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ABSTRACT 
 

Adipogenesis in Post-Weanling Pigs Fed 
 

Conjugated Linoleic Acid.  (August 2004) 
 

Vanessa Lynn Adams, B.S., Texas A&M University 
 

Chair of Advisory Committee:  Dr. Stephen B. Smith 
 
 

The effects of conjugated linoleic acid (CLA) on lipogenesis and preadipocyte 

proliferation in young pigs were evaluated in two separate experiments.  The first 

compared dietary effects of linoleic acid, beef tallow, and CLA on composition, 

lipogenesis, and DNA synthesis.  Eighteen pigs weaned at 17 d of age were allotted 

randomly to corn-based diets supplemented with 1.5% corn oil, 1.5% tallow, or 1.5% 

CLA.  The second experiment evaluated the effects of CLA included with diets high in 

polyunsaturated fat or beef tallow.  Twenty-four pigs weaned at 17 d of age were allotted 

randomly to one of four corn-based diets supplemented with:  15% corn oil, 12% corn 

oil + 3% CLA, 15% tallow, and 12% tallow + 3% CLA.  The piglets in both trials were 

fed a basal diet for 7 d and their respective diet for 35 d.  [U-14C]Glucose incorporation 

into total lipids was (experiment 1): 10.64, 11.04, 13.64; (experiment 2): 21.15, 17.54, 

21.34, and 19.52 nmol/(105 cells per h) for subcutaneous (s.c.) adipose tissue from corn 

oil, tallow, CLA; corn oil, corn oil + CLA, tallow, and tallow + CLA-fed piglets, 

respectively.  Tritiated thymidine incorporation into DNA was not different in s.c. 

adipocytes across treatment groups, but was 5,581, 2,794, 6,573, and 3,760 dpm/(105 

cells per h) in s.c. stromal vascular cells from corn oil, corn oil + CLA, tallow, and 

tallow + CLA-fed piglets, respectively (CLA main effect p<0.034).  Additionally, there 



 

 

iv

 

was a greater proportion of s.c. adipocytes in the smaller, 180-pL cell fraction from the 

corn oil + CLA-fed pigs (p<0.0074).  CLA in the diet increased the s.c. adipose tissue 

concentration of 18:0 and decreased 16:1 and 18:1 (p<0.05), suggesting depression of 

stearoyl-coenzyme A desaturase (SCD) enzyme activity in the CLA-fed pigs.  The 

concentration of CLA isomers was raised only slightly in s.c. adipose tissue with the 

addition of CLA to the diets even though the CLA oil contained 62% CLA isomers.  No 

effects on the growth of young pigs were observed.  However, CLA caused a more 

saturated fatty acid composition and may suppress preadipocyte proliferation, apparent 

SCD activity, and lipid filling of smaller cells. 
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INTRODUCTION 

The prevalence of obesity has risen in America and the rest of the world (1-3).  

This is an important issue because obesity is not only a large portion of the health care 

burden (4-6), it is also a known risk factor for various diseases, including hypertension, 

type 2 diabetes, coronary heart disease and cancer (7-14).  Furthermore, various reports 

confirm the link between dietary saturated fat intake and undesirable body fat mass (15), 

while others the link between a lack of exercise and unhealthy blood profiles (16-17).  

Both the general public and scientific communities have noticed and have taken steps to 

battle this epidemic, and to improve the overall quality of health.  Now more than ever 

we are equipped with the knowledge and the tools to succeed, but reducing the incidence 

of obesity has proven to be difficult.  Busier lifestyles usually mean longer workdays and 

less time for voluntary exercise.  This busy routine also allows less time for quality meal 

preparation and leaves readily accessible high-calorie fast foods as an attractive option.  

Hence, it is hardly a surprise to see why the energy balance equation is tipped to the side 

of excess. 

Solving this problem is frequently through surgical techniques and/or 

(prescription/dietary) drugs (6, 12, 18-20), both of which carry with them an inherent 

risk and which may and often do have adverse effects on other systems of the body (21-

30).  Safer, non-invasive or non-surgical methods to resume energy balance (31) can 

only be accomplished by an increase in physical activity or by a decrease in energy  
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intake, or a combination of the two.  The effects of the partnership of diet and exercise 

are well documented.  Modifying current dietary patterns and physical activity levels can 

lead to an improvement in body composition and overall health (31-33).  In fact, 

lowering body fat levels while maintaining or increasing lean body mass and increasing 

physical activity are effective in reducing risks of diet-related health disorders, including 

improving blood cholesterol profiles, and lowering blood pressure (15-17).  

Undoubtedly, some of the effects should be the result of changes in cellular events 

mediated by dietary components.  A group with the potential to elicit such changes is fat. 

Dietary fat can be classified into three groups:  saturated, monounsaturated and 

polyunsaturated.  Fat is capable of regulating many cellular aspects, including the 

composition of membranes and gene expression (34).  In particular, polyunsaturated 

fatty acids (PUFAs) play important roles in membrane structure, metabolism, and signal 

transduction (35).  Apart from these functions, PUFAs also have been demonstrated to 

affect adipogenesis through the genetic regulation of the expression of lipid and 

carbohydrate metabolic enzymes (35-37).   

One PUFA under investigation is conjugated linoleic acid (CLA), an isomer of 

linoleic acid (18:2n-6).  Conjugated linoleic acid is a collective term describing the 

various positional and geometric isomers of octadecadienoic (linoleic) acid.  The double 

bonds of CLA are separated by a single carbon-carbon bond and can occur at various 

locations along the carbon chain.  The two primary isomers are cis-9,trans-11 and trans-

10,cis-12 (38).  CLA occurs naturally in human plasma phospholipids, dairy products 
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and meats.  It is produced in ruminant animals via biohydrogenation of PUFAs and 

during the mechanical processing of dairy products. 

