Smile
MORE THAN **25** YEARS OF DENTAL EXCELLENCE
DR. KHOSLA'S DENTAL CENTRE
Logo of Dr. Khosla's Dental Centre
ISO 9001:2000 CERTIFIED
Each tooth in a person's head is more valuable than a diamond

A2 AASHIRWAD, II CROSS LANE, LOKHANDWALA COMPLEX, ANDHERI (WEST), MUMBAI 400053, INDIA

TEL: 2636 3215 / 2633 5631
2632 8682 / 3082 7053 / 98193 63215

Home

About us

Contact Us

Philosophy

Location Map

Our Services

Patient Education

Photos

Dental News

Dental Jokes

Dental Links

India Guide

KDC in the News

Dental Tourism

DENTAL NEWS ARCHIVES 240

Science Daily

Synchrotron Reveals How Neanderthal Teeth Grew


Three-dimensional virtual reconstruction
of the deciduous and permanent Neanderthal molars.
Both enamel and dentin are rendered in transparency
to show the pulp chamber and the root canals.
(Credits: Luca Bondiolli and Arnaud Mazurier)

ScienceDaily (Nov. 27, 2006) — Scientists from the United Kingdom, France and Italy have studied teeth from Neanderthals with X-rays from the European Synchrotron Radiation Facility (ESRF). They found that the dental development of Neanderthals is very similar to modern humans. Their results are published in Nature this week.

Neanderthals first appeared in Europe approximately 200,000 years ago and became extinct about 25,000 years ago. These predecessors of modern humans have always been considered genetically closer to us than any other members of the genus Homo. It has even been suggested that Neanderthals achieved adulthood faster than modern humans do today.

 A research team from the United Kingdom, France and Italy has recently shed new light on this theory by studying this species’ teeth. Teeth express genetic differences found between individuals and different populations more efficiently than any other tissues preserved in the fossil record. Studies with teeth can identify a timescale on the entire period of dental development that occurs from before birth until adulthood.

 Scientists used the ESRF X-rays to study the enamel dentine junction of a deciduous and a permanent Neanderthal molar tooth (approximately 130,000 years old) that was found on a site in France. The technique used to image the teeth is high-resolution tomography at ID17. The researchers noticed that the samples showed more complex folding of the enamel dentine junction than their modern human counterparts. Some of the unique surface morphologies of Neanderthal molars clearly showed a deep embryological origin and are likely to have been functionally significant.

 Thin ground sections of the same Neanderthal molars revealed that the crowns and roots did not grow faster than those of modern humans. The permanent molar tooth studied had completed its root growth at about 8.7 years of age, which is typical of many modern human children today.

 Almost all deciduous teeth contained an accentuated birth line, or neonatal line that results from the changing physiology and stress of birth. The Neanderthal deciduous also showed a neonatal line with evidence of the usual perinatal physiological stress but with no signs of additional postnatal stress.

 Among anthropoid primates there is a close relationship between brain growth and tooth eruption. Scientists predicted that the first permanent molar eruption in this Neanderthal (6.8 years) fits a dental development schedule similar to those found in modern humans.

 The next step in the research is to find out whether Neanderthal teeth from sites dated to more recent times will reveal evidence of the demographic pressures that overcame the Neanderthals as they approached extinction.

Reference: Macchiarelli et al., How Neanderthal molar teeth grew, Nature online, 22 November 2006.

Adapted from materials provided by European Synchrotron Radiation Facility

PREVIOUS

NEWS-LINKS MAIN PAGE

WEBSITE HOME

NEXT

1