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ABSTRACT

Based on the Elastic Continuum Theory[1], a new model for the electron structure and its
electrostatic wave field,  has been introduced in this paper.  Obtained as a spherically symmetric
solution of elastic equilibrium equations, the electron and positron type particles are found to
consist of an oscillating strain wave core surrounded by radial strain wave field.  The concept of
charge is related to the direction of propagation and intensity of radial strain wave field.  The
Coulomb interaction between two charge particles is computed through superposition of their
strain wave fields and Coulomb law verified for separation distances greater than core diameter of
the electron.  The electromagnetic interaction is thus shown to be not mediated by any real or
virtual particles.

Keywords.    Electron Structure; Core; Field energy; Strain wave field; Coulomb interaction.

Action at a distance :   ‘That one body may act upon another at a distance through a
vacuum, without the mediation of anything else, is to me so great an
absurdity that I believe no man, who has in philosophical matters a
competent faculty for thinking, can ever fall into.’

                                                                                                                      Isaac  Newton
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1.  INTRODUCTION

1.1    Out of thousands of elementary particles known so far, the electron was the first
to be detected, most actively researched and studied, used in tremendous applications  and
most well known of all particles.  As a part of our understanding about the electron, we
have accurately determined its charge, mass, spin, angular momentum, magnetic moment
and interaction characteristics.  Apparently, everything that is worth knowing about the
electron is already known.  Yet, most scientists still regard the electron as a point charge, a
point mass and a structure-less elementary particle.   We are still  not in a position  to
visualize the shape, size and inner structural details  of  the electron.  We are still unable  to
pin point the structural peculiarity of the electron which endows it with the unique property
of charge and the spin.

1.2    Ideally speaking, the mental visualization of  a physical situation must precede the
use of mathematical techniques for its logical  analysis.   The analytical techniques
employed might be highly abstract, but the end result must always come within the
purview of mental grasp.  However, we can not develop a very clear and vivid mental
picture of a physical situation  as long as the fundamental concepts associated with that
situation are themselves vague and hazy.  For instance, in the present case  we can’t
develop a very clear mental picture of Coulomb interaction between two electrons as long
as the fundamental concepts of  electron structure, its charge property, its electrostatic field
etc. are themselves vague and unclear.  Hence,  based on  the Elastic Continuum Theory[1]

we will first examine some of the spherically symmetric solutions of equilibrium equations
of elasticity in the Continuum  to explore the  structure of  electron  and  its electrostatic
wave field. With this framework, we shall then develop a model to compute the interaction
energy from the superposition of  effective strain wave fields of two electrons separated by
a finite distance.

2.  ELECTRON   STRUCTURE

2.1     Electrostatic  Wave  Field.      It is known that electrostatic field influence
propagates or spreads out from the source particle at the velocity of light.  It is also
believed that the electromagnetic interaction is mediated through continuous exchange of
‘virtual photons’ between the charge particles.   Even a ‘virtual photon’ field is often
assumed to be surrounding all charge particles to account for the simultaneous Coulomb
interaction among infinitely many such particles. Hence the electrostatic field seems to be
inherently dynamic instead of  being static in character.  That is, instead of being a function
f(R) of relative position vector  R alone, it may have to depend on time as well, so that the
field influence appears to be spreading  at velocity of light.  Therefore we may characterize

the electrostatic wave field by a function of the type f(R).exp(L� κ(R-ct)),   where�L� =(-1)½,
representing a sort of spherical phase wave of amplitude f(R)  propagating  radially  at
velocity of light c. Here  κ represents the wave number. This  hazy  picture  of  the
electrostatic field is further developed by using Elastic Continuum Theory (ECT).