The effects of CLA have been reported in different cell lines and animal models.  

3T3-L1 is a murine preadipocyte secondary cell line committed to the adipocyte lineage 

and is used extensively in adipose studies (37,39-40).  Under appropriate differentiation 

conditions, these cells undergo morphological and biochemical conversion to mature 

(white) adipocytes.  Analysis of the 3T3-L1 differentiation program shows that a series 

of genetic events occurs before the adipogenic program is triggered (40).  Induction of 

differentiation involves the cooperative interaction between the peroxisome proliferator-

activated receptor (PPAR) and CCAAT/enhancer-binding protein (C/EBP) transcription 

families.  Activation of adipogenesis begins with transcription of C/EBPβ (41).  This is 

followed by transcription of C/EBPα and PPARγ, which then act together to trigger the 

adipogenic program and reciprocally activate transcription of one another (37,40).  This 

is accompanied by increased mRNA, protein expression and activity of key enzymes 

relevant to lipid and carbohydrate metabolism, including lipoprotein lipase (LPL), 

carnitine palmitoyl transferase (CPT), stearoyl-CoA desaturase (SCD), fatty acid 

transporters (such as fatty acid binding protein) and glucose transporters (such as 

GLUT4) (35,37,40). 

 In 3T3-L1 preadipocyte cell systems, CLA was found to inhibit proliferation of 

pre-confluent cells (42-43), and decrease mRNA transcription of PPARγ and C/EBPα 

(43).  Additionally, CLA was found to increase lipid filling in 3T3-L1 cells (42).  

However, treatment with only the trans-10,cis-12 isomer of CLA resulted in smaller 
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lipid droplets (44).  In 3T3-L1 adipocytes, CLA decreased LPL activity (45) and 

hormone-releasable LPL activity (46).  Lipoprotein lipase is produced by adipose and 

muscle tissue and is found on capillary endothelial cells. It hydrolyzes fatty acids from 

circulating very low-density lipoproteins (VLDL) and chylomicrons, both rich in 

triglycerides.  The products include low-density lipoproteins, chylomicron remnants and 

free fatty acids.  The hydrolyzed fatty acids are taken up by adipose tissue and muscle 

where they are either stored (as re-esterified triacylglycerols) or used for energy.  Park et 

al. (45) also reported decreased intracellular concentrations of triacylglycerol and 

glycerol and increased free glycerol in the culture medium of cells treated with CLA 

compared to control treatment.  These results suggest CLA might work by reducing lipid 

deposition in adipocytes via reduced LPL activity and increased lipolytic rates. 

CLA modifies expression and/or activity of other metabolic enzymes, including 

SCD, and CPT.  SCD converts the saturated fatty acids (SFA) 16:0 (palmitic acid) and 

18:0 (stearic acid) to their respective ∆9 monounsaturated fatty acids (MUFA) 16:1n-7 

(palmitoleic acid) and 18:1n-9 (oleic acid).  Interestingly, 18:1n-9 has been shown to 

affect fat metabolism.  For instance, dietary 18:1n-9 increased the activity of fatty acid-

binding protein (FABP) in liver and adipose tissue of pigs (47).  FABP is responsible for 

fatty acid transport and/or storage and is usually found in or near tissues that synthesize 

lipids, such as adipose, or tissues that participate in β-oxidation, such as muscle.  A 

separate swine study reported that adipose tissue from pigs fed 18:1n-9 was found to 

have less cell density, i.e. fewer cells per gram, than control pigs (48), suggesting that 

18:1n-9 increased adipocyte size.  Furthermore, obese rats were found to have much 
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higher levels of SCD1 mRNA than normal rats (49).  CLA has been shown to decrease 

SCD mRNA, thus reducing the amounts of MUFA, in mouse liver and H2.35 mouse 

liver cells (50).   Similar effects have been documented in differentiating 3T3-L1 (44) 

and human preadipocytes (51).  Separate studies have found that CLA decreases SCD 

activity in HepG2 cells (52), and MCF-7 cells (53).  Additionally, we previously 

reported an apparent depression of SCD activity in adipose tissue from pigs fed CLA 

(54-55).     

In mice, CLA has also been shown to increase the activity of carnitine 

palmitoyltransferase (45).  Carnitine palmitoyltransferase is a mitochondrial fatty acid 

transporter for β-oxidation in adipose and skeletal muscle.  In addition, West et al. (56) 

reported that CLA-supplemented mice had a decreased nighttime respiratory quotient, 

indicating a higher rate of fat metabolism. 

Other studies demonstrate the multiple effects of CLA.  Loor & Herbein (57) 

suggested that the observed reduced bovine milk fat concentration and yield in cows fed 

CLA was due to inhibition of de novo fatty acid synthesis.  Dugan et al. (58) showed that 

adult pigs fed CLA deposited less subcutaneous fat while gaining more lean mass 

throughout the course of the feeding trial, leading to improved body composition.  

Similar effects have been documented in mice (45).   

In response to these observed positive effects, as well as reported 

anticarcinogenic and antioxidant properties (59-61), it is clear why CLA has become a 

subject of interest as a supplement for human nutrition.  The question remains, however, 

as to whether these results are relevant in humans.  To address this, dietary effects of 
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CLA were evaluated in a domesticated pig (swine) model.  The swine model is 

appropriate because swine and humans have comparable coronary arterial systems.  

