
crc.h

53. Client Side Implementation:

53.1 udpGet.c

53.2 udpPut.c

1. Description of protocols and algorithms:

The udp file transfer is a robust program that allows us to transfer file using udp datagram service. The program provides reliable file transfer for ascii files with features like:

· Server security management

· Selective repeat (ARQ),

· Congestion control (using static timeout timer, exponential backoff, limited retries-3 retries and immediate ack when out of sequence packet, duplicate packet or incorrect crc packets are received). It doesn’t use slow start and variable window size

· Crc check.

The program was tested with a window size of two but it should work for other window sizes too. In the program int is used to represent the blockId but the window size is 2 this simplifies acknowledgement procedures to a large extent.

2. Server Side Implementation:

The source code for server side implementation consists of the following files.

1. ServerDeamon.c

2. getServant.c

3. putServant.c

4. permission.h

5. packet.h

6. crc.h

I will explain the purpose and implementation of each file below:

2.1 ServerDeamon.c

This is the main server program. It creates a socket at 1500 port and listens for requests from the clients. The server is continuously running. For every request it spawns a new child, which handles the client.

While the server listens for connections it the following scenarios may arise:

1. A client wants to read a file

· Here the server checks if the file is present if not it creates a access violation error packet and sends it to the client

· If the client can read the files on the server the server checks of the file is present. If not it send a error packet to the client

· If the file is present then the server forks and the child is loaded with the getServant process which handles the read request

2. A client wants to write a file

· Here the server checks if the file is present if not it creates a access violation error packet and sends it to the client

· If the client has write permission then the server forks and the child is loaded with the putServant process which handles the write request

3. Client sends a invalid packet to this port (data, ack, err)

· The server just prints a statement signifying that an invalid request was received

2.2 getServant.c

This process servers a udpGet request. The server passes the client address, port number and filename to the program and it converts the data from the file to packets and sends them to the client using selective repeat.

1. The program first creates a socket to serve the client and opens the file in read mode.

2. It then reads data from the file, adds crc to it and sends them as packets to the client till the window is full.

3. Each time a packet is sent the program checks to see if a ack has been received using poll system command. At any time packet.a.m.blockId variable represents the upper edge of the window and wedge represents the lower edge. If and ack has been received and is greater than last ack packet the wedge is updated; otherwise a message is displayed at server

4. If the window is full and not acknowledged a timer is set and we wait for the ack.

5. If no ack is received and the above timer expires we do an exponential backoff on the timer value and increase the retry count.

6. If a ack is received at this state the retry count is set to zero and step 3 is taken

7. If no ack was received and retry count is over 3 send a error packet to the client and stop the transfer

2.3 putServant.c

This program servers a udpPut request. The server passes the client address, port number and filename to the program and it gets the packets from the client and stores them into a file with .my extension.

1. The program first creates a socket to serve the client and opens the file in write mode.

2. It then sends a ack to the client (the clients identifies the port from which the server send this ack and sends data to the server at this port).

3. Every time the program sets a timer and waits for a the data packet to come. If the data packet doesnt come in this time its increases retry count and exponentially increases the timer wait value.

4. If no data is received and the retry cont is above 3 then a message is printed and the program exits

5. If data is received and it passes crc check retry count is set to 0. If crc check fails message is printed and last ack is sent again.

6. If the data is in sequence then it is written to the file and an ack is sent for all the packets in sequence that have been received (ie if i get 2 and i have already received 3,4 then i send a ack for 4).

7. If data is out of sequence it is added to the window.

8. If the data received is not in range that is either it is a duplicate packet or it is above window then the last ack is sent again.

9. When all packets have been received (indicated by data block less that 512) the file is closed and program exits

2.4
permission.h

This program checks the permissions for a client. It has a function checks for the permission for an ip address set in the file access.dat.

1. When called it opens the access.dat file to see if the ip address is present.

2. If so it reads the next bit and sets read permission accordingly in auth[] array

3. It the reads the next bit that is the write permission and sets auth accordingly and send this back to server.

2.5
packet.h

This file has the packet structure for data exchange.

2.5
crc.h

It has a function called crc. This function calculates the CRC. The first argument is a pointer to the message block. The second argument is the number of bytes in the message block. The function returns an integer which contains the CRC. The low order 16 bits are the coefficients of the CRC.

3. Client Side Implementation:

The source code for server side implementation consists of the following files.

1. udpGet.c

2. udpPut.c

3. crc.h

4. packet.h

3.1 udpGet.c

This program requests for a file from the server. The server gets the server address and filename as command line parameters and it gets the packets from the server and stores them into a file with .my extension.

1. The program first creates a socket to the server and opens the file in write mode.

2. It then sends a read request to the server and waits for data.

3. If error packet is received its displayed and program exits

4. Every time the program sets a timer and waits for a the data packet to come. If the data packet doesnt come in this time its increases retry count and exponentially increases the timer wait value.

5. If no data is received and the retry cont is above 3 then a message is printed and the program exits

6. If data is received and it passes crc check retry count is set to 0. If crc check fails message is printed and last ack is sent again.

7. If the data is in sequence then it is written to the file and an ack is sent for all the packets in sequence that have been received (ie if i get 2 and i have already received 3,4 then i send a ack for 4).

8. If data is out of sequence it is added to the window.

9. If the data received is not in range that is either it is a duplicate packet or it is above window then the last ack is sent again.

10. When all packets have been received (indicated by data block less that 512) the file is closed and program exits

3.2 udpPut.c

This program request to write a file ontot the server. It gets the server address and filename from command line and it converts the data from the file to packets and sends them to the client using selective repeat.

1. The program first creates a socket to server and opens the file in read mode.

2. It waits for reply from the server. If no reply is received within 10 sec it exits.

3. If an error packet is received it displays the message and exits.

4. If ack is received from the server it note the server port id where the data has to be sent.

5. It then reads data from the file adds crc and sends them as packets to the client till the window is full.

6. Each time a packet is sent the program checks to see if a ack has been received using poll system command. At any time packet.a.m.blockId variable represents the upper edge of the window and wedge represents the lower edge. If and ack has been received and is greater than last ack packet the wedge is updated; otherwise a message is displayed at server

7. If the window is full and not acknowledged a timer is set and we wait for the ack.

8. If no ack is received and the above timer expires we do an exponential backoff on the timer value and increase the retry count.

9. If a ack is received at this state the retry count is set to zero and step 3 is taken

10. If no ack was received and retry count is over 3 send a error packet to the client and stop the transfer

