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Abstract— In this paper we derive a new upper bound for the
pairwise error probability of space-time codes in a quasi-static
Rayleigh fading channel, considering antenna configuration at
the transmitter side. The design criterion for existing space-
time trellis codes is based on the rank and the determinant
of the distance matrix between two code words. In particular,
the diversity advantage of the space-time code is associated
to the rank of the distance matrix. We show that when the
transmit antenna region is small, the diversity advantage given
by the space-time code is reduced by the transmit antenna
configuration and the diversity advantage of the code depends
on the rank of the antenna configuration matrix. We also show
that the uniform linear array antenna configuration diminishes
the diversity advantage provide by the space-time code while the
uniform circular array antenna configuration does not effect to
the diversity advantage of the space-time code.

Index Terms— Space-time trellis codes, antenna configuration,
pairwise error probability.

I. INTRODUCTION

Pairwise error probability (PEP) of space-time codes in
quasi-static Rayleigh fading channels is determined by two
parameters, which are the rank and the determinant of the
distance matrix between two code words [1]. Space-time
trellis codes are designed based on the rank determinant
criteria which involves maximizing the minimum rank and the
minimum determinant of the distance matrix over all distinct
pairs of code words. Based on the above design criteria, Tarokh
et al. [1] proposed several hand-designed QPSK and 8PSK
space-time trellis codes for transmission using two transmit
antennas in independent flat fading channels. In [2], space-
time trellis codes for more than two transmit antennas are
proposed based on the same design criteria.

When deriving space-time trellis codes, one of the main
assumptions being made is, channel gains between the trans-
mitter and receiver antennas undergo independent flat fading.
Such an assumption is valid only if the scattering environment
is isotropic, i.e. scattering is uniformly distributed over the
receiver and transmitter antenna arrays and also the antennas
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ray are separated at a distance greater than λ/2, where
e wave length [3]. However, if we consider a multi-

Mobile Unit (MU), then the antennas at the MU
be spaced sufficiently well apart due to the limited size

U. This has motivated us to investigated the effect of
separation as well as the antenna configuration (e.g.,
Linear, Uniform Circular, Uniform Grid, etc) on the

ance of space-time trellis codes.
is paper, we derive a new upper bound for the PEP
e-time coded system with nT -transmit antennas and
eive antenna, using a realistic channel model which
ccounts for antenna separation, antenna configuration
ttering environment. Traditionally the design criterion
ting space-time trellis codes is based on only the rank
determinant of the distance matrix between two code
Here we show that the transmitter antenna configu-

should also be taken account in the rank determinant
criteria of space-time trellis codes when fading is not
dent. We evaluate the frame error rate performance of

ime trellis codes proposed in [2] for different antenna
rations. We show that the uniform linear array (ULA)

configuration diminishes the diversity gain provided
space-time trellis codes while the uniform circular

UCA) antenna configurations retain the diversity gain
d by the space-time trellis codes when more than two
t antennas being used for transmission.

II. SYSTEM MODEL

consider a base-band mobile communication system
employs nT transmit antennas and one-receive an-
The data transmitted from nT transmit antennas are
d by a space-time trellis code. Assume that at each
, space-time encoder produces nT outputs xt =
2,t, . . . , xnT ,t]T , where xi,t is a signal from a certain
lation with unit energy. These outputs are then simul-
ly transmitted from nT transmit antennas. Assuming
tatic fading, the signal received at the receiver during
ol periods can be expressed in matrix form as

r =
√

EshX + z, (1)

s is the transmitted power per symbol at each transmit
and h is the 1×nT transfer matrix of the channel with

hi, where hi is the fading coefficient between transmit
i and the receive antenna, r = [r1, r2, . . . , rL] and

1, z2, . . . , zL] are 1×L matrices and X is the nT×L



transmitted code word, which has the form

X =




x1,1 x1,2 . . . x1,L

x2,1 x2,2 . . . x2,L

...
...

. . .
...

xnT ,1 xnT ,2 . . . xnT ,L


 , (2)

where xm,l is the complex valued modulation symbol1

transmitted from antenna m at symbol interval l. We assume
that z is zero-mean Additive White Gaussian Noise with
covariance matrix Rz = E

{
zHz

}
= N0I, where I is the

identity matrix and E {·} is the mathematical expectation.