Moreover, both are affected by dietary lipids and fatty acids in a similar manner and also 

exhibit similar biochemical mechanisms (62).  To illustrate, the genetic tendency of 

swine to develop atherosclerosis in response to dietary stimuli has allowed for numerous 

investigations involving nutrition and the development and onset of cardiovascular 

disease (63).  

The present research involved measures of adipocyte proliferation and 

differentiation in weanling pigs.  There were two experiments.  The first compared 

individual dietary effects of linoleic acid, monounsaturated/saturated fatty acids, and 

CLA.  The second feeding trial evaluated CLA effects when added to diets high in 

polyunsaturated fat or monounsaturated/saturated fat. 

There have been no reports of the effects of CLA on de novo lipogenesis in 

animals fed CLA.  Satory & Smith (43) reported that CLA stimulated the rate of 14C-

glucose incorporation into total lipids in post-confluent 3T3-L1 preadipocytes.  This was 

in contrast to expectations in animal models.  Therefore, we investigated the effects of 

CLA on de novo lipogenesis in s.c. adipose tissue in weanling pigs, a time during which 

extensive preadipocyte proliferation and de novo fatty acid biosynthesis are expected 

(62).   

The positive implications for human health target one central theme, improving 

body composition.  Because CLA is a potential promoter of leanness, cardiovascular 

health will be improved and thus contribute to a lowered risk of developing diet-related 
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disorders.  Based on the research with 3T3-L1 cells, we predicted that young, early 

weaned pigs fed CLA would exhibit decreased rates of lipogenesis from glucose 

precursors and decreased adipose cell numbers and size.  In addition, we expected 

depressed preadipocyte proliferation and possibly increased differentiation in stromal 

vascular tissue.  Therefore, we also measured [3-3H]thymidine incorporation into DNA 

in explant cultures of adipose tissue from pigs fed diets with and without CLA.  To our 

knowledge, this work represents the first attempt to demonstrate depressed DNA 

synthesis in tissues of animals fed CLA. 
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MATERIALS AND METHODS 

Animals and diets.  Forty-two pigs, weaned at 17 d of age, were purchased from 

the Texas Department of Criminal Justice, Huntsville, TX and transferred to the 

USDA/ARS Children’s Nutrition Research Center, Houston, TX.  Pigs were 

acclimatized for 1 wk on a basal corn-based diet which provided approximately 3% fat 

and 20% protein.  After the adjustment period, animals were assigned to different 

treatments. 

 
 
 

TABLE 1 
  Composition of the experimental diet fed to weanling pigs   
Ingredient experiment 1 experiment 2 
 g/100 g diet g/100 g diet   
Ground corn  37.42  30.32 
Soybean meal  33.71  27.31  
Fat and cholesterol supplementa  1.5  15.0 
Dry whey  11.69  11.69 
Bakery product  9.06  9.06 
Fishmeal  2.13  2.13 
Blood products  1.75  1.75 
Antimicrobial  0.85  0.85 
Ground lime  0.70  0.70 
Monocalcium phosphate  0.65  0.65 
D,L-Methionine  0.15  0.15 
Vitamin premixb  0.09  0.09 
Mineral premixc  0.04  0.04 
Other  0.26  0.26   

aExperiment 1: Corn oil diets included 1.5 g corn oil/100 g diet, tallow diets included 1.5 g 
tallow/100 g diet, and CLA diets included 1.5 g CLA/100 g diet.  Experiment 2:  Corn oil diets included 
(15 g corn oil + 0.016 g cholesterol)/100 g diet, tallow diets included 15 g tallow/100 g diet, corn oil + 
CLA diets included (12 g corn oil + 3 g CLA + 0.016 g cholesterol)/100 g diet, and tallow + CLA diets 
included (12 g tallow + 3 g CLA + 0.003 g cholesterol)/100 g diet. 

bContributed the following per kilogram of diet: 8.2 mg of all-trans retinal, 13.8 µg of 
cholecalciferol, 44.1 mg of RRR-α-tocopherol, 18 µg cyanocobalamin, 4.5 mg of riboflavin, 16.4 mg of 
D-pantothenic acid, 30.1 mg of  niacin, 3.3 mg of pyridoxine, 2.1 mg of thiamine, 100.5 mg of biotin, 726 
g of folic acid. 

cContributed the following per kilogram of diet: 176 mg of Zn, 238 mg of Fe, 212 mg of Cu, 57 
mg of Mn, 534 µg of I, 167 mg of Mg, and 402 mg of Se. 
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Experiment 1.  Eighteen piglets were randomly assigned to one of three 

treatment groups.  The diets were supplemented with either 1.5% corn oil, 1.5% tallow, 

or 1.5% conjugated linoleic acid (CLA). 

Experiment 2.  Twenty-four piglets were assigned to diets supplemented with 

either 15% corn oil, 12% corn oil + 3% CLA, 15% tallow, or 12% tallow + 3% CLA. 