2.2     As per ECT, our familiar space-time continuum, with characteristic properties  of
permittivity ε0  and permeability  µ0,  behaves as  a perfect isotropic Elastic Continuum
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with elastic constant  1/ε0  and inertial constant  µ0 . The equilibrium equations of elasticity
written in terms of displacement vector U in this Continuum turn out to be identical to the
vector wave equation in electromagnetic theory. These equations in vector and tensor form
are given below,

        ∂2U/∂x2  + ∂2U/∂y2  + ∂2U/∂z2  =  ∇2U   = (1/c2) ∂2U/∂t2                  ………...(1)

        g11ui
,11 +  g22ui

,22 +  g33ui
,33   =  gjjui

,jj  =  (1/c2) ∂2ui/∂t2                       ……….. (2)

where the displacement vector components  ui are functions of space & time coordinates
referred to a coordinate system (y1, y2, y3). The following correlation exists between
displacement vector field U or the corresponding temporal and spatial strain components
and the electromagnetic field vectors  E and B ,

 E = - (1/ε0).(1/c).∂U/∂t         &         B =    (1/c).(1/ε0). (∇×U)         …………….  (3)

That means, the electromagnetic field in the so called ‘vacuum’ comes out to be a  dynamic
stress-strain field  in the corresponding Elastic Continuum.  As per the ECT, one of the
spherically symmetric solutions of equilibrium equations (2), represent the electron and
positron strain bubbles consisting of a small ‘core’ of standing strain wave oscillations,
surrounded by propagating phase wave type ‘strain wave field’ or the ‘electrostatic field’.

2.3     Spherically Symmetric Solution of Equilibrium  Equation.    The complete
electron structure may be seen as a special solution of  equilibrium equations (2) in
spherical polar coordinate system (y1=R, y2=θ, y3=φ).   If  we write equation (2)  in terms of
physical components uR, uθ and  uφ of displacement vector U in spherical coordinate
system, we get a set of three simultaneous partial differential equations, the general
solution of which is most intricate due to mutual  coupling of these displacement
components.  One of the lowest order solutions of these equations is obtained when we
restrict  uθ=0,  uφ  to be independent of  φ coordinate  and  uR to be independent of both  θ
and  φ coordinates.  The resulting  equations reduce to
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2.4    The  Core.     The oscillating wave type solution  of  the  above equations (4) and
(5) with a spherically symmetric boundary surface, is given for positron (+ve)  and electron
(-ve) cores  by

                 uR = ± Ae.eκ.G1(X). Cos(κct);                                          …………….. (6A)

                uφ =�± Ae.eκ.G1(X). Sin(θ). Sin(κct);                                …………….. (6B)

 where  G1(X) = (cos X - sin X / X)/X  = - (π/2x)½. J3/2(X)        and     X = κ r .

Another similar solution which has a singularity at the origin and hence not admissible for
the electron/positron core is given by
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             uR = Ae.eκ.H1(X). Sin(κct);                                                    …………….. (7A)
             uφ = -Ae.eκ.H1(X). Sinθ. Cos(κct);                                         …………….. (7B)

where          H1(X) = (sin X + cos X / X)/X = -(π/2x)½. J-3/2(X)
                    X = κ R   ;      b1 ≤ X ≤ ∞     with   J-1-½(b1) = 0       &    b1 = 2.7984

2.5    The  Field.    However, if the above two solutions are combined together  we  get
an  oscillating core  given by  equations  (6)  for   0≤ X ≤ b1  and a propagating phase wave
solution for the electron  field  for   X ≥ b1  given by,

uR = - Ae.eκ.{G1(X). Cos(κct)-H1(X). Sin(κct)} = - Ae.eκ.G1(X,ψ−)
    ≈ - (Ae.eκ/X) .Cos(ψ−)                                                              .....................  (8A)

uφ =�- Ae.eκ.{G1(X).Sin(κct)+ H1(X). Cos(κct)}. Sin(θ) = -Ae.eκ.H1(X,ψ−). Sin(θ)
     ≈ -(Ae.eκ/X). Sin(θ).Sin(ψ−)                                                     ...................... (8B)

uθ = 0 ;              where   ψ − =  X+κct            G1(X,ψ −) = [Cos(ψ−)-Sin(ψ−)/X]/X ;
                         and  H1(X,ψ −) =[Sin(ψ−)+Cos(ψ−)/X]/X .