In this paper, we use the 2-dimensional spatial channel
model proposed in [4] to explore the spacial aspects of
space-time trellis codes. In this spatial channel model, MIMO
channel is separated in to three physical regions of interest:
scatterer free region around the transmitter antenna array,
scatterer free region around the receiver antenna array and the
complex random scattering media which is the complement
of the unions of two antenna array regions. In other words,
MIMO channel is decomposed into deterministic and random
matrices, where the deterministic portion depends on the phys-
ical configuration of the transmitter and the receiver antenna
arrays and the random portion represents the complex scat-
tering media between the transmitter and the receiver antenna
regions. In our analysis, we use a system which employs nT -
transmit antennas and one-receive antenna. Assume that the
receiver antenna is positioned at the center of the receiver
antenna region. Then the spatial channel model in [4] reduces
to

h = hsJ
†
T . (3)

where JT is the transmitter configuration matrix (or the
transmit aperture sampling matrix) which includes antenna
positions and antenna orientation relative to the transmitter
aperture origin, [·]† denotes the matrix conjugate transpose
and hS is the complex scattering gain matrix (in this case a
vector).

The transmitter antenna configuration matrix, JT , is

JT =




J−MT (x1) . . . JMT (x1)
J−MT

(x2) . . . JMT
(x2)

...
. . .

...
J−MT (xnT ) . . . JMT (xnT )


 , (4)

where Jn(x) is the spatial-to-mode2 function (SMF), which
is related to the shape of the scatterer free antenna region.
For a circular region in 2D space, the SMF is given by a
bessel function of first kind [4] and for a sphere region in
3D space, the SMF is given by a spherical bessel function
[5]. For a prism shape region, the SMF is given by a prolate
spheroidal function [6].

1 Modulation symbols are taken from a signal constellation with unit energy.
2The set of modes forms a basis of functions for representing a multipath

wave field.
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is paper, we consider the 2-dimensional3 space, where
ransmit antennas are encompassed in a circular aperture
finite radius. Then the spatial-to-mode function for the

aperture is given by

Jn(x) �Jn(k‖x‖)ein(φx−π/2),

Jn(·) is the Bessel function of integer order n, vector
x‖, φx), in polar coordinates is the antenna location rel-
the origin of the aperture which encloses the transmit
s, k = 2π/λ is the wave number with λ being the wave

and i =
√−1. Note that JT is a nT×(2MT +1) matrix,

T is the number of transmit antennas and (2MT +1) is
ber of effective communication modes at the circular

t aperture. MT is given by [7]

MT � �πerT /λ�, (5)

rT is the minimum radius of the circular aperture
encompass all transmit antennas. Note that JT is fixed
own for a given transmit antenna configuration. Also
at number of effective communication modes at the
tter region is determined by the size of the region but

the number of antennas available for transmission [7].

m-th element of 1×(2MT + 1) scattering gain vector
iven by

γm = {hS}m =
∫

S1
g(φ)ei(m−MT −1)φdφ

m = 1, 2, ..., (2MT + 1),

g(φ) is the effective random complex scattering gain
n for a signal leaving the transmitter aperture at an
. Note that, for a rich scattering environment {γm}
assumed to be independent each other and can be

ed as complex Gaussian random variables. Note that
n (3) plays an integral part of this paper.

e next section we derive a new upper bound for the
space-time codes for the channel in (3).

A NEW UPPER BOUND FOR THE PAIRWISE ERROR

PROBABILITY

is section, we derive a new upper bound for the PEP
ace-time coded system with nT -transmit antennas and
eive antenna. The approach we take to develop this
per bound is similar to that presented in [1]. Assume
rfect channel state information (CSI) is available at
eiver and a maximum likelihood (ML) receiver is
ed. Assume the codeword X in (2) was transmitted,
ML-decoder chooses another codeword X̂, then the

nditioned on the channel h, can be written as

→ X̂|h) = P(‖r −
√

EshX̂‖2 < ‖r −
√

EshX‖2),

= P(Re{h(X̂ − X)z†} >

√
Es

4
d2(X, X̂)),

2-dimensional case is a special case of 3-dimensional case where all
ls arrive from or depart to horizontal plane only.



where d2(X, X̂) = h(X − X̂)(X − X̂)
†
h†, Re{·} is the real

part of an argument and ‖·‖ is the Eucleadian norm. Then the
PEP can be upper bounded by the Chernoff bound [8, page
127]

P(X → X̂|h) ≤ exp
(
− Es

4N0
d2(X, X̂)

)
. (6)

Using the spatial channel model, h = hsJ
†
T , we can write

d2(X, X̂) = hsAhs
†, where

A = J†
T (X − X̂)(X − X̂)

†
JT . (7)