Composition of the diets is shown in Table 1.  The CLA source for the 

treatments was CLA-60 from Conlinco (Detroit Lakes, MN).  As per manufacturer’s 

specifications, CLA-60 contained 62% total CLA isomers.  Analysis and composition of 

the supplemental lipids for the two experiments are shown in Tables 2 and 3.  Pigs were  

 
 

TABLE 2 
   Fatty acid composition of the diet for experiment 11   
Diet:      Corn   Tallow  CLA  
Fatty acid      g/100 g fatty acids   
16:0      14.2  19.7  13.2 
16:1n-7      nd2  2.25  nd 
18:0      4.3  7.58  5.26 
18:1n-9      27.65  32.05  27.11 
18:2n-6      51.7  36.2  33.7 
CLA cis-9,trans-113    nd  nd  6.86 
CLA trans-10,cis-12    nd  nd  6.49 
18:3n-3      2.04  1.99  1.62  
Total MUFA     27.65  34.3  27.11 
Total PUFA     53.74  38.19  48.67 
Total SFA     18.5  27.28  18.46 
MUFA:SFA     1.49  1.26  1.47 
PUFA:SFA     2.90  1.40  2.64  
1Values are based on identifiable peaks.  
2not detectable.  
3The values for CLA cis-9,trans-11 also included trace amounts of CLA trans-9,cis-11, whereas the CLA 
trans-10,cis-12 contained trace amounts of CLA cis-10,trans-12.  
 
 
fed at the USDA/CNRC in Houston, TX, for 35 d.  At the end of the feeding period, pigs 

were transported in an air-conditioned van to Texas A&M University Rosenthal Meat 
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Science and Technology Center, where they were killed humanely using standard 

industry techniques.  Samples of subcutaneous adipose tissue from the dorsal neck 

region were collected immediately following decapitation for the measurements of DNA 

synthesis in explant cultures, de novo lipogenesis from glucose, and cellularity/adiposity.    

 
 

TABLE 3 
  Fatty acid composition of the CLA source and diet for experiment 21  
Diet: Conlinco Corn  Corn +  Tallow Tallow + 
 CLA oil    CLA    CLA 
Fatty acid   g/100 g fatty acids 
12:0 0.04 0.03  0.03 0.08 0.07 
14:0 0.09 0.17  0.16 1.57 1.32 
14:1n-5 0.01 0.03  0.03 0.30 0.15 
16:0 5.48 11.2  10.3 22.2 19.4 
16:1n-7 0.09 0.22  0.20 4.65 3.89 
18:0 3.02 2.38  2.49 9.42 8.35 
18:1n-9 20.3 25.8  24.9 33.1 31.0 
18:2n-6 6.74 54.5  46.6 16.4 14.8 
CLA cis-9,trans-112 21.1 0.02  3.53 0.17 3.65 
CLA cis-11,trans-13 12.0 0  2.02 0.03 2.03 
CLA trans-10,cis-12 15.1 0  2.51 0.03 2.54 
18:3n-3 0.15 0.98  0.84 0.76 0.66 
20:4n-6 0 0.02  0.02 0.28 0.23 
Other 15.9 4.35  5.87 10.9 12.4 
Total MUFA3 20.4 26.3  25.3 38.3 35.4 
Total PUFA 7.38 55.8  47.7 17.6 15.9 
Total SFA 8.81 14.2  13.3 33.4 29.3 
MUFA:SFA 2.32 1.85  1.93 1.15 1.35 
PUFA:SFA 6.30 3.92  3.59 0.53 0.54 
1Values are based on identifiable peaks.  
2The values for CLA cis-9,trans-11 also included trace amounts of CLA trans-9,cis-11, whereas the CLA 
trans-10,cis-12 contained trace amounts of CLA cis-10,trans-12.  
3MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids; SFA = saturated fatty acids. 
 
 

Analysis of cellular lipids.  Total lipid was extracted by the method of Folch et 

al. (64).  After methylation (65), the fatty acid methyl esters (FAME) were analyzed 

using a Varian gas chromatograph (model CP-3800 fixed with a CP-8200 autosampler, 
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Varian Inc., Walnut Creek, CA) by the method of Sturdivant et al. (66).  Separation of 

FAME was accomplished on a fused silica capillary column CP-Sil88 [100 m x 0.25 mm 

(i.d.)] (Chrompack Inc., Middleburg, The Netherlands).  Helium was the carrier gas.  

After 32 min at 180°C, oven temperature was increased at 20°C/min to 225°C and held 

for 13.75 min.  Total run time was 48 min. Injector and detector temperatures were at 

270 and 300°C, respectively.  Individual FAME were quantified as a percentage of total 

FAME analyzed.  An index of SCD enzyme activity, the ∆9 desaturase index, was 

calculated as MUFA/(SFA + MUFA) (67). 

Cellularity/adiposity.  Adipose tissue cellularity (size and number of cells/g) 

was determined by procedures outlined in May et al. (68).  Subcutaneous adipose tissue 

samples were frozen at 25°C and sliced in 1-mm thick sections to facilitate tissue 

fixation.  Tissue was rinsed with 37°C 0.154 mol/L NaCl to remove free lipid.  The 

rinsed adipose slices were then placed in 20-mL scintillation vials with 1.5 mL of 50 

mmol/L collidine-HCl buffer (pH 7.4).  Then, 2.5 mL of 3% osmium tetroxide in 

collidine was added and samples incubated for 72 to 96 h at 37°C.  The osmium solution 

was removed and tissue rinsed with 0.154 mol/L NaCl until clear.  To solubilize the 

connective tissue, samples were incubated in 10 mL of 8 mol/L urea at 22ºC for 72 to 96 

h.  The fixed cells were filtered through 240-µm, 64-µm, and 20-µm nylon mesh screens 

with 1 g/L Triton in 0.154 mol/L NaCl.  The cells were collected to determine cell size, 

volume, and cells per g tissue with a Coulter counter (model ZM) equipped with a 

channelizer (model Z56, Coulter Electronics, Hialeah, FL).   
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DNA synthesis.  Incorporation of 3H-thymidine into DNA was measured in 

cultured adipose tissue slices as described previously (68).  Fresh explants of 

subcutaneous adipose tissue (two to three pieces weighing approximately 100 mg total) 

were transferred to 5-mL culture plates, 5 mL culture media was added, and plates were 

incubated for 24 h at 37ºC in a humidified, 5% CO2 atmosphere.  The culture media 

consisted of Dulbecco’s modified Eagle’s medium (25 mmol/L glucose), 100 g/L fetal 

bovine serum, 0.584 g/L L-glutamine, 1.7 µmol/L insulin, 1.0 µmol/L dexamethasone, 

