

Generalidades

- Estatística Descritiva:
 - Resumo ou descrição das características importantes de um conjunto conhecido de dados populacionais
- Inferência Estatística:
 - ► Generalizações sobre uma população tomadas a partir da utilização de dados amostrais.

Estatística descritiva

- Através da ESTATÍSTICA DESCRITIVA entendemos melhor um conjunto de dados através de suas características.
- As três principais características são:
 - Um valor representativo do conjunto de dados. Ex.: uma média
 - ▶Uma medida de dispersão ou variação.
 - A natureza ou forma da distribuição dos dados: sino, uniforme, assimétrica,...

Medidas de Tendência Central

- Determina valores típicos ou representativos de um conjunto de dados
 - ►Média
 - ► Mediana
 - **►**Moda
 - ▶Ponto médio

Média Aritmética ou Média

- Média aritmética ou média
 - Centro do conjunto de dados – ponto de equilíbrio
 - A mais importante medida de tendência central
 - ► Média = $\Sigma(x)/n$

x = extraída de uma amostra $\mu =$ todos os valores da população são considerados

Análise Estatística da Turma de Prob. e Estatística		
Eventos	Altura	Sexo
Aluno 1	1,72	М
Aluno 2	1,60	F
Aluno 3	1,74	M
Aluno 4	1,88	M
Aluno 5	1,82	M
Aluno 6	1,75	M
Aluno 7	1,82	M
Aluno 8	1,75	M
Aluno 9	1,73	M
Aluno 10	1,75	M
Aluno 11	1,80	M
Aluno 12	1,75	M
Aluno 13	1,73	M
Aluno 14	1,84	M
Aluno 15	1,76	М
Aluno 16	1,78	М
Aluno 17	1,75	М
Aluno 18	1,69	F
Média	1,759	

Notação

- Σ: somatório de um conjunto de valores
- x: valores individuais dos dados
- n: número de valores da amostra
- N: número de valores de uma população
- $\overline{x} = \Sigma(x)/n$: média de um conjunto de valores amostrais
- $\mu = \Sigma(x)/N$: média de todos os valores de uma população

Mediana (x)

- Valor do meio do conjunto de dados, quando os valores estão dispostos em ordem crescente ou decrescente; divide um conjunto de dados em duas partes iguais.
- Para calcular:
 - Disponha os valores em ordem (crescente ou decrescente)
 - Se o número de valores é impar, a mediana é o número localizado no meio da lista
 - Se o número é par, a mediana é a média dos dois valores do meio

Do nosso conjunto de dados...

- Encontre a mediana:
 - Liste em ordem crescente os valores
 - Encontre a posição da mediana: (n+1)/2
 - Se n é ímpar, mediana é o número da posição;
 - Se n é par, mediana é a média entre os dois números em torna da posição.
- No exemplo:
 - ▶ n=18 (par);
 - ▶ Posição: (n+1)/2 = 9,5
 - Mediana → média entre o 9° e o 10° valor = (1,75+1,75)/2 = 1,75

Análise Estatística		
da Turma		
Altura	Sexo	
1,60	M	
1,69	F	
1,72	M	
1,73	M	
1,73	M	
1,74	M	
1,75	M	
1,76	M	
1,78	M	
1,80	M	
1,82	M	
1,82	M	
1,84	M	
1,88	F	

Moda (M)

- É o valor que ocorre com maior freqüência.
- Quando dois valores ocorrem com a mesma freqüência, cada um deles é chamado de uma moda, e o conjunto se diz BIMODAL
- Se mais de dois valores ocorrem com a mesma freqüência máxima, cada um deles é uma moda e o conjunto é MULTIMODAL.
- Quando nenhum valor é repetido o conjunto não tem moda

Do nosso conjunto de dados...

Moda = 1,75

Análise Estatística da		
Turma		
Altura	No.ocorrências	
1,60	1	
1,69	1	
1,72	1	
1,73	2	
1,74	1	
1,75	5	
1,76	1	
1,78	1	
1,80	1	
1,82	2	
1,84	1	
1,88	1	

Ponto Médio

 Valor que está a meio caminho entre o maior e o menor valor

ponto médio =
$$\frac{\text{maior valor} + \text{menor valor}}{2}$$

Do nosso conjunto de dados...

pontomédio=	1,88+1,60	=1.74
pontoniculo-	$\frac{1}{2}$	— 1 , / +

Análise Estatística			
da Turma			
Altura	Sexo		
1,60	M		
1,69	F		
1,72	M		
1,73	M		
1,73	M		
1,74	M		
1,75	M		
1,76	M		
1,78	M		
1,80	M		
1,82	M		
1,82	М		
1,84	М		
1,88	F		

Medidas de Posição

Seja o seguinte conjunto de valores:

Se alterarmos significativamente o último valor:

```
5 7 8 10 12 15 200
média = 36,7!! mediana = 10 ponto médio = 102,5!!
```

Medidas de Posição

- Devemos ter cuidados ao escolhermos uma medida de posição para representar um conjunto de dados, pois:
 - "Média" e "Ponto Médio" são muito afetados por valores extremo
- Em geral, a melhor política é utilizar os dois parâmetros: "média" e "mediana"
 - Valores de "Média" e "Mediana" muito próximos é uma indicação que o conjunto de valores é <u>razoavelmente simétrico</u> em relação à posição central (média / mediana)

Média Ponderada

 Cálculo da média, atribuindo pesos diferentes para cada valor

$$\overline{x} = \frac{x_1.w_1 + x_2.w_2 + \dots + x_n.w_n}{\sum w}$$

 x_n = valores individuais

 $w_n = pesos individuais$

Exercício

 A tabela de freqüência a seguir resume os tempos gastos em estudo extraclasse por calouros em uma universidade americana. Faça uma estimativa do tempo médio de estudo deste grupo.