Since A is a Hermitian matrix (i.e. A = A†), there exist
a unitary matrix V and a real diagonal matrix D such that
d2(X, X̂) = hsV†DVh†

s. Diagonal entries of D are the
distinct eigenvalues of A, i.e., λm, m = 1, 2, . . . , (2MT +1) .
Let β = hsV = [β1, β2, . . . , β2MT +1], then (6) can be written
as

P(X → X̂|h) ≤ exp

(
− Es

4N0

2MT +1∑
m=1

λm|βm|2
)

. (8)

For a rich scattering environment, we can model elements of
hs as zero-mean independent identically distributed complex
Gaussian random variables each with unit variance. Since V
is unitary, {|βm|} are also zero-mean independent complex
Gaussian random variables each with variance one. Then |βm|
are distributed according to a Rayleigh distribution with pdf

f(|βm|) = 2|βm|exp(−|βm|2), for |βm| ≥ 0.

The to compute the upper bound, we average (8) with respect
to independent Rayleigh distributions of |βm| to arrive at

P(X → X̂) ≤
2MT +1∏

m=1

(
1 +

Es

4N0
λm

)−1

. (9)

Let q denote the rank of matrix A in (7). Then matrix A
has q non-zero eigenvalues including multiplicity. It follows
from the inequality (9) that for high SNR, we obtain the upper
bound of the PEP

P(X → X̂) ≤
(

Es

4N0

)−q
(

q∏
m=1

λm

)−1

=
(

Es

4N0

)−q 1

det[J†
T (X − X̂)(X − X̂)

†
JT ]

.

(10)

Equation (10) suggests that, we can achieve a diversity ad-
vantage of q and a coding advantage of (λ1λ2 . . . λq)1/q . So
the rank of matrix A plays a major role in determining the
diversity advantage as well as the coding advantage of a space-
time coded system. For the matrix A, we have

rank{A} = min{rank{JT }; rank{(X − X̂)(X − X̂)
†}}

(11)

Most of the space-time trellis codes derived so far were based
on maximizing the minimum rank and the minimum product
of all the none zero eigenvalues of matrix

Y = (X − X̂)(X − X̂)
†
. (12)
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f the codes presented in [1], [2], [9] achieve the full
Y, which is the number of transmit antennas.

now illustrate the effect of antenna configuration on
rformance of space-time trellis codes. Consider a
ime trellis code derived based on the rank determinant
given in [1]. Assume that this code gives a diversity
ge of r (for one receive antenna), which is the

f matrix Y. Also assume nT transmit antennas are
in some configuration and the rank of the transmit
configuration matrix, JT , is q(< r). According to

er bound (10), the diversity advantage of the system

mined by the rank of A = J†
T (X − X̂)(X − X̂)

†
JT .

rom (11), we can observe that the rank of matrix A
o the rank reduction of the code due to the antenna
ration will result in lower diversity advantage than the
y advantage given by the space-time code itself.

raises two questions.

n we have a transmit antenna configuration matrix
ose rank is less than the rank of Y (or number of
nsmit antennas in the case of full rank Y)?
r a given region, what is the best antenna configuration

pe that is suited to employ a space-time code, where
e antenna configuration does not reduce the diversity
vantage given by the space-time code?

have less number of effective communication modes
le at the transmitter aperture than the number of trans-
ennas, then the rank of JT will be less than or equal
number of modes. From (5), it is obvious that the
of modes available at the transmitter aperture is solely

ent on the size of the transmitter antenna region (or
of the circular aperture) but not on the number of
t antennas being used. This implies that the lesser
ius of the region, the lesser the number of available
e modes at the transmit aperture. Therefore, the number
es available at the transmitter aperture indirectly limits
formance of space-time trellis codes by reducing the
rank of A.
e next section we provide simulation results for space-
ellis codes with three and four transmit antennas to
the argument we developed above.

IV. SIMULATION RESULTS

now present the performance results for space-time
odes with three and four transmit antennas to support
oretical work of the previous section. Performance
sured in terms of frame error rates. Note that our
e is to investigate the performance of space-time
odes when the size of the transmit aperture is quiet

for e.g., antennas on a mobile unit). Therefore in our
ions we consider circular regions with radius of 0.1λ
λ. We consider the following two space-time trellis
resented in [2, Table 1].



(a) 4-PSK, 16-states trellis code with three transmit
antennas. rank(Y) = 3 and det(Y) = 32.

(b) 4-PSK, 64-states trellis code with four transmit an-
tennas. rank(Y) = 4 and det(Y) = 64.

With a single receiver antenna, diversity advantage obtained
from code-(a) is 3 and code-(b) is 4.

