
Data Dependent Cryptografy:

© Glenn Larsson, 2001

(Ichinin@SUESPAMMERS.org)

Abstract: I present a way of increasing the key agility in existing crypto algorithms
to decrease the posibillity for analysts to make use of known plaintext-to-ciphertext
pairs to decrypt message traffic.

Introduction:Introduction:

Modern stream ciphers such as ”ArcFour” (*) have one
Major problem; Plaintext-to-Cipertext attacks are
feasible with only a very low understanding on how the
algorithm works. Hardware implementations with static
keys are one major threat to system security; some
have no key exchange implemented at all and some have
a small finite looping IV that allow a degree (~2^24)
of key agility, but this is not enough.

I choose ”ARCFour” because it is easy to elaborate on
and for you to relate to because it is byte based and
have no bit permutations.

(* This is believed to be the RC4 algorithm, this is
unverified by RSA)

I must also point out that that this is notnot a flaw in
any crypto algorithms, it is a protocol problem.

The problem with static keys:The problem with static keys:

(First of all, I’d like to point out that Known plaintext
 attacks are nothing new. If you know how this works,
 skip this part.)

Cryptograpic systems produce similar ciphertext(s) by
using fixed keys and non agile encryption protocols, i.e.

for (n = 0; n< sizeof(plaintext); n++)
{

ciphertext[n] = encrypt(plaintext[n], key);
}

An Example:

The system we talk about right now, is perhaps a chat
client, it have peer-to-peer file transfer capabilities
and some kind of encryption.

The users (Alice & Bob) send files between them; MP3, ZIP,
Word documents (etc) over the chat client. They also talk
over the same channel, utilising the same key for each
session. Utilising a sniffer and an ICMP redirect attack,
(aka ”Man in the middle” attack), the Eavesdropper ”Eve”
picks up 2 messages: ALPHA and BETA.

Message ALPHA is encrypted with an unknown key.
Message BETA is also encrypted with the unknown key.

Message ALPHA is a word document, i.e. it have this
standard header in it (first 32 bytes):

d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00 -d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00 -
00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 0000 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00

Message BETA is a chat session that utilises the same
key the ciphertext.

1. Eve may know that user Alice is a happy word user
and prefer to write data in Word 2000. So Eve simply xor
the ciphertext with the standard header from above and
produce a possible Keystream(*). So, Eve have NOT
recovered a possible key, but a keystream.

2. Eve now xor the possible keystream with the encrypted
chat session and we prove that the security of the chat
system is broken.

3. Eve can now intercept message traffic between Alice
and Bob in realtime.

(*) A keystream could be described as ”the results of a
key”, i.e. if we compare a crypto algorithm with with a
keyed PRNG, then the random numbers that the PRNG produce
is the Keystream.

Example 1: Using the regular algorithm

Key = 0x31,0x32,0x33,0x34,0x35

Plaintext1 ”beermilkshake”
Plaintext2 ”beermilkshakes” (one extra byte)

Ciphertext1 ”32,50,5D,10,41,77,60,04,E8,4B,B5,DB,BD”
Ciphertext2 ”32,50,5D,10,41,77,60,04,E8,4B,B5,DB,BD,15”

Observation:Observation:

We clearly see the resemblence between the Ciphertext pairs.
Both are encrypted using the same key and both produce
similar ciphertext outputs with the exception for the last
byte. By recoverying the keystream for Ciphertext2 we can
easily extract information from ciphertext1 by xoring the
ciphertext with the keystream.

Example 2: Using the extended algorithm

Key = 0x31,0x32,0x33,0x34,0x35

Plaintext1 ” F.Zappa rule”
Plaintext2 ” F.Zappa rules” (one extra byte)

Ciphertext1 ”3C,C2,A6,63,67,76,9F,4C,27,68,F5,3E”
Ciphertext2 ”AA,D2,58,76,76,8E,D,55,4F,EC,37,6D,5D”

Observation:Observation:

Now, both ciphertext contain the similar message but the
Ciphertext relationships between the Cipertext are totally
Different. Recovery of any of the keystreams in one
message will not allow the attacker to extract information
from the other message.

Appendix A: Appendix A: Pseudocode for standard ”ARCFour” Encryption algorithm

// Fill S() with 0,1,2…N
// Fill K(i) with Key bytes

// Key setup
For i = 1 to 256

j = (j + S(i) + K(i)) Modulo 256
Swap S(I, J)

Next i

i = 0: j = 0

For x = 1 To Sizeof(Data)
i = (i + 1) Modulo 256
j = (j + S(i)) Modulo 256

 Swap S(I,J)
Vector = (S(i) + (S(j)) Modulo 256) Modulo 256
Data(x) = Data(x) xor S(Vector)

Next X

Appendix B: Appendix B: Pseudocode for Extended ”ARCFour” Encryption algorithm:

// Fill S() with 0,1,2…N
// Fill K(i) with Key bytes

// Key setup
For i = 1 to 256

j = (j + S(i) + K(i)) Modulo 256
Swap S(I) and S(J)

Next i

// reset I and J to 0
i = 0: j = 0

For x = 1 To Sizeof(Data) // FIRST loop
i = (i + 1) Modulo 256
j = (j + S(i)) Modulo 256

 Swap S(I,J)
Vector = (S(i) + (S(j)) Modulo 256) Modulo 256
Data(x) = Data(x) xor S(Vector)

Next X

// Note I and J stays the same, they are NOT reset to 0(!)
// just step through the Data[] array again. Nothing special.

For x = 1 To Sizeof(Data) // SECOND loop
i = (i + 1) Modulo 256
j = (j + S(i)) Modulo 256

 Swap S(I,J)
Vector = (S(i) + (S(j)) Modulo 256) Modulo 256
Data(x) = Data(x) xor S(Vector)

Next X

References & Further reading.

- None I know of, sorry.