0.5 µmol/L 3-isobutyl-1-methylxanthine, and 1 µCi/mL [3-3H]thymidine (Amersham, 

Arlington Heights, IL).  Media was refreshed at 12 h. 

After 3H-thymidine incubations, the tissue was collagenase-treated using a 

modification of procedures described by May et al. (68).  The tissue was rinsed with 150 

mmol/L NaCl and 1 mmol/L Hepes buffer.  Samples were placed in vials with 2.5 mL 

incubation media containing Krebs-Henseleit buffer (KHB), 10 mmol/L Hepes, 5 

mmol/L glucose, 3% bovine serum albumin, (fatty acid-free), 1 mmol/L CaCl2, 1.67 

mg/mL collagenase, 0.3 mg/mL elastase, and 0.5 mg/mL hyaluronidase.  Samples were 

incubated for 1 h in a shaking water bath at 37ºC.  At the end of the incubation period, 

vial contents were transferred to centrifuge tubes and centrifuged at 21,000 x g for 5 

min.  The top layers containing the fat cells were transferred to new tubes, leaving the 

stromal-vascular fraction behind.  To lyse the cells, 0.5 mL of 20% TCA was added to 

both fractions, the samples centrifuged at 21,000 x g for 5 min, and the top layer 

aspirated.  The resulting pellet was redissolved in 1 mL of 0.5 mol/L NaOH and 0.25 mL 

was transferred to a clean scintillation vial.  To this, 0.1 mL of 5 N HCl and 10 mL 
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scintillation cocktail was added and radioactivity counted on a liquid scintillation 

counter. 

Lipogenesis.  Immediately postmortem, adipose tissue samples were transported 

to the laboratory in oxygenated 37ºC KHB, containing 5 mmol/L glucose.  Two-hour in 

vitro incubations were performed with approximately 100 mg tissue slices, as described 

previously (48).  Explants were placed in 3 mL of a KHB system (pH 7.4) containing 10 

mmol/L glucose, 10 mmol/L Hepes buffer, and 0.5 µCi [U-14C]glucose (Amersham, 

Arlington Heights, IL).  Vials were gassed for 1 min with 95% O2:5% CO2, capped, and 

incubated for 2 h in a shaking water bath at 37ºC.  After 2 h, reactions were stopped with 

addition of 3 mL 5% trichloroacetic acid (TCA).  Samples were removed from the 

incubation media and rinsed with KHB and 0.154 mol/L NaCl to remove free lipid and 

unincorporated substrate. 

The neutral lipids were extracted using a modification of the Folch et al. (64) 

procedure.  Rinsed tissue was transferred to individual 50-mL screw cap centrifuge tubes 

containing 5 mL chloroform:methanol (CHCl3:CH3OH, 2:1, vol/vol).  Samples were 

homogenized using a Polytron homogenizer (Brinkmann Instruments, Westbury, NY) 

and rinsed with additional CHCl3:CH3OH to a final volume of 15 mL.  Next, 5 mL of 

4% Na2CO3 was added and samples were shaken at high speed for 20 min.  Samples 

were centrifuged at 1,000 x g for 20 min, and the top layer containing Na2CO3 and 

nonesterified fatty acids aspirated.  The CHCl3:CH3OH layer was extracted twice more.  

The remaining solvent was filtered through a Whatman volumetric filtration device 

(Fisher Scientific, Pittsburgh, PA) to clean 50-mL screw cap tubes.  The solvent was 
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evaporated to a volume between 5 and 10 mL, and samples transferred to scintillation 

vials, where they were evaporated to dryness, resuspended in 10 mL of scintillation 

cocktail, and radioactivity counted on a liquid scintillation counter (Model LS3800, 

Beckman Instruments, Palo Alto, CA). 

Statistical analysis.  Data for the first trial was analyzed with the SuperAnova 

program (Abacus Concepts, Inc., Berkeley, CA) as a simple one-factor analysis of 

variance.  Means were separated by Fishers LSD method with significance at p<0.05.  

Data for the second trial was analyzed as a two-factor analysis of variance, with factor 

one being the type of supplemental dietary fat (corn oil vs. tallow) and factor two being 

the dose of CLA (0 vs. 3%).  Main effects and the dietary fat x CLA dose interaction 

were tested.  All effects at p<0.05 were considered significant. 

Source of chemicals.  All biochemicals, unless otherwise indicated, were 

purchased from Sigma Chemical Co. (St. Louis, MO) and Gibco BRL (Gaithersburg, 

MD). 
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RESULTS 

Production.  For experiment 1, there were no effects of diet on final weight (Fig. 

