
© IEEE – 2004 Version D-1

APPENDIX D
CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY

INTRODUCTION

Bloom’s taxonomy1 is a well-known and widely used
classification of cognitive educational goals. In order to
help audiences who wish to use the Guide as a tool in
defining course material, university curricula, university
program accreditation criteria, job descriptions, role
descriptions within a software engineering process
definition, professional development paths and
professional training programs and other needs, Bloom’s
taxonomy levels for SWEBOK Guide topics are proposed
in this appendix for a software engineering graduate with
four years of experience. A software engineering graduate
with four years of experience is in essence the “target” of
the SWEBOK Guide as defined by what is meant by
generally accepted knowledge (See Introduction of the
SWEBOK Guide).
Since this Appendix only pertains to what can be
considered as “generally accepted” knowledge, it is very
important to remember that a software engineer must know
substantially more than this “category” of knowledge. In
addition to “generally accepted” knowledge, a software
engineering graduate with four years of knowledge must
possess some elements from the Related Disciplines as
well as certain elements of specialized knowledge,
advanced knowledge and possibly even research
knowledge (see Introduction of the SWEBOK Guide).
The following assumptions were made when specifying
the proposed taxonomy levels:
� The evaluations are proposed for a “generalist”

software engineer and not a software engineer
working in a specialized group such as a software
configuration management team, for instance.
Obviously, such a software engineer would require or
would attain much higher taxonomy levels in the
specialty area of their group;

� A software engineer with four years of experience is
still at the beginning of their career and would be
assigned relatively few management duties, or at least
not for major endeavors. “Management-related
topics” are therefore not given priority in the proposed
evaluations. For the same reason, taxonomy levels
tend to be lower for “early-life cycle topics” such as
those related to software requirements than for more
technically-oriented topics such as those within
software design, software construction or software
testing.

1 B. Bloom (Eds), Taxonomy of Educational Objectives:
The Classification of Educational Goals, Mackay, 1956.

� So the evaluations can be adapted for more senior

software engineers or software engineers specializing
in certain knowledge areas, no topic is given a
taxonomy level higher than Analysis. This is
consistent with the approach taken in the Software
Engineering Education Body of Knowledge (SEEK)
where no topic is assigned a taxonomy level higher
than Application2. The purpose of SEEK is to define a
software engineering education body of knowledge
appropriate for guiding the development of
undergraduate software engineering curricula.
Though distinct notably in terms of scope, SEEK and
the SWEBOK Guide are closely related3.

Bloom’s Taxonomy of the Cognitive Domain proposed in
1956 contains six levels. Table 14 presents these levels and
keywords often associated with each level.

2 See Joint Task Force on Computing Curricula – IEEE
Computer Society Association for Computing Machinery,
Computing Curricula – Software Engineering Volume –
Publid Draft 1 – Computing Curriculum Software
Engineering, 2003. http://sites.computer.org/ccse/
3 See P Bourque, F. Robert, J.-M. Lavoie, A. Lee, S.
Trudel, T. Lethbridge, “Guide to the Software Engineering
Body of Knowledge (SWEBOK) and the Software
Engineering Education Body of Knowledge (SEEK) – A
Preliminary Mapping”, in Proc. Tenth Intern. Workshop
Software Technology and Engineering Practice
Conference (STEP 2002), pp. 8-35, 2002)
4 Table taken from
http://www.nwlink.com/~donclark/hrd/bloom.html

 D-2 © IEEE – 2004 Version

Table 1 Bloom’s Taxonomy

Bloom’s Taxonomy Level Associated Keywords

Knowledge: Recall of data. Defines, describes, identifies, knows, labels, lists, matches, names,
outlines, recalls, recognizes, reproduces, selects, states.

Comprehension: Understand the meaning, translation,
interpolation, and interpretation of instructions and
problems. State a problem in one's own words.

Comprehends, converts, defends, distinguishes, estimates, explains,
extends, generalizes, gives examples, infers, interprets, paraphrases,
predicts, rewrites, summarizes, translates.

Application: Use a concept in a new situation or
unprompted use of an abstraction. Applies what was
learned in the classroom into novel situations in the
workplace.

Applies, changes, computes, constructs, demonstrates, discovers,
manipulates, modifies, operates, predicts, prepares, produces,
relates, shows, solves, uses.

Analysis: Separates material or concepts into
component parts so that its organizational structure may
be understood. Distinguishes between facts and
inferences.

