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Upper-bound for the Pairwise Error Probability of
Space-time Codes in Physical Channel Scenarios

Tharaka A. Lamahewa, Rodney A. Kennedy and Thushara D. Abhayapala

Abstract— In this paper, we derive an upper-bound for the
pair-wise error probability of space-time codes which captures
the effects of the transmitter and the receiver antenna config-
urations (antenna separation and antenna geometry) and the
surrounding scattering distributions at the transmitter and the
receiver antenna arrays. This new upper-bound allows inves-
tigation of the individual effects of antenna configuration and
scattering environment parameters on the performance of space-
time codes. Using this upper-bound, we quantify the degree of
the effect of antenna configuration on the diversity advantage
given by a space-time code. Simulation results show that as the
number of antennas increase within a fixed aperture, the diversity
advantage of a space-time code is upper-limited by the size of
the antenna aperture.

Index Terms— Chernoff upper-bound, modal correlation,
MIMO system, non-isotropic scattering, space-time trellis code.

I. I NTRODUCTION

The Chernoff upper-bound on pairwise error probability
(PEP) over uncorrelated MIMO channels was originally de-
rived in [1], by Tarokh et al. Based upon this upper-bound,
design rules for space-time trellis codes were proposed.

Several approaches have been found in literature, where
the upper-bound for PEP is applied to correlated MIMO
channels, [2, 3]. However, with these approaches, the upper-
bound is constrained by one of the following: the correlation
is restricted to one end of the channel; antenna configuration
is restricted to uniform linear arrays; the scattering distribution
around the antenna aperture is confined to a particular scat-
tering distribution. In [4, 5], an upper-bound for the PEP is
derived considering correlations at both ends of the channel.
However the bound presented there does not allow investi-
gation of the individual effects of antenna spacing, antenna
placement and scattering environments on space-time codes.

In this paper, we present a generalized upper-bound for PEP
on correlated MIMO channels, where the bound can be applied
to any kind of antenna geometry and wide variety of scattering
distributions at the receiver and the transmitter antennas. We
discuss how this upper-bound deviates from the global upper-
bound derived byTarokh et alwith the introduction of space
(antenna separation and antenna placement) and surrounding
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scattering distributions. We quantify the number of antennas
that can be employed in a given antenna aperture, without
diminishing the diversity advantage of a space-time code, and
show it is limited by the size of the antenna aperture.

The following notations are used in this paper.[·]T , [·]∗ and
[·]† denote the transpose, complex conjugate and conjugate
transpose operations, respectively. The symbolsδ(·) and ⊗
denote the Dirac delta function and Matrix Kronecker product,
respectively. The matrixIn is then× n identity matrix.

II. SYSTEM MODEL

Consider a MIMO system consisting ofnT transmit an-
tennas andnR receive antennas. Data transmitted fromnT

transmit antennas are encoded by a space-time codeX, where
X is nT × L, L is the code length. Assuming quasi-static
fading, the signals received atnR receiver antennas duringL
symbol periods can be expressed in matrix form as

Y =
√

EsHX + N ,

where Es is the transmitted power per symbol at each
transmit antenna,H is the nR × nT zero-mean complex
valued channel gain matrix,N is the noise represented
by nR×L complex matrix in which entries are zero-mean
independent Gaussian distributed random variables with
varianceN0/2 per dimension andY is nR × L.

By taking into account physical aspects of scattering, the
channel matrixH can be decomposed into deterministic and
random parts as [6] [7]

H = JRHSJ†T , (1)

where JR and JT are deterministic andHS is a random
matrix with complex normal Gaussian distributed entries.
According to the channel model proposed in [6],Hs is
an i.i.d channel matrix, which has zero-mean unit variance
complex Gaussian entries, whileJR and JT are associated
to the receiver and transmitter antenna correlation matrices,
respectively. In [7],Hs represents the random non-isotropic
scattering environment, whileJR andJT represent the effect
of antenna geometries at the receiver and transmitter antenna
arrays, respectively. In the next section, we present the Cher-
noff upper-bound applied to correlated MIMO channels where
the channel matrixH has the decomposition (1).