T1

T3 T1

 0.1λ

T2

O

(c)

(b)

T2T3T4
O

(d)

 0.2λ

 0.1λ

(a)

O

O

 0.2λ

T2

T1

T3

T4

T3

T1

T2

Fig. 1. (a)/(c)-Three/ Four transmit antennas in an uniform circular array
with radius of 0.1λ/ 0.2λ (b)/(d)-Three/ Four transmit antennas in an uniform
linear array with radius of 0.1λ/ 0.2λ.

For code-(a), we place the three transmit antennas in a
UCA and also in a ULA as depicted in Fig-1(a) and Fig-1(b)
respectively. For both configurations, we set the radius of the
circular aperture to 0.1λ, corresponding to 2�πe0.1� + 1 =
3 effective modes at the transmit aperture. We found that
rank(JT ) = 3 = rank(Y) for UCA antenna configuration and
rank(JT ) = 2(< rank(Y)) for ULA antenna configuration.
The performance results of code-(a) for these two antenna
configurations are shown in Fig-2. On the same figure, we also
show the performance results of code-(a) without considering
the antenna configuration. In fact, here we assume that anten-
nas are placed far apart and the correlation between antenna
elements due to space is zero. From Fig-2, we can observe
that the rank of the antenna configuration matrix JT effects
the performance of space-time trellis codes. Furthermore, we
observe that as the SNR increases, the performance difference
between two configurations are quiet significant.

Fig-2 also suggests that at 0.1λ radius with three transmit
antennas, the UCA antenna configuration is best suited to
employ space-time trellis codes, as it does not diminish the
diversity gain provided by the code, where as the ULA
configuration is not suited as it reduces the diversity advantage
given by the space-time trellis code since the rank of JT is
less than the rank of Y. We can also observe that there is a
significant performance difference between the ideal case and
the UCA antenna configuration. The reason for this difference
is that, in the ideal case we assume transmit antennas are
located far apart from each other, while in the UCA case all
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It is fo
antenna
smit antennas are enclosed in a circular region having
s of 0.1λ. This will result in spatial correlation among
t antenna elements and hence limiting the performance
system. We also observed that, as we increase the
f the transmit circular aperture, the number of effective
nication modes at the transmit aperture increase. As a
f this increment, the rank of JT becomes equal to the
of transmit antennas, for both antenna configurations,

gives no impact from transmit antenna configuration
diversity advantage given by the code. However the
ance of the code is still limited due to the finite antenna

ion.

8 9 10 11 12 13 14 15 16 17 18
SNR (dB)

w/o Jt − iid channel
rank(Jt) = 3
rank(Jt) = 2

rame error rate performance of the 4-PSK, 16 states space-time trellis
h three transmit antennas for UCL, ULA antenna configurations and
nnel case.

8 9 10 11 12 13 14 15 16
SNR (dB)

w/o Jt − iid channel
rank(Jt) = 4
rank(Jt) = 3

rame error rate performance of the 4-PSK, 64 states space-time trellis
h four transmit antennas for UCL, ULA antenna configurations and
nnel case.

code-(b), we place the four transmit antennas as
d in Fig-1(c) and Fig-1(d). For both configurations we
radius of the circular aperture to 0.2λ, corresponding
0.2�+ 1 = 5 effective modes at the transmit aperture.
und that rank(JT ) = 3(< rank(Y)) for the ULA

configuration and rank(JT ) = 4 = rank(Y) for



the UCA antenna configuration. The performance results of
code-(b) for these two antenna configurations are shown in
Fig-3. Similar performance results are observed as for the
code-(a). We observe that at 0.2λ radius with four transmit
antennas, UCA antenna configuration is best suited to employ
space-time trellis codes while ULA antenna configuration is
not.

We found that space-time trellis codes with two transmit
antennas does not suffer from diversity loss due to the transmit
antenna configuration. The reason for this is, matrix JT is
always rank two regardless of the antenna configuration.

V. CONCLUSIONS

A new upper bound for the pairwise error probability of a
space-time code is derived for a system with multiple transmit
antennas and one-receive antenna, considering antenna con-
figuration at the transmitter. We showed that the rank of the
antenna configuration matrix effects the diversity advantage
given by the space-time trellis codes when the transmit antenna
region is small. We also showed that, uniform circular antenna
configuration is best suited to employ space-time trellis codes
with more than two transmit antennas, as it does not reduce
the diversity gain provided by the code. However we found
that, the uniform linear array antenna configuration reduces
the diversity advantage given by the code, resulting lower
performance than the uniform circular antenna configuration.
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