Analyzes, breaks down, compares, contrasts, diagrams,
deconstructs, differentiates, discriminates, distinguishes, identifies,
illustrates, infers, outlines, relates, selects, separates.

Synthesis: Builds a structure or pattern from diverse
elements. Put parts together to form a whole, with
emphasis on creating a new meaning or structure

Categorizes, combines, compiles, composes, creates, devises,
designs, explains, generates, modifies, organizes, plans, rearranges,
reconstructs, relates, reorganizes, revises, rewrites, summarizes,
tells, writes.

Evaluation: Make judgments about the value of ideas
or materials.

Appraises, compares, concludes, contrasts, criticizes, critiques,
defends, describes, discriminates, evaluates, explains, interprets,
justifies, relates, summarizes, supports.

The breakdown of topics in the tables does not match
perfectly tha breakdown in the Knowledge Areas. The
evaluation for this Appendix was prepared while some
comments were still coming in.

Finally, please bear in mind that the evaluations of this
Appendix should definitely only be seen as a proposal to
be further developed and validated.

© IEEE – 2004 Version D-3

SOFTWARE REQUIREMENTS5

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software requirements fundamentals
Definition of software requirement C
Product and process requirements C
Functional and non-functional requirements C
Emergent properties C
Quantifiable requirements C
System requirements and software requirements C
2. Requirements process
Process models C
Process actors C
Process support and management C
Process quality and improvement C
3. Requirements elicitation
Requirements sources C
Elicitation techniques AP
4. Requirements analysis
Requirements classification AP
Conceptual modeling AN
Architectural design and requirements
allocation AN

Requirements negotiation AP
5. Requirements specification
System definition document C
System requirements specification C
Software requirements specification AP
6. Requirements validation
Requirements reviews AP
Prototyping AP
Model validation C
Acceptance tests AP
7. Practical Considerations
Iterative nature of requirements process C
Change management AP
Requirements attributes C
Requirements tracing AP
Measuring requirements AP

5 K: Knowledge, C: Comprehension, AP: Application, AN:
Analysis, E: Evaluation, S: Synthesis

SOFTWARE DESIGN

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software Design Fundamentals
General design concepts C
Context of software design C
Software design process C
Enabling techniques AN
2. Key issues in software design
Concurrency AP
Control and handling of events AP
Distribution of components AP
Error and exception handling and fault tolerance AP
Interaction and presentation AP
Data persistence AP
3. Software structure and architecture
Architectural structures and viewpoints AP
Architectural styles (macroarchictural patterns) AN
Design patterns (microarchitectural patterns) AN
Families of programs and frameworks C
4. Software design quality analysis and evaluation
Quality attributes C
Quality analysis and evaluation techniques AN
Measures C
5. Software design notations
Structural descriptions (static) AP
Behavioral descriptions (dynamic) AP
6. Software design strategies and methods
General strategies AN
Function-oriented (structured) design AP
Object-oriented design AN
Data-structure centered design C
Component-based design (CBD) C
Other methods C

 D-4 © IEEE – 2004 Version

SOFTWARE CONSTRUCTION

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software construction fundamentals
Minimizing complexity AN
Anticipating change AN
Constructing for verification AN
Standards in construction AP
2. Managing construction
Construction methods C
Construction planning AP
Construction measurement AP
3. Practical considerations
Construction design AN
Construction languages AP
Coding AN
Construction testing AP
Construction quality AN
Integration AP

SOFTWARE TESTING

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software testing fundamentals
Testing-related terminology C
Key issues AP
Relationships of testing to other activities C
2. Test levels
The target of the tests AP
Objectives of testing AP
3. Test techniques
Based on tester’s intuition and experience AP
Specification-based AP
Code-based AP
Fault-based AP
Usage-based AP
Based on nature of application AP
Selecting and combining techniques AP
4. Test related measures
Evaluation of the program under test AN
Evaluation of the tests performed AN
5. Test process
Management concerns C
Test activities AP

© IEEE – 2004 Version D-5

SOFTWARE MAINTENANCE

T
ax

on
om

y
L

ev
el

1. Software maintenance fundamentals

Definitions and terminology C
Nature of maintenance C
Need for maintenance C
Majority of maintenance costs C
Evolution of software C
Categories of maintenance AP

2. Key issues in software maintenance

Technical
 Limited Understanding C
 Testing AP
 Impact Analysis AN
 Maintainability AN

Management issues
 Alignment with organizational issues C
 Staffing C
 Process issues C
 Organizational C