III. C HERNOFFUPPERBOUND ON CORRELATED MIMO
CHANNELS

Assume that perfect channel state information (CSI) is avail-
able at the receiver and maximum likelihood (ML) detection
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is employed at the receiver. Assume that the codewordX was
transmitted, but the ML-decoder chooses another codewordX̂.
Then the PEP, conditioned on the channel, is upper bounded
by theChernoff bound[1]

P(X → X̂|h)≤ exp
(
− Es

4N0
d2

h(X, X̂)
)

, (2)

where d2
h(X, X̂) = h[InR

⊗ C∆]h†, C∆ = (X −
X̂)(X − X̂)

†
, h = (vec (HT ))T a row vector andH has

the decomposition given in (1). To compute the average PEP,
we average (2) over the joint distribution ofh. Assume that
h is a proper complex1 nT nR-dimensional Gaussian random
vector with mean0 and covariance matrixRM = E

{
h†h

}
,

then the pdf ofh is given by [8]

p(h) =
1

πnT nR det [RM ]
exp{−hR−1

M h†},

provided thatRM is non-singular. Then the average PEP is
bounded as follows

P(X → X̂)≤ 1
πnT nR det [RM ]

∫
exp{−hR−1h†}dh (3)

where R−1 = ( Es

4N0
InR ⊗ C∆ + R−1

M ). AssumeRM is
non-singular (positive definite), therefore the inverseR−1

M is
positive definite, since the inverse matrix of a positive definite
matrix is also positive definite [9, page 142]. Also note that
C∆ is Hermitian and it has positive eigenvalues (through code
construction, e.g. [1]), thereforeC∆ is positive definite, hence
InR ⊗C∆ is also positive definite. ThereforeR−1 is positive
definite and henceR is non-singular. Using the normalization
property of Gaussian pdf

1
πnT nR det [R]

∫
exp{−hR−1h†}dh = 1,

we can simplify (3) to

P(X → X̂)≤ det [R]
det [RM ]

=
1

det
[
R−1RM

] ,

or equivalently

P(X → X̂)≤ 1

det
[
InT nR

+ Es

4N0
RM [InR

⊗C∆]
] . (4)

Substituting (1) for H in h = (vec(HT ))T with
Kronecker product identity [9, page 180]vec(AXB) =
(BT ⊗A) vec (X), we may write

RM = E
{

h†h
}

= E
{

(J∗R ⊗ JT )h†ShS(JT
R ⊗ J†T )

}
,

where hS = (vec(HT
S ))T is a row vector. In the above

equation,JR and JT are deterministic matrices andhS is
random. Therefore we write

1To be proper complex, the mean of both the real and imaginary parts of
HS must be zero and also the cross-correlation between real and imaginary
parts ofHS must be zero.

RM = (J∗R ⊗ JT )RS(JT
R ⊗ J†T ), (5)

where RS = E
{

h†ShS

}
. For the channel model in [6],

since the elements ofHS are independent and identically
distributed, RS = I. For the channel model in [7],RS

represents the covariance matrix of the scattering environment,
which can either be correlated or uncorrelated, unlike theRS

in [6].
In this work, we are interested in investigating the impact

of antenna separation, antenna geometry and the scattering
environment on the Chernoff upper-bound. The channel model
given in [6] is restricted to a uniform linear array antenna
configuration and a finite number of scatterers around the
transmitter and receiver antenna arrays. However, the channel
model given in [7], is capable of capturing different antenna
geometries as well as various non-isotropic power distribu-
tions. Therefore, from here onwards, we use the 2-D spatial
channel model2 given in [7] to investigate the Chernoff upper-
bound.

A. Spatial Channel Model

In the channel model of [7],JT is the nT×(2MT +
1) transmitter antenna configuration matrix andJR is the
nR×(2MR + 1) receiver antenna configuration matrix, where
(2MT + 1) and (2MR + 1) are the number of effective
communication modes3 available at the transmitter and the
receiver regions, respectively. Note that,MT and MR are
determined by the size of the antenna aperture [10], but not
from the number of antennas encompassed in an antenna array,
and is given byM = dπer/λe, where d.e is the ceiling
operator,r is the minimum radius of the antenna aperture,
e ≈ 2.7183 and λ is the wave-length. Finally,HS is the
(2MR+1)×(2MT +1) random scattering matrix with(`,m)-
th element given by

{HS}`,m =
∫ π

0

∫ π

0

g(φ, ϕ)e−i(`−MR−1)ϕei(m−MT−1)φdϕdφ

(6)

for ` = 1, · · · , 2MR + 1, m = 1, · · · , 2MT + 1. Note that
{HS}`,m represents the complex gain of the scattering
channel between them-th mode of the transmitter region
and the`-th mode of the receiver region, whereg(φ, ϕ) is
the scattering gain function which gives the effective random
complex gain for signals leaving the transmitter aperture with
angle of departureφ and arriving at the receiver aperture with
angle of arrivalϕ.