1A), and all animals gained comparable amounts of weight per feed consumption (1B).   
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Figure 1.  Production of pigs in experiment 1.  (A) Animal body weights and (B) feed 
conversion.  All groups displayed similar end weights and feed/gain ratios. 
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There were also no differences in start weight, daily gain or feed intake (data not 

shown).  Similarly, animals in experiment 2 did not differ in final weight or other feed 

qualities (not shown).   

The effects of CLA on cellular lipids.  In experiment 1 (Table 4), animals fed 

CLA had less 18:1n-9 and total MUFA than corn oil- and tallow-fed pigs (p<0.001).  

CLA-fed pigs also had correspondingly more 16:0, 18:0 and total SFA (all p<0.02).  As 

a result of these differences in MUFA and SFA, the desaturase index, a ratio of 

MUFA/(MUFA + SFA), of CLA-fed pigs was less than in corn oil- and tallow-fed pigs.   

 

TABLE 4 
Fatty acid concentrations in subcutaneous adipose tissue for experiment 1 

Fatty acid Corn Tallow  CLA  SEM p-value   
14:0 1.91 2.00  3.63 0.23 0.001 
14:1n-5 0.16 0.16  0.22 0.014 0.148 
16:0 30.2 31.7  38.2 1.20 0.002 
16:1n-7 2.60 2.69  1.98 0.138 0.062 
18:0 11.7 10.8  15.4 0.76 0.020 
18:1n-9 31.9 31.5  18.0 1.91 0.001 
18:2n-6 13.8 9.2  7.76 0.81 0.003 
CLA  0.73 0.75  1.95 0.186 0.001 
18:3n-3 0.36 0.33  0.17 0.028 0.003 
20:4n-6 0.09 0.10  0.02 0.026 0.390 
Total MUFA 34.7 34.4  20.2 2.02 0.001 
 Total SFA 43.8 44.5  57.2 1.97 0.004 
∆9 Index 0.44 0.44  0.26 0.024 0.001   
∆9 Index = index of stearoyl-coenzyme A desaturase activity; MUFA/(MUFA + SFA) 
 

In experiment 2 (Table 5), there was a significant main effect of diet on all fatty 

acids except CLA isomers.  This was a result of fatty acid composition of the diets, and 

demonstrates the tendency of lipid incorporation into tissues as they are consumed in the 

diet.  Adding CLA to the diets lowered percentages of 16:1n-7, 18:1n-7, 18:1n-9 and 



 

 

17

 

total MUFA (all p<0.013) and there was a diet x CLA interaction for these fatty acids; 

they were reduced more by CLA in tallow-fed pigs than in corn oil-fed pigs.  

Conversely, CLA reduced 18:2n-6 in corn oil-fed pigs, but not in tallow-fed pigs 

(interaction p<0.007).  

 
TABLE 5 

Fatty acid concentrations in subcutaneous adipose tissue for experiment 2 
  Corn +  Tallow + p-values 
Fatty acid Corn CLA Tallow CLA  SEM Diet CLA      Diet x CLA  
14:0 0.15 0.72 1.45 1.76 0.149 0.001 0.009 0.396 
16:0 15.4 15.9 22.7 23.2 0.785 0.001 0.183 0.962 
16:1n-7 1.61 1.28 4.31 3.55 0.269 0.001 0.001 0.013 
18:0 6.23 9.37 11.2 14.4 0.636 0.001 0.001 0.995 
18:1 t11 0 0.15 1.49 1.95 0.190 0.001 0.067 0.343 
18:1 c11 1.26 1.08 2.79 2.17 0.147 0.001 0.001 0.003 
18:1n-9 30.9 26.7 40.2 32.9 1.03 0.001 0.001 0.001 
18:2n-6 42.5 39.8 14.8 14.5 2.77 0.001 0.001 0.007 
CLA cis-9,trans-11 0 3.37 0  3.98 0.224 0.509 0.001 0.509 
CLA cis-11,trans-13 0 2.00 0  2.16 0.089 0.243 0.003 0.243 
CLA trans-10,cis-12 0 0.31 0  0.66 0.137 0.758 0.001 0.758 
Total MUFA 33.8 29.2 48.85 40.6 1.458 0.001 0.001 0.001 
 Total SFA 21.8 26.0 35.4 39.4 1.499 0.001 0.001 0.797 
∆9 Index 0.61 0.53 0.58 0.51 0.53 0.54 0.001 0.211 
∆9 Index = index of stearoyl-coenzyme A desaturase activity; MUFA/(MUFA + SFA) 
 
 

The effects of CLA on adipocyte cellularity.  For each experiment, there were 

no effects of dietary fat, nor was there a fat x CLA interaction for adiposity of the 

subcutaneous adipose tissue overlying the neck (Table 6).  However, pigs in experiment 

2 had fewer cells/100 mg than pigs in experiment 1.  This was the result of larger 

adipocytes (larger mean volume) in pigs in experiment 2.  Tallow-fed pigs had a greater 

proportion of larger cells than corn oil- or CLA-fed pigs in experiment 1 (Fig. 2A).  In 

experiment 2, there was a greater proportion of smaller 180-pL cells in the corn oil + 

CLA-fed pigs than in the corn oil-fed, tallow-fed, or CLA + tallow-fed pigs (Fig. 2B).  
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There was a significant CLA main effect for all cell volumes greater than 500 pL; 

adipocytes from CLA-fed pigs were smaller than those from pigs fed fat without CLA.  