Maintenance cost estimation
 Cost estimation AP
 Parametric models C
 Experience AP
Software maintenance measurement AP

3. Maintenance process

Maintenance process models C
Maintenance activities

 Unique Activities AP
 Supporting Activities AP

4. Techniques for maintenance

Program comprehension AN
Re-engineering C
Reverse engineering C

SOFTWARE CONFIGURATION MANAGEMENT

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Management of the SCM Process
Organizational context for SCM C
Constraints and guidance for SCM C
Planning for SCM
 SCM organization and responsibilities AP

 SCM resources and schedules AP
 Tool selection and implementation AP
 Vendor/Subcontractor control C
 Interface control C
Software configuration management plan C
Surveillance of software configuration management
 SCM measures and measurement AP
 In-Process audits of SCM C
2. Software Configuration Identification
Identifying items to be controlled
 Software configuration AP
 Software configuration items AP
 Software configuration item relationships AP
 Software versions AP
 Baseline AP
 Acquiring software configuration items AP

Software library C
3. Software Configuration Control
Requesting, evaluating and approving software
changes

 Software configuration control board AP
 Software change request process AP

Implementing software changes AP
Deviations & waivers C
4. Software Configuration Status Accounting
Software configuration status information C
Software configuration status reporting AP
5. Software Configuration Auditing
Software functional configuration audit C
Software physical configuration audit C
In-Process audits of a software baseline C
6. Software Release Management and Delivery
Software building AP
Software release management C

 D-6 © IEEE – 2004 Version

SOFTWARE ENGINEERING MANAGEMENT

T
ax

on
om

y
L

ev
el

1. Initiation and scope definition

Determination and negotiation of
requirements AP

Feasibility analysis AP
Process for requirements
review/revision C

2. Software project planning

Process planning C
Determine deliverables AP
Effort, schedule and cost estimation AP
Resource allocation AP
Risk management AP
Quality management AP
Plan management C

3. Software project enactment

Implementation of plans AP
Supplier contract management C
Implementation of measurement process AP
Monitor process AN
Control process AP
Reporting AP

4. Review and evaluation

Determining satisfaction of
requirements AP

Reviewing and evaluating performance AP

5. Closure

Determining closure AP
Closure activities AP

6. Software Engineering Measurement

Establish and sustain measurement
commitment C

Plan the measurement process C
Perform the measurement process C
Evaluate measurement C

SOFTWARE ENGINEERING PROCESS

T
ax

on
om

y
L

ev
el

1. Process implementation and change

Process infrastructure
 Software engineering process group C
 Experience factory C

Activities AP
Models for process implementation and
change K

Practical considerations C

2. Process definition

Life cycle models AP
Software life cycle processes C
Notations for process definitions C
Process adaptation C
Automation C

3. Process assessment

Process assessment models C
Process assessment methods C

4. Product and process measurement

Software process measurement AP
Software product measurement AP

 Size measurement AP
 Structure measurement AP
 Quality measurement AP

Quality of measurement results AN
Software information models

 Model building AP
 Model implementation AP

Measurement techniques
 Analytic techniques AP
 Benchmarking techniques C

© IEEE – 2004 Version D-7

SOFTWARE ENGINEERING TOOLS AND METHODS

Breakdown of Topics

T
ax

on
om

y
L

ev
el

1. Software tools

Software requirements tools AP
Software design tools AP
Software construction tools AP
Software testing tools AP
Software maintenance tools AP
Software engineering process tools AP
Software quality tools AP
Software configuration management tools AP
Software engineering management tools AP
Miscellaneous tool issues AP

2. Software engineering methods

Heuristic methods AP
Formal methods and notations C
Prototyping methods AP
Miscellaneous method issues C

SOFTWARE QUALITY

T
ax

on
om

y
L

ev
el

1. Software quality fundamentals

Software engineering culture and
ethics AN

Value and costs of quality AN
Quality models and characteristics
 Software process quality AN
 Software product quality AN
Quality improvement AP

2. Software quality management processes

Software quality assurance AP
Verification and validation AP
Reviews and audits
 Inspections AP
 Peer reviews AP
 Walkthroughs AP
 Testing AP
 Audits C

3. Practical considerations

Application quality requirements
 Criticality of systems C
 Dependability C
 Integrity levels of software C
Defect characterization AP
Software quality management
techniques

 Static techniques AP
 People-intensive techniques AP
 Analytic techniques AP
 Dynamic techniques AP
Software quality measurement AP

 D-8 © IEEE – 2004 Version