This strain wave field consisting of phase waves propagating inwards from infinity to the
core boundary, at the speed of  light ‘c’,  represents the electrostatic field of electron type
charge particle.  Another similar solution consisting of phase waves propagating outwards
from  the core boundary to infinity, at the speed of light ‘c’, representing the electrostatic
field of positron type charge particle will be given by,

uR = + Ae.eκ.{G1(X). Cos(κct)+H1(X). Sin(κct)} =  Ae.eκ.G1(X,ψ+)
    ≈  (Ae.eκ/X) .Cos(ψ+)                                                                 .....................  (9A)

uφ =�+ Ae.eκ.{G1(X).Sin(κct)- H1(X). Cos(κct)}. Sin(θ) = -Ae.eκ.H1(X,ψ+). Sin(θ)
     ≈ -(Ae.eκ/X). Sin(θ).Sin(ψ+)                                                      ...................... (9B)

uθ = 0 ;              where   ψ + =  X-κct            G1(X,ψ +) = [Cos(ψ+)-Sin(ψ+)/X]/X ;
                          and  H1(X,ψ +) =[Sin(ψ+)+Cos(ψ+)/X]/X .

2.6    Core  &  Field  Strain  Energy.   The strain energy of  the ‘core’ and ‘strain
wave field’ can now be computed from the corresponding strain components. Here the
wave number κ is of the order of  1015 m-1,  Ae is a dimensionless constant,  and  ‘e’  the
magnitude of electron charge.  The solutions  uR  and  uφ  are  in  phase quadrature in the
core as well as in the field.  The elements of  strain tensor Si

j can be computed by taking
covariant space and time derivatives of displacement components ui  for spatial and
temporal strain terms. The mixed tensor components  Si

j can be converted to the
corresponding physical components by using the relation,

                  S g g
y

y
ii j

i jj
j

i

= .S .                       (No summation over i or j )    ……….. (10)

where  gij  are the usual metric tensor components for the reference coordinate system. The
physical strain components of S and the corresponding strain energy density W can
therefore be directly computed from the following relations,
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W = (1/2ε0). S
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2.7      Since in the strain wave field, surfaces of constant phase propagate outwards or
inwards at the velocity of light ‘c’, without any associated transport of strain energy, we
may also term this wave field as phase wave field.   However, there is a special feature in
this phase wave field.   Whereas in the standing  or  oscillating wave solutions the temporal
and spatial strain components are in quadrature;  in propagating phase wave field, they are
in phase opposition  for Cos(ψ±)  &  Sin(ψ±) terms and get canceled out.  Hence the energy
density in the phase wave field will be governed only by the maximum amplitude of these
phase waves or more precisely by  their  rms.  values.   The physical strain components for
the electron core, computed from relations (6) and (11) are listed below in terms of
functions G1 and H1 defined above.
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1  ;                
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The strain components for the positron core will be just the same as given above but with
different sign.  In the strain wave field of the electron represented by equations (8), the
simplified strain components for large  X,  where 1/X2  terms could be neglected in
comparison to 1/X terms, are given by
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For a stationary particle the amplitude of these phase waves at any point will remain
constant with time.

2.8    The strain energy density W, calculated by using equations (12) to (14),  is given
below as Wc for the core and Wf for the field,
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In Wc above, the coefficients of  Cos2(κct)  and  Sin2(κct) terms are not exactly equal,
which indicates energy density fluctuations within the core.  Possibly these minor
fluctuations in the energy density as well as the total energy content in the core are
accommodated through slight fluctuations in the core boundary during the period of each
oscillation cycle.  However, for the overall total energy computation, we may take the time
averaged value of the energy density  as,
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 and     Wf   =  (1/4ε0). Ae
2.e2.κ4[ 5/X4 ]                                                       .............(17B)

The total energy of the electron  is given as a sum of the core and field energies obtained
from the volume integral of  Wc  over the core region (0≤ X ≤ b1) and  Wf  over the field
region (X ≥ b1), as

 Etotal  =  Ec + Ef  = (1/ε0).π. Ae
2.e2.κ.[ 3.2533 + 1.7867 ]

                            = (5.04/ε0).π. Ae
2.e2.κ.              =   me.c

2                   .....................(18)

This shows that almost 65 percent of the total mass energy of the electron is contained in
its core and remaining 35 percent in its field.  In the above relation (18) where me is the
known mass of the electron, there are two unknown parameters Ae and  κ.  For unique
determination of these parameters we need one more relation which will be obtained from
the Coulomb interaction model.

