
Hardening File Storage Crypto Systems
By Utilizing Real Random Numbers.

Glenn Larsson, Sweden
[Ichinin@SUESPAMMERS.org]

Real random numbers are normally unwanted in
Crypto systems when we are storing data for
later retrieval. Exceptions when real random
numbers are necessary are key generation and
key exchange/negotiation.

I present a way to utilize real random numbers
in cryptography to make attacks upon file storage
systems harder: The idea is to use a random salt
to harden security, the same way as one would go
about to store passwords on a Unix system.

INTRODUCTION:

Most file encryptors use a single, static key (K) to
encrypt multiple files. Making a single compromised
key a total simultaneous compromise of ALL files.

The problem.

If one keystream is recovered from a known plaintext
attack (i.e. known header) usually the whole system
fails because every file is encrypted using the same
K. In the model presented in this paper, no other
files can be recovered using one recovered keystream.

This system is only valid if the master key (K) can
be protected (which also is a problem for all file
system protected; at runtime, all encryption systems
are vulnerable to key theft and other attacks.)

With this in mind, we move on.

TERMINOLOGY:

Hash() = A One way hash algorithm (i.e. MD5)

RN = a random number, (My example app uses size 2^16)

PP = Passphrase

K = Key

K' = Key derived from Hashing (K, RN and PP)

ENCRYPTION:

1) A real random number (RN) is generated, it is used
 to generate a random encryption key.

K' = Hash(RN & K & PP)

2) We now have K' (Subgroup of K), we use that to
 encrypt the message.

3) When that is done we simply concatenate:

Hash(NOT(RN) & K & PP)

to the ciphertext.

[Since finding out K is equivalent to breaking the
 hash algorithm, we do not worry (much) about that.]

DECRYPTION:

1) The program go to the end of the ciphertext and
 extract the hash.

2) We provide K and PP, the program starts guessing the
 right RN by comparing Every Hash(RN & Key & PP) with
 the stored hash. Since RN is small we can do this
 in a reasonable amount of time.

3) With the correct RN in hand, we invert (NOT) in the 2^16
 sized “keyspace”; we can now reconstruct K'.

NOTE:

RN need to be LARGE! 2^16 are fast, but insecure: it
will most likely produce two similar keystreams once
in a while, so if enough keystreams are recovered,
the system could be compromised anyway(!), so a RN
sized 2^24 to 2^32 (or more) would be recommendable.

However, it should be fast enough to find if (or
rather "when") you decide to change the Encryption
key or Passphrase.

AN OBSERVATION:

When generating K', the filename could also be added
to produce an even more unique keystream, this does
not increase security by one bit, but it do increase
the number of keystreams in the system. This would
produce a subset of keys for one specific file, and the RN
would guarantee that no K’ would be the same for multiple
copies of the same file, and no files of the same type
(i.e. executable) would ever produce the same ciphertext.

AN EXAMPLE:

K = "12345"
PP = "Open sesame"
RN = 16705 (asc: "AA")

K' = Hash (K & PP & RN) = Hash ("12345Open sesameAA")

K' becomes 0F1B10E79BFFE91E38CE4685DBC0CF846B90FC3F,

We encrypt data with K' and append:

Hash(K & RN) = Hash ("12345AA")
(9E7F98A4E5165F6CC441015BAC5F0F664047DE2F)

To decrypt, we extract the appended hash from the ciphertext,
we denote this "HTest".

We now guess RN by bruteforcing the small space of RN:

For (RN = 0; RN < 65536; RN++)
{
 if (HASH(RN & K) == HTest) {

// we guessed correct RN, we can now decrypt(!)
 Decrypt (K & PP & RN);
}

}

REFERENCES:

None

DOCUMENT HISTORY

- Fixed flaw in protocol; to reconstruct K’ from
appended hash, one have to provide K & PP, then the
program searches for RN, when found it performs NOT(RN)
to find out the correct RN.

