[Lui's homepage] [DSP homepage]

Lab Exercise:

Magnitude Response

This exercise should be done using Excel.

In this exercise you are to use Excel to obtain the graph of the magnitude response of a finite impulse response (FIR) filter. The FIR filter is specified by the difference equation,

             M-1
      y(n) = sum  h(k)x(n-k)
             k=0   

where M = 64, and the coefficiets h(n), n = 0,...,63, are as follows:

h(0) = h(63) = -0.000158126130000595
h(1) = h(62) = -0.000478357664687351
h(2) = h(61) = -0.000801661859271876
h(3) = h(60) = -0.00110308549297515
h(4) = h(59) = -0.00132172249376453
h(5) = h(58) = -0.00136202669388539
h(6) = h(57) = -0.0011120329442612
h(7) = h(56) = -0.000476799980284982
h(8) = h(55) = 0.000579729798449221
h(9) = h(54) = 0.00199526015169846
h(10) = h(53) = 0.00358456090475661
h(11) = h(52) = 0.00504093135426444
h(12) = h(51) = 0.00597041268497614
h(13) = h(50) = 0.00595859162735932
h(14) = h(49) = 0.0046618924422662
h(15) = h(48) = 0.00190795478936417
h(16) = h(47) = -0.00221519988670355
h(17) = h(46) = -0.007302606005794
h(18) = h(45) = -0.0126263939533596
h(19) = h(44) = -0.0171907724840236
h(20) = h(43) = -0.0198475323191142
h(21) = h(42) = -0.0194597067397005
h(22) = h(41) = -0.0150902257239541
h(23) = h(40) = -0.00618501702109644
h(24) = h(39) = 0.00728221471782563
h(25) = h(38) = 0.024732532464351
h(26) = h(37) = 0.0449911864134062
h(27) = h(36) = 0.0663897640447006
h(28) = h(35) = 0.0869513189490387
h(29) = h(34) = 0.104634017163135
h(30) = h(33) = 0.117597777544398
h(31) = h(32) = 0.124453122342888 .

Use Excel to determine the magnitude response of this system, and graph the magnitude response against frequency. Show all intermediate computations. Be able to answer all questions related to this exercise.

Answer:

 


 

This page has been accessed
Counter
times since September 5, 2003.

Created September 5, 2003
Last updated September 5, 2003
By Luisito L. Agustin
lui_agustin@yahoo.com
1