2.9    Intrinsic Spin  Effect.         As already indicated above, the only difference in the
wave fields of  positron (ψ+) and electron (ψ-) is in the opposite directions of propagation
of their phase waves.  In both cases, as seen from equations (6) to (9), the displacement
components  uR and  uφ are in quadrature to each other.  If we denote Z-axis (θ = 0) as the
axis of the electron or positron strain bubble, then all planes perpendicular to this axis may
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be referred as transverse planes. It can be easily seen from phase quadrature of
displacement components that the resultant displacement vector in any transverse plane
keeps continuously rotating with constant angular velocity ω=κc whereas its magnitude
remains constant or time invariant at any space point.  Particularly in the principal
transverse plane given by  θ = π/2, the magnitude of resultant displacement vector U in the
wave field remains constant with  |U| = √2 . (Ae.e / R).  Throughout this principal
transverse plane, the constant magnitude vector U keeps rotating or ‘spinning’ with
constant angular velocity ω=κc .  Direction of this ‘spin’ of the displacement vector is
obviously along the axis of the strain bubble and remains constant with time. This constant
‘intrinsic spin’ of the displacement vector  found in the core as well as strain wave field of
the electron/positron type strain bubbles may be identified with the conventional notion of
‘Spin’ in these particles.  The phenomenon of this ‘intrinsic spin’ is a very unique feature
in the ultra-microscopic realm of  Nature.  Thus we can see from equations (6) to (9)  that
in normal orientation  a positron will have a  +ve direction of intrinsic spin, along +ve  Z
axis, and radially outward propagating phase wave field identified with +ve charge.  If the
axis of the positron is reversed, direction of its spin will become -ve  but the phase waves
will still be propagating radially outwards.  Similarly  for  an electron, in  any orientation of
intrinsic spin,  its phase waves  will  keep  propagating  radially inwards corresponding to
conventional  -ve charge.

3.  COULOMB  INTERACTION

3.1     Effective ‘rms.’ Valued  Strain Field  Model.     When the cores of two
interacting strain bubbles get overlapped or superposed, their resulting strong interaction
can be computed in a straight forward manner.  Their actual strain components, referred to
a common coordinate system, are directly superposed to compute the resulting interaction
energy over the common overlapped region.  However, computation of the interaction
energy in the common overlapped region of strain wave fields of two charge particles,
appears to be a complex problem due to the presence of phase waves.  The intrinsic
characteristics of these phase waves have not yet been studied.  Even though these phase
waves do not transport strain energy,  yet  they  appear to  display  certain ‘wave
momentum’ effects.  In a way  these  strain waves  could be  compared  with sinusoidal AC
voltages. Because of the inherent phase opposition of strain components in the cores of
positron and electron, leading to the opposite directions of propagation of their phase
waves,  the strain wave fields of electron and positron will show inherent opposition such
that when superposed they will tend to cancel out each other. The field energy density  in
each case  is  governed by the ‘rms.’ values of the amplitudes of their respective phase
waves.  We might therefore,  adopt the rms. value concept  for  the magnitude of the
effective strain components in the field.

3.2     Further, going by the analogy of electrostatic field lines  and  considering  the
fact that Maxwell’s electric displacement  vector  D  and electric field  E  are  proportional
to   -∂U/∂t  (equation 3), we might assign +ve sign to the effective strain components of  ψ+

wave field (-∂ψ+/∂t  is +ve) and -ve sign to the effective strain components of  ψ- wave
field (-∂ψ-/∂t  is -ve).  Therefore, for the purpose of developing  a  simplified model  of
Coulomb interactions we consider only the rms. valued amplitudes of the respective strain
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components and assign them +ve or -ve signs depending on whether the phase waves are
propagating outwards from or inwards to the source particle.  Corresponding to equations
(14), we may specifically write out the effective strain components for electrostatic wave
field of a positron  as,
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The corresponding effective strain components for an electron field will have opposite
signs to the ones given above.

