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A Nonlinear Neural Network for Solving

Linear Programming Problems

Khanh V. Nguyen

Abstract: This paper presents a new recurrent neural network for solving linear

programming problems.  The new model is simpler and more intuitive than existing models

and converges very fast to the exact primal and dual solutions.  The model is based on a

nonlinear dynamical system and has an interesting economic interpretation.

 1. Introduction

Linear programming (LP) is an important class of optimization problems and is used extensively

in economics, operations research, engineering, and many other fields.  In 1985, Hopfield and

Tank published a paper [1] proposing a new approach to solve Linear Programming problems

using recurrent neural networks.  Unlike the Simplex and other traditional methods, Hopfield and

Tank model can be implemented using analog electrical components that operate in parallel.  The

new model therefore can potentially provide very fast solutions.  Hopfield and Tank’s pioneer

works have generated a lot of interests in recurrent neural networks.  In 1987, Kennedy and Chua

[2] proposed an improved model that always guaranteed convergence.  However, their new

model converges to only an approximation of the optimal solution.  In addition, a good

approximation requires a careful selection of the system parameters.  Maa and Shanblatt [3] later

proposed a two-phase model that can converge to the exact solution.  Their model, however, is

relatively complex and still requires some parameter tuning.  Recently, Xia [4] introduced a new
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model that eliminates these drawbacks.  Xia model solves both the primal and dual problems and

requires no parameter tuning.  In this paper, I will present a new LP neural network that not only

retains the advantages of Xia model but also has a simpler and more intuitive architecture as well

as a much faster convergence.  Unlike Xia’s and other