 

TABLE 6 
Effects of diets on subcutaneous adipose tissue cellularity in weanling pigs1 

    cells/100mg,   
    cells x 105  mean volume, pL   

Experiment 1 
 corn 7.77 84.05 
 tallow 6.62 88.10 
 CLA 7.95 83.71 
 SEM 0.31 2.86 
 p-value 0.18 0.80 
 
 Experiment 2 
 corn 5.14 130.23 
 corn + CLA 5.34 120.28 
 tallow 5.18 129.14 
 tallow + CLA 5.71 122.53 
 SEM 0.16 3.60 
 p-values 
 Fat2 0.55 0.93 
 CLA2 0.30 0.28 
 Fat x CLA 0.63 0.82    
1Values are means (n=6 per treatment group). 
2Pigs were fed either 15 g corn oil or beef tallow/100 g diet, or 12 g corn oil or beef tallow + 3 g CLA/100 
g diet.  Main effects compared corn oil to beef tallow (Fat) or diets containing CLA to those without CLA 
(CLA). 
 
 

The effects of CLA on proliferation of adipocytes and stromal vascular cells.  

There was no treatment effect on DNA synthesis in lipid-filled adipocytes for either 

experiment (Fig. 3A).  However, DNA synthesis in stromal vascular (s.v.) cells was 

much less in tallow- and CLA-fed groups (1,800 and 1,602 dpm/105 cells, respectively) 

than in corn oil-fed pigs (3,402 dpm/105 cells) in experiment 1.  This was also true for 

pigs in experiment 2 (Fig. 3B) when CLA was added to the diet (corn oil with and 
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Figure 2.  Volume proportion of adipocytes.  Volume distribution of s.c. adipose tissue from pigs fed 1.5% 
corn oil, tallow, or CLA (A) and either 15% corn oil or tallow, or 12% corn oil or tallow + 3% CLA (B).  
Significant differences are noted.  Pigs fed tallow had a larger proportion of cells with volumes of 750-pL 
or greater. Pigs fed corn oil + CLA had a smaller proportion of smaller (180-pL) cells than other groups.   
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Figure 3.  DNA synthesis.  (3H)Thymidine incorporation into DNA in adipocytes (A) and 
s.v. cells (B) in s.c. adipose tissue from pigs fed 1.5% corn oil, tallow, or CLA; or from 
pigs fed 15% corn oil, 12% corn oil + 3% CLA, 15% tallow, or 12% tallow + 3% CLA.  
Thymidine incorporation in s.v. cells is greatest in corn oil-fed pigs (B) in experiment 1 
and is depressed by addition of CLA to corn oil and tallow diets in experiment 2.  Asterisk 
denotes main effect of CLA (p<0.034). 
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without CLA: 5,581 and 2,794 dpm/105 cells; tallow with and without CLA: 6,573 and 

3,760 dpm/105 cells) (CLA main effect p<0.034). 

The effects of CLA on de novo lipogenesis in adipocytes.  Lipogenesis from 

glucose precursors in experiment 1 was highest in CLA-fed pigs (Fig. 4), but was not 

statistically significant from the other treatment groups.  Measures for lipogenesis were 

higher in experiment 2 than in experiment 1, but cannot be compared statistically since 

analyses were performed at different times.  For the higher fat diets, addition of CLA to 

both corn oil- and tallow-fed groups had no effect on rates of lipogenesis (CLA main 

effect p<0.48). 
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Figure 4.  Lipogenesis from glucose precursors.  Measures for both experiments were 
not affected by dietary treatments.   
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CONCLUSION 

This study was done to measure the effects of low-fat diets supplemented with 

corn oil (high in PUFA, especially 18:2n-6), beef tallow (high in 16:0 and 18:1n-9), and 

CLA (highest in 18:2 cis-9,trans-11, and 18:2 trans-10,cis-12).  It also tested high-fat 

diets (corn oil or beef tallow) that included CLA.  We had anticipated that CLA-fed pigs 

would display altered fatty acid compositions of subcutaneous adipose tissue, lowered ∆9 

desaturase indexes, inhibited proliferation (as measured by DNA synthesis), and lowered 

rates of de novo lipogenesis. 

Fatty acids were different among the dietary groups of both experiments.  For the 

low-fat diets (experiment 1), CLA supplementation resulted in significantly less MUFA 

(16:1n-7 and 18:1n-9) and significantly more SFA (16:0 and 18:0).  Other reports using 

swine models indicated similar results from feeding different levels of CLA (69-71) and 

feeding for different time periods (70).  Fatty acid composition of subcutaneous adipose 

tissue also was altered when CLA was added to a high-fat diet (experiment 2).  As with 

experiment 1, CLA supplementation resulted in significantly lesser percentages of 

16:1n-7 and 18:1n-9, and more 18:0.  Also, in the corn oil + CLA groups, less 18:2n-6 

(linoleic acid) was detected.  This suggests that CLA competes with 18:2n-6 for 

incorporation into phospholipids.  CLA incorporation into lipids of adipose tissues 

follows dietary intake, and is also enhanced when CLA is included in diets that have 

other supplemental fats (69).  The same effects on fatty acid composition in mice (50) 

and different cell cultures (44,50-53) have been documented. 
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The mouse and cell studies indicated that CLA treatment significantly reduces 

the amount of detectable SCD mRNA (44,50-53).  Reducing SCD activity results in less 

production of MUFA from their respective SFA precursors, altering the ∆9 desaturase 

index.  Our results show that CLA supplementation to the diet, either with or without 

supplemental fat (corn oil or tallow) reduces the ∆9 desaturase index.  We previously 

reported that CLA depressed SCD enzyme activity in subcutaneous adipose tissue of 

pigs in experiment 1 (54). 