3.3     To compute Coulomb interaction between two charge particles, [1,2], we have to
superpose the effective strain tensor components  Si

j of their respective wave fields  in  a
common coordinate system and then compute the total energy of their combined fields.
This total field energy may be more or less than the sum of their isolated field energies.
The difference is termed interaction energy. [ Eint = Esup - ( E1 + E2 )]. For two similar
charges the respective strain components get added up and since the energy density is
proportional to the sum of  squares of strain components,  total field energy will be more
than the sum of their separate field energies. Conventionally the interaction energy is
termed +ve in this case. Similarly for two dissimilar charges the  combined field energy
will reduce and the interaction energy will be termed  -ve .  The negative interaction energy
implies that due to the superposition of fields, part of the initial total field energy of the
system of interacting charges is released by the system and may get transformed to some
other form.  As a limiting case when the separation between the two charge particles is
reduced to zero, their interaction energy will not become infinity but will be limited to the
sum of their initial mass energies, both for +ve and -ve interaction.

3.4    Interaction  Computations.     Actual computation of interaction energy of two
charges, separated by distance ‘R’ say, involves transformation of effective field strain
tensor components from one coordinate system to another, for effecting the superposition
in a common coordinate system.  As an illustration let us compute the interaction energy of
two positrons located at points O and A with their axes collinear and separated by distance
‘R’ along polar axis OZ  (Fig. 1).  Let  any space point P  be referred to  two spherical polar
coordinate systems, one (yi) centered at point O and the other (xi) centered at point A such
that

                                 y1 ≡ r   ;           y2 ≡ θ     ;           y3 ≡ φ                    .............. (20)

            and                x1 ≡ ρ   ;           x2 ≡ δ     ;           x3 ≡ φ                    .............. (21)
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Let the components of any strain tensor referred to coordinate system (yi) be represented by
the symbols  Sij  and those referred to coordinate system (xi) be represented by the symbols
∈i

j .  Further, we may designate the field strain components due to the positron located at
point O  and referred to system  (yi)  as  Sij(O)  and those due to the positron located at
point A  and referred to system  (yi)  as Sij(A).  The superposed or combined strain
components may be designated as

                            Sij(C)  =  Si
j(O)  +   Si

j(A)                                      ……….........… (22)

Figure 1.

3.5  Transformation  of  Strain Components.      However, before effecting the
above superposition we have to first transform the mixed strain tensor components  ∈i

j(A)
to Si

j(A) and convert them to corresponding physical components.  The transformation of
components  ∈i

j(A)  in  (xi)  coordinate system to Si
j(A) in  (yi) coordinate system is carried

out through the relation

                                ( )S A
y
x

x
yj

i
i

j= ∈∂
∂

∂
∂α β

α
β

. .                (summation over  α  and  β)  ……..(23)

For  this  transformation  we need the  coordinate transformation  relations  of  the  type
yi = f i(xj)   and   xi = Fi(yj)   between two coordinate systems and the Jacobean matrices of
their partial derivatives  as under,

               r2 = R2 + ρ2 + 2 R ρ cos(δ)                                 …………………… (24A)
                   ρ2 = r2 + R2 - 2 R r cos(θ)                                     ……………………(24B)
                   r sin(θ) = ρ sin(δ)                                                 …………………….(24C)
                   r cos(θ) - R = ρ cos(δ)                                         …………………….(24D)
                   tan(δ) = r.sin(θ)/(r.cos(θ)-R)                                 ……………………(24E)

                                                                                        P
                                  Z
                                                        ρ

                                         δ
                                   A                                                           X

                                                 r
                   R                    θ

                                O                                                           Y
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The Jacobean matrices of their partial derivatives obtained from above relations are,
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∂
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And
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∂
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3.6    From equations (19) the effective physical strain components due to the positron
located at point O and referred to coordinate system (yi)  are given as,

 Sr
r(O) =

1

2 2
.

.A e

r
e  = Sθ

θ(O) = Sφ
φ(O) ;      Sr

φ(O) = 
( )1

2 2
.

. .A e Sin

r
e θ

 = Sφ
r(O)

       Sθ
φ(O) = 

( )1

2 2
.