Horas de Estudo	Freqüência (alunos)	
0	5	
1-5	96	
6-10	57	
11-15	25	
16-20	11	
+ de 20	6	

Exercícios

Dados os conjuntos de dados abaixo, calcule a MÉDIA, a MEDIANA, a(s) MODA(S) e o PONTO MÉDIO.

- 1. 15; 26; 28; 10; 29
- 2. 500; 1000; 50000; 800; 500; 600
- 3. Altura dos alunos da sala
- 4. Limite de Resistência de um vergalhão kgf/mm² (55; 52; 55; 53; 56; 59; 58; 55; 56; 53; 52; 51; 54; 54; 55; 55; 58; 57; 57; 56; 49; 54; 56)

Separatrizes

- Percentis
- Decis
- Quartis

DADOS ORDENADOS

Escore padronizado ou escore z

Percentis

- Um percentil indica que há x% de dados inferiores
- Ou seja, os percentis dividem o conjunto de dados em 100 partes iguais.
- Há, portanto, 99 percentis
- Ex.: o P₉₂ (92° percentil) indica que há
 92% de dados inferiores.

Percentis

 Dado o conjunto de valores, calcule o 25º percentil (valores devem estar ordenados)

- Calcule: L= (k/100).n
 - L: posição do percentil desejado no conjunto de dados ordenado
 - k: percentil desejado
 - n: número de valores
- L é um número inteiro?

Percentis

L é número inteiro?

SIM

<u>NÃO</u>

o k-ézimo percentil está a meio caminho do Lézimo valor e o próximo valor do conjunto de dados.

- n=12 => L=3
- $(L_3 + L_4)/2 = (75+77)/2 = 76$

Modificar L, arredondando seus valor para o inteiro maior mais próximo.

Ex.: se $n=11 \Rightarrow L=2,75$

- A posição do k-ézimo percentil será 3.
- Retirando o valor 77 do conjunto de dados...
- $P_{25} = 75$

Calcular Percentil

Para calcular a qual percentil pertence um dado valor

percentil do valor
$$x = \frac{\text{número valores inferiores a } x}{\text{número total de valores}} \cdot 100$$

Processo Alternativo

Seja o seguinte conjunto de "n" valores:

10 7 15

12

20 8

5

25

→ ORDENA-SE o conjunto de "n" valores

7 8

10

12

15

20

25

$$L_P = (n-1) \times p/100 + 1$$

$$L_{25} = (8-1) \times 0.25 + 1 = 2.75$$

$$L_{25} = (8-1) \times 0.25 + 1 = 2.75$$
 $L_{75} = (8-1) \times 0.75 + 1 = 6.25$

$$P_1 = 7 + (8-7)x0,75 = 7,75$$

$$P_1 = 7 + (8-7)x0,75 = 7,75$$
 $P_3 = 15 + (20-15)x0,25 = 16,25$

Decis

- Dividem o conjunto de dados em 10 partes iguais de 10%.
- Portanto há 09 decis numa distribuição, que a divide em 10 grupos de 10% de dados.
- Os Decis são os percentis:
 - ►P₁₀, P₂₀, P₃₀, P₄₀ P₅₀, P₆₀, P₇₀, P₈₀, P₉₀

Decis

$D_1 = P_{10}$	$D_2 = P_{20}$	$D_3 = P_{30}$
$D_4 = P_{40}$	$D_5 = P_{50}$	$D_6 = P_{60}$
$D_7 = P_{70}$	$D_8 = P_{80}$	$D_9 = P_{90}$

Quartis

- Os quartis dividem a distribuição em quatro partes iguais de 25%
- Temos assim 3 quartis numa distribuição
 - ►O 1º quartil Q₁, separa os 25% de dados inferiores
 - ►O 2º quartil Q₂, separa os 50% de dados inferiores
 - ►O 3º quartil Q₃, separa os 75% de dados inferiores.

Quartis

- Os Quartis são os percentis:
 - ► P₂₅, P₅₀, P₇₅

$$Q_1 = P_{25}$$
 $Q_2 = P_{50}$ $Q_3 = P_{75}$

Observa-se que Q₂ = MEDIANA

Outras medidas descritivas

- Baseado nos conceitos de Percentis,
 Decis e Quartis, podemos definir outras descrições estatísticas:
 - ►Intervalo interquartil \rightarrow Q₃ Q₄
 - ►Intervalo semi-interquartil \rightarrow (Q₃ Q₁)/2
 - ► Quartil médio \rightarrow (Q₃ + Q₁)/2
 - ► Amplitude de percentis
 - Ex. $10-90 \Rightarrow P_{90}-P_{10}$