We expected to see changes in cellularity with CLA treatment.  Previously, we 

reported that pigs fed diets high in 16:0 or 18:2n-6 as free fatty acids had significantly 

smaller mean diameters than pigs fed 18:0, 18:1n-9, or a combination of 14:1n-5 + 

16:1n-7 free fatty acids (48).  Furthermore, the fatty acid composition of the adipose 

tissue in the pigs mimicked their respective dietary treatments.  Our results here show 

that adipose tissue of pigs fed CLA had a more saturated fatty acid composition.  

Cellularity data indicate more adipocytes per gram in the subcutaneous adipose 

overlying the neck in the animals whose diets included CLA.  CLA treatment may delay 

the signal for differentiation (51), allowing a rise in the number of cells compared to 

other fatty acids.  Also, the mean volume of these cells was less in CLA-fed groups in 

both experiments, suggesting that CLA reduced lipid filling.  However, this observation 

is in direct contrast with our previous report (42) that mixed CLA isomers increased 

lipid filling in 3T3-L1 preadipocytes.  The two predominant isomers of CLA, cis-

9,trans-11 and trans-10,cis-12, are reported to have different effects on adipocyte gene 

expression (44,51).  It has been reported that trans-10,cis-12 CLA reduced the 
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expression of SCD mRNA and the amount of stainable triacylglycerol in human 

preadipocytes (51), while cis-9,trans-11 CLA increased lipid filling compared to control 

cultures.  Others have detected similar results with CLA in 3T3-L1 (44-45) and HepG2 

(52) cells.  Therefore, the reduction in lipid filling we observed may have been due to 

the overriding effect of the trans-10,cis-12 isomer. 

3H-Thymidine incorporation, an indicator of DNA synthesis (proliferation) was 

not affected by dietary manipulations in lipid-filled adipocytes.  However, CLA 

decreased 3H-thymidine incorporation in the stromal vascular (s.v.) cells, which contain 

preadipocytes.  This finding is consistent with other previous studies in MCF-7 cells 

(59,72-74) and 3T3-L1 cells (42-43), which reported that CLA inhibited proliferation.  

Our results show that after 5 wk of dietary treatment, DNA synthesis in s.v. cells was 

significantly less in tallow- and CLA-fed pigs than in the corn oil-fed pigs in experiment 

1.  We did not see a difference between tallow-fed and CLA-fed pigs.  This may be due 

in part to the low-fat nature and the more similar fatty acid composition of these two 

diets.  In experiment 2, addition of CLA to a high-fat diet reduced the amount of 3H-

thymidine incorporation by almost half, regardless of corn oil or tallow base.  To our 

knowledge, this is the first in vivo report for pigs or any other species showing a 

reduction in DNA synthesis with dietary CLA. 

We previously reported that lipogenesis was specifically depressed by different 

dietary fatty acids (48).  Lipogenesis was lower in s.c. adipose from pigs fed diets 

enriched with 16:0 compared to those enriched with 18:2n-6.  In the current study, this 

might be compared to the beef tallow diet versus the corn oil diet.  These data, along 
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with our previous observations on SCD activity (55), led us to presume that tallow- and 

CLA-fed pigs, who would have ingested more SFA, might display significantly lowered 

rates of de novo lipogenesis.  Instead, the rates of lipogenesis were not different among 

treatment groups in experiment 1.  Our measures of lipogenesis were higher overall in 

experiment 2, but we again observed no differences between dietary treatments on de 

novo lipogenesis.  In our previous study (48) we had also reported that rates of 

lipogenesis were not measurably different among pigs fed 18:1n-9 and 18:2n-6.  Because 

the beef tallow diet was high not only in 16:0, but also 18:1n-9 and 18:2n-6, this may 

explain our results.  Additionally, the fat supplement in the previous study was in the 

form of free fatty acids, and not as triacylglycerols. 

In summary, feeding mixed CLA isomers to weanling pigs for a period of 5 wk 

did not cause differences in carcass measurements, but was able to affect events at the 

cellular level.  We previously reported no difference in dissectable fat or muscle from 

the 7th through 9th thoracic rib section (54).  These results are consistent with other 

published reports with CLA on final weight in pigs (69-71), rabbits (75), and mice (45).  

Nonetheless, dietary fatty acids are incorporated in the way they are consumed and cause 

modifications in fatty acid composition of adipose tissues.  These changes play a role in 

cellular metabolism.  One way in which CLA may elicit these effects is by reducing the 

∆9 desaturase index, subsequently reducing the amount of preferred fatty acids (MUFA) 

that contribute to the formation of intracellular triacylglycerols.  Alternatively, CLA may 

affect uptake of other fatty acids.  Brown et al. (51) showed that trans-10,cis-12 CLA 

significantly dose-dependently reduced in vitro s.v. uptake of oleic acid as compared to 



 

 

26

 

cis-9,trans-11 CLA and LA.  This results in reduced lipid filling and can slow the 

process of preadipocyte differentiation (39) to a mature adipoycyte.  The data presented 

here (Table 6) indicate similar results although our study used mixed CLA isomers.  The 

trans-10,cis-12 CLA isomer of CLA also inhibited uptake of glucose and mRNA of the 

glucose transporter GLUT4 (51).  These events over a prolonged period of time can not 

only affect de novo lipogenesis, but can also lead to insulin resistance and other 

symptoms of metabolic disease, such as hyperlipidemia.  Further studies are warranted 

to elucidate the antiadipogenic effects seen with use of mixed and single isomer CLA 

doses.     
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