. .A e Cos

r
e θ

 = Sφ
θ(O) ;                                                  ........……(27)

Similarly the effective physical strain components due to the positron located at point A
and referred to coordinate system (xi)  are given as,

  ∈ρ
ρ(A) = 

1

2 2
.

.A ee

ρ
 = ∈δ

δ(A) = ∈φ
φ(A) ;      ∈ρ

φ(A) = 
( )1

2 2
.

. .A e Sine δ
ρ

 = ∈φ
ρ(A)

   ∈δ
φ(A) = 

( )1

2 2
.

. .A e Cose δ
ρ

 = ∈φ
δ(A) ;                                                    ..........……(28)

Before using equation (23) for transferring the strain components (28) from coordinate
system (xi) to the coordinate system (yi),  we have to  first  convert  these  physical
components to the corresponding mixed tensor ∈i

j(A) by using the relation (10).  After thus
obtaining ∈i

j(A), we use equation (23) to transform ∈i
j(A) to Si

j(A).  The mixed tensor
components Sij(A) thus obtained are again converted to the corresponding physical
components by using equation (10) in coordinate system (yi) to  finally obtain



11

(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

      Sr
r(A) = 

1

2 2
.

.A ee

ρ
 = Sθ

θ(A) = Sφ
φ(A) ;           Srφ(A) = 

( )1

2 2
.

. .A e Sine δ
ρ

 = Sφ
r(A)

      Sθ
φ(A) = 

( )1

2 2
.

. .A e Cose δ
ρ

 = Sφ
θ(A) ;                                                 ..........……(29)

3.7   Interaction  Energy  Density.    At any point P, the strain field energy density
due to the positrons located at points  O  &  A  is obtained from equation (12)  as,

      WO = 
1

2 0

2

.
. ( )

ε
S O

y

y
j

i

∑   ;         WA = 
1

2 0

2

.
. ( )

ε
S A

y

y
j

i

∑                   ………………(30)

However, due to the superposition effect, the energy density of the combined field of both
positrons located at points  O  and  A  is given by,

            WC = 
1

2 0

2

.
. ( ) ( )

ε
S O S A

y

y

y

y
j

i

j

i

+∑                                             ………………..(31)

Therefore the interaction energy density  Wint will be given by,

            Wint = WC - WO - WA  [ ]= ∑1

0ε
. ( ).S ( )S O A

y

y

y

y
j

i

j

i

                     ………………..(32)

This interaction energy density can now be computed from summation of the product of
corresponding physical strain components given by equations (27) and (29), which after a
little simplification comes out to be,

                           
( )

W
A e

r
e

int

.
.

.
=











2

0
2 22

5

ε ρ
                                    …………………(33)

The total interaction energy Eint can now be obtained from volume integral of  Wint  over
the entire field of the two interacting charges.

3.8     On the other hand if we compute the interaction between a positron and an
electron located at points O and A respectively, all the effective strain components given
by equations (28) and (29) will be of opposite sign thereby attaching a negative sign to the
Wint of equation (33).  That is,  the interaction energy  Eint  of two opposite charges will be
negative.  For  R > 0, the magnitude of Eint will be less than twice the field strain energy Ef

of one charge and  residual field strain energy of the combined field EC will be greater than
zero. Ordinary bulk matter is considered electrically neutral.  However,  since  all  negative
charges are not completely superposed over positive charges, residual field strain energy EC

of the bulk matter will be finite and greater than zero.  This residual field energy might
explain the origin of gravitational phenomenon in bulk matter.

3.9   Total Interaction  Energy     Corresponding to the field interaction energy
density  Wint  given by equation (33),  the total interaction energy  Eint  can be computed by
taking volume integral of  Wint over the entire field of the interacting positrons  as,

              E W r dr d d
r

int int . .sin . .=










=

∞

==
∫∫∫ 2

000

2

θ θ φ
θ

π

φ

π

                                     …………….. (34)
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Introducing a dimensionless parameter   y = r/R   in equations  (33),  (34)  and  (24B)    we
get,

E R W y dy d
y

int int. . . .sin . .=
=

∞

=
∫∫2 3 2

00

π θ θ
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∫
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A e
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  = 5
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A e

R
e                                                                         ………………(35)

This verifies the Coulomb interaction law between two positrons as also between two
electrons. Similarly the interaction energy between an electron and a positron can be shown
to be given by equation (35) but with a negative sign.  Mutual  force between two charges
(electrons or positrons) is given by the negative derivative of equation (35) with respect to
relative separation R between them.