B. Remarks on New Upper-bound

Following remarks can be made regarding the upper-bound
(4) and its association with the space-time trellis codes.

2 The 2-dimensional case is a special case of 3-dimensional case where all
the signals arrive from horizontal plane only.

3The set of modes form a basis of functions for representing a multipath
wave field.
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i). Antenna geometries, both at the transmitter and the
receiver regions are incorporated into the upper-bound through
matricesJT and JR in (5). Correlation effects due to the
surrounding non-isotropic scattering distributions are also cap-
tured by the inclusion of correlation matrixRS in (5). Upper-
bound (4) together with the channel model [7] allows us
to investigate the individual effects of antenna separation,
antenna placement and scattering environment parameters such
as mean angle-of-arrival (AOA) and angular spread on the
performance space-time codes. Note that upper-bounds found
in [4, 5] do not allow one to analyze the individual effects of
above mentioned deterministic and random factors on space-
time codes.

ii). Tarokh et. al., in [1], has used the PEP upper-bound
for uncorrelated channels to derive the design rules for
space-time trellis codes, under the hypothesis of high SNR.
In these design rules, the overall diversity advantage of the
system,dg, is associated with the rank of the code word
difference matrix times the number of receiver antennas, i.e.,
dg = nRrank(C∆). However using the new upper-bound,
it is possible to show that the quantitative degree to which
the diversity advantage of a space-time code is reduced due
to the size of the antenna aperture, antenna geometry and
scattering environment parameters.

At high SNRs, the upper-bound (4) becomes

P(X → X̂)≤ 1

det
[

Es

4N0
RM [InR

⊗C∆]
] , (7)

and the overall diversity advantage of the system is given
by the rank of RM [InR ⊗ C∆]. Assume that scattering
environment is uncorrelated4, i.e., RS = I(2MT +1)(2MR+1),
then

dg = min {rank(JT )rank(JR), nRrank(C∆)} .

If rank(JT )rank(JR) < nRrank(C∆), then the diversity
advantage provided by the space-time code is reduced by the
effect of transmitter and receiver antenna configuration matri-
ces. Note thatJT is nT×(2MT +1) andJR is nR×(2MR +
1), where MT and MR are determined by the size of the
transmitter and receiver regions [10], but not by the number of
antennas encompassed in the region. Therefore, it is possible to
have a situation where the number of effective modes available
in a region are less than the number of antennas used in
that region. Thus, in such a scenario, rank of the antenna
configuration matrix is less than the number of antennas which
are being used for transmission or reception, which will results
in reduction of diversity advantage from that system.

C. Kronecker Product Model as a Special Case

In some circumstances,RS can be expressed as Kronecker
product between two matrices [11]

RS = E
{

h†ShS

}
= F R ⊗ F T , (8)

4A similar analysis can be carried out for correlated scattering environments
as done in [4]

whereF R andF T can be considered as correlation matrices
observed at the receiver and the transmitter arrays, respec-
tively.

Substituting (8) into (5) gives

RM = (J∗R ⊗ JT )(F R ⊗ F T )(JT
R ⊗ J†T ), (9a)

= (J∗RF RJT
R)⊗ (JT F T J†T ), (9b)

where (9b) follows from (9a) by matrix identity [9, page 180]
(A ⊗ C)(B ⊗ D) = AB ⊗ CD, provided that the matrix
productsAB andCD exist. Substituting (9b) into (4) yields
the upper-bound

P(X → X̂)≤ 1

det
[
IQ + Es

4N0
(J∗RF RJT

R)⊗ (JT F T J†T C∆)
] ,

(10)

whereQ = nT nR.
In the next section, we provide the conditions pertaining to

factorization (8) for the channel model given in [7] and also
the precise definitions ofF R andF T . The upper-bound (10)
will be used later in Section IV-B to analyze the correlation
effects of scattering environment.

D. Transmitter and Receiver Modal Correlation

Using (6), we define the modal correlation between complex
scattering gains as

γ`,`′

m,m′ , E
{
{HS}`,m{HS}∗`′,m′

}
.

Assume that the scattering from one direction is independent
of that from another direction for both the receiver and the
transmitter apertures. Then the second order statistics of the
scattering gain functiong(φ, ϕ) can be defined as

E {g(φ, ϕ)g∗(φ′, ϕ′)} , G(φ, ϕ)δ(φ− φ′)δ(ϕ− ϕ′),

where G(φ, ϕ) = E
{|g(φ, ϕ)|2} with normalization∫ ∫

G(φ, ϕ)dϕdφ = 1. With the above assumption, the modal
correlation coefficient,γ`,`′

m,m′ can be simplified to

γ`,`′

m,m′ =
∫ ∫

G(φ, ϕ)e−i(`−`′)ϕei(m−m′)φdϕdφ.

Then the correlation betweeǹ-th and `′-th modes at the
receiver region due to them-th mode at the transmitter region
can be given as

γRx
`,`′ =

∫
PRx(ϕ)e−i(`−`′)ϕdϕ, (11)

where PRx(ϕ) =
∫

G(φ, ϕ)dφ is the normalized azimuth
power distribution of the scatterers surrounding the receiver
antenna region. Here we see that modal correlation at the
receiver is independent of the mode selected from transmitter
region. Similarly, we define the correlation betweenm-th and
m′-th modes at the transmitter as

γTx
m,m′ =

∫
PTx(φ)ei(m−m′)φdφ, (12)

where PTx(φ) =
∫

G(φ, ϕ)dϕ is the normalized azimuth
power distribution at the transmitter region. As for the receiver
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modal correlation, we can observe that modal correlation at the
transmitter is independent of the mode selected from receiver
region. Note that, azimuth power distributionsPRx(ϕ) and
PTx(φ) can be modeled using all common power distributions
such as Uniform, Gaussian, Laplacian, Von-Mises, etc.

Denoting thep-th column of scattering matrixHS asHS,p,
the (2MR +1)× (2MR +1) receiver modal correlation matrix
can be defined as

F R , E
{

HS,pH
†
S,p

}
,

where(`, `′)-th element ofF R is given by (11) above.
Similarly, the transmitter modal correlation matrix can be

written as

F T = E
{

H†
S,qHS,q

}
,

where HS,q is the q-th row of HS . (m,m′)-th element of
F T is given by (12) andF T is a (2MT + 1) × (2MT + 1)
matrix. The correlation between two distinct modal pairs can
be given as the product of corresponding modal correlation at
the transmitter and the modal correlation at the receiver, i.e.,

γ`,`′

m,m′ = γRx
`,`′γ

Tx
m,m′ . (13)

Facilitating (13), we may write the correlation matrix of the
scattering channelHS as the Kronecker product between the
receiver modal correlation matrix and the transmitter modal
correlation matrix,

RS = E
{

h†ShS

}
= F R ⊗ F T . (14)

Note that (13) holds only for class of scattering environments
where the power spectral density of modal correlation function
satisfies [11, 12]

G(φ, ϕ) = PTx(φ)PRx(ϕ). (15)

Note that, (15) is the necessary condition in which a channel
must satisfy in order to hold the upper-bound (10), that we
derived earlier in Section III-C.

IV. A N EXAMPLE

In this section, we compare the Chernoff bound derived
in [1] with the new upper-bound, which caters for antenna
spacing, antenna placement and surrounding scattering en-
vironments. As an example, we consider the QPSK 4-state
space-time trellis code given in [1] fornT = 2 antennas, which
is illustrated in Fig.1. The labelling of the trellis branches
follow [1]. The QPSK signal points are mapped to the edge
label symbols as shown in Fig. 1.

Assume that the code word associated to all-zero sequence
is transmitted, then the Chernoff upper-bound [1, Eq. (8)] for
the shortest error event path of lengthN = 2, as illustrated
by shading in Fig. 1, is found to be

P(X → X̂)≤
(

1 +
Es

N0

)−2nR

. (16)

00, 01, 02, 03

10, 11, 12, 13

20, 21, 22, 23

30, 31, 32, 33

0

1

2

3

Fig. 1. Trellis diagram for 4-state space-time code for QPSK constellation.

A. Effects of antenna placement

First we consider the effect of space (antenna separation
and placement) on the Chernoff upper-bound, whenRS =
I(2MT +1)(2MR+1). Two transmitter antennas are placed half
wavelength (λ/2) apart, which corresponds to2dπe0.5e+1 =
11 effective communication modes at the transmitter aperture
andrank(JT ) = 2. Here we provide the simulation results of
the upper-bound (4) for the shortest error event path of length
2 as shown in Fig. 1 for one, two, three and four receiver
antennas. For each antenna system, the global upper-bound
(16) is also plotted for comparison.

For the single receiver antenna case, we place the receiver
antenna at the centre of the circular aperture. For the other
three cases, receiver antennas are placed in a circular aperture
with radius 0.1λ, as shown in Fig. 2. Note thatr = 0.1λ
corresponds to2dπe0.1e + 1 = 3 effective communication
modes at the receiver aperture. With three and four receiver
antenna cases, we also compare the behavior of the new
upper-bound for different antenna geometries5 such as uniform
circular array (UCA) and uniform liner array (ULA).

rrr

R1

r

R3 R1

R3

r

R2

O

R4

OO

O

R2

R2

R2

R3

R3

R4

R1R2 R1 R1

O

(a) (b) (c)

(d) (e)

Fig. 2. Receiver antenna configurations: (a) 2-Rx antennas are placed on
x-axis, (b),(d) 3,4-Rx antennas are placed on an uniform circular array, (c),
(e) 3,4-Rx antennas are placed on an uniform linear array.

Simulation results for 1 and 2 receiver antennas are shown
in Fig. 3. With the single receiver antenna, the performance
deviation between the new upper-bound and the global upper-
bound is not significant. With two receiver antennas, the new
upper-bound is 1-dB away from the global upper-bound.
Fig. 3 shows that both the global upper-bound and the new

5The upper-bound developed here can be applied to any antenna configu-
ration.
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upper-bound have the same slope, which indicates that two
upper-bounds of the code have the same diversity advantage.
However, for the2×2 system a horizontal shift of the new
upper-bound from global upper-bound is observed, which
indicates a loss in coding gain due to the introduction of space.
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P
E

P
 b

ou
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2−Tx and 1−Rx − w/o ant conf
2−Tx and 1−Rx − with ant conf
2−Tx and 2−Rx − w/o ant conf
2−Tx and 2−Rx − with ant conf

2−Tx and 2−Rx 

2−Tx and 1−Rx 

Fig. 3. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas andnR receive antennas (nR = 1, 2).

Simulation results for 3 and 4 receiver antennas are shown in
Fig. 4. First we consider the three receiver antenna case. Three
receiver antennas are placed in a UCA and are also placed in
a ULA as depicted in Fig. 2(b) and Fig. 2(c), respectively. We
found thatrank(JR) = 3 for UCA andrank(JR) = 2(< nR)
for ULA. From Fig. 4 we observed that the performance devia-
tion between the new upper-bound and the global upper-bound
is significant for both UCA and ULA antenna configurations.
For UCA antenna configuration we only observe a coding gain
loss whereas for ULA antenna configuration we observe a
coding gain loss as well as a diversity gain loss from the space-
time code. Here the diversity loss from ULA is due to the loss
of rank of JR, whererank(JR) is less than the number of
receiver antennas employed in the receiver array.

Now we consider the four receiver antenna case, where
four receiver antennas are placed in a UCA and a ULA as
depicted in Fig. 2(d) and Fig. 2(e), respectively. Fig. 4 shows
that both antenna configurations reduce the diversity gain and
the coding gain given by the code (c.f. with the global upper-
bound). The expected diversity advantage from the 4-state
QPSK space-time trellis code with 2-transmit and 4-receive
antennas is 8. However, with the UCA antenna configuration,
the overall diversity advantage given by the code is reduced
to 6, as the rank ofJR is 3 and with the ULA antenna
configuration, it is reduced to 4 as the rank ofJR is 2. This
indicates that the diversity gain of a space-time coded system is
governed by the rank of the antenna configuration matrix and
the number of effective communication modes in the antenna
aperture (directly related to the radius of the antenna aperture).
In fact, the upper-limit for maximum number of antennas in
an antenna aperture, without loosing the diversity advantage
of the space-time code, is given by the number of effective
communication modes in that antenna aperture. However, if

more than two antennas are aligned in a line, then further
diversity reduction will be occurred (e.g. ULA case above).

Note that, performance deviations we see here are due to the
introduction of space into the analysis of MIMO system and
we have yet to consider the correlation effects of the scattering
environment. In the next section we discuss the correlation
effects of the scattering environment on the Chernoff upper-
bound.
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2−Tx and 4−Rx 
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Fig. 4. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas andnR receive antennas (nR = 3, 4).

B. Effects of Scattering Environment Parameters

We now investigate the effect of modal correlation on the
Chernoff upper-bound. For simplicity, we only consider the
modal correlation at the receiver region and assume that the
effective modes available at the transmitter are uncorrelated,
i.e. F Tx = I2MT +1. It was shown in [13] that, all azimuth
power distributions (non-isotropic distributions) give very sim-
ilar correlation values for a given angular spread. Therefore,
without loss of generality, we restrict our investigation to
Uniform limited azimuth power distribution (UL-APD) only.
For the UL-APD, the modal correlation coefficient at the
receiver is given by

γRx
l,l′ = sinc((l − l

′
)∆)e−i(l−l

′
)ϕ0 ,

whereϕ0 is the mean angle of arrival (AOA) and∆ is the
non-isotropic parameter of the power distribution, which is
related to the angular spreadσ. In this case,σ = ∆/

√
3.

Consider a MIMO system consisting of two transmitter
antennas and two receiver antennas. Antennas on each aperture
are placed(λ/2) apart and they are positioned on thex-
axis relative to their aperture origin. Aperture radiusλ/2
corresponds to 11 effective communication modes in each
aperture and the rank of each antenna configuration matrix is 2.
Therefore, this antenna configuration setup does not diminish
the diversity advantage given by the code, however it reduces
the coding gain due to the finite antenna spacing.

Simulation results of the new upper-bound are shown in Fig.
5, for mean AOAϕ0 = 30◦ from broadside. Angular spreads
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of σ = [180◦, 60◦, 30◦, 5◦] have been considered. On the
same figure, the global upper-bound and the new upper-bound
without modal correlation effects are also super imposed. Note
that, upper-bound forσ = 180◦, which represents the isotropic
scattering, is overlapped with the bound with zero modal
correlation, as expected.
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Fig. 5. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited power
distribution with mean AOA30◦ from broadside.

As shown, the new upper-bound moves away from the
global upper-bound as the angular spreadσ decreases. At
10dB SNR, the new upper-bound is 2dB, 4dB and 8dB
away from the global upper-bound for angular spreads
60◦, 30◦, 5◦ respectively. The higher deviation of the new
upper-bound from the global upper-bound at small angular
spreads is due to the higher concentration of energy arriving
closer to the mean AOA. This effect will make the MIMO
channel to be rank deficient, hence the loss of diversity.
Note that whenσ = 0◦, the rank of the receiver modal
correlation matrix will be 1, which results in no diversity
advantage from the code. Fig. 6 shows the simulation results
for mean AOA ϕ0 = 60◦ from broadside and angular
spreads ofσ = [180◦, 60◦, 30◦, 5◦]. We observed that as
the mean AOA moves away from the broadside, the new
upper-bound moves further away from the global upper-bound.

V. CONCLUSION

We derived an upper-bound for the pair-wise error proba-
bility of space-time codes which captures the effects of the
transmitter and the receiver antenna configurations and the
surrounding scattering distributions at the transmitter and the
receiver antenna arrays. Using this upper-bound, we showed
that the quantitative degree to which the diversity advantage
of a space-time code is reduced by the size of the antenna
aperture and the antenna configuration. We also showed that
the diversity advantage and the coding advantage of a space-
time code are decreased when the mean AOA of an impinging
signal moves away from the broadside, and also when the
angular spread of the azimuth power distribution is small. We
believe that, the new upper-bound derived in this paper can
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Fig. 6. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited power
distribution with mean AOA60◦ from broadside.

be used as a tool to develop a space-time pre-coder which
is capable of compensating (fully or partially) for effects of
antenna configuration and scattering environment.
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