4.  SALIENT  PARAMETERS  OF  THE  ELECTRON

 4.1   Core  Size  and  Oscillation  Frequency.    Comparing the interaction energy
given by equation (35) with the Coulomb interaction energy or the so called Coulomb
potential energy of  e2/(4πε0R)  we can compute the dimensionless constant factor ‘Ae’,
which works out to about  (1/31.21) .  Substituting this value of Ae in the total energy
relation  (18), with known mass of the electron me = 9.109×10-31 kg,  we obtain the value
of  κ to be equal to  1.73767×1015 m-1.   Finally, from the relation  x = κ.rc = b1 for the core
boundary, the electron and positron core radii are found to be  rc = 1.61 × 10-15 m.  Beyond
this core boundary of  1.61 f  radius, the strain wave field of the electron extends to infinity
and accommodates about 35 percent of its total mass energy. The characteristic frequency
of oscillations of the electron/positron core as well as their wave fields, is given by
νe = κ.c/2π = 8.291×1022 Hz.  This frequency plays a unique role in all charged particle
interactions.  The electron/positron type strain bubbles will be able to interact only with
those stable/unstable strain bubbles, whose characteristic oscillation frequency matches
with  νe .  That means the nucleons and all other charged particles must also be oscillating
with this characteristic frequency νe .

4.2   Moment  of  Inertia  of  the  Electron  Core.     As pointed out above, about
5.88×10-31 kg mass of  electron is contained in the core region and about 3.229×10-31 kg of
its mass is spread out in the radial wave field.  As an obvious extension of the notion of
mass-energy equivalence, we can associate the property of inertia to the total strain energy
content as well as the strain energy density in any strain bubble.  The inertial property of
electron field energy density may have very important consequences.  To begin with, we
can easily calculate the moment of inertia  Iec of the electron core about the Z-axis, by using
the mass density (Wc/c

2) from equation (17A), which works out to 5.98×10-61 kg m2.
Similarly, if we attempt to work out the moment of inertia  for the electron mass spread out
in its field, it tends to infinity.
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4.3   Mechanical  Spin  &  Magnetic  moment  of  Electron.      The electron core
with its finite mass and moment of inertia, can be easily set in translational or rotational
motion through various interactions.  However, due to the inertial property, the strain field
energy will tend to lag behind the moving core.  This inertial lag of the ‘field’ is generally
visualized for the translational motion as a consequence of  finite velocity  ‘c’ of spread of
‘electromagnetic field’ and gives rise to the well known magnetic field around charge
particles in motion.  But in the case of rotational motion of the  electron core induced by
certain interactions, the surrounding radial strain wave field will tend to lag behind due to
inertia or equivalently the finite velocity  ‘c’  of  phase waves.  The rotational motion of the
electron core about its axis may be termed as ‘mechanical spin’ of the electron.  Angular
lag of the rotating strain wave field, associated with the mechanical spin of the electron,
may give rise to the axial magnetic field and the already familiar magnetic moment of the
electron. The effective total moment of inertia of the core and the deformed field may also
be much higher.

5.  SUMMARY   &   CONCLUSION

5.1     Based  on the Elastic Continuum Theory, we have introduced a new model for
the structure of the electron core and its wave field derived from spherically symmetric
solutions of equilibrium equations of elasticity in the Continuum.  The mass of electron, as
of any other particle, is shown as the inertial equivalent of the total strain energy content
‘locked up’ in the oscillating strain bubble.  The charge of  positron / electron has been
associated with the direction of propagation, outwards or inwards, of the strain phase
waves linked with the oscillating core.  The ‘intrinsic spin’ of  electron is shown to be the
result of rotation of the displacement vector U  at a characteristic angular frequency κc.
The Coulomb interaction has been derived from the superposition of strain wave fields of
the interacting particles, resulting in overall change in combined field energy.  Salient
parameters of the electron have also been computed. The paper represents an important
application of  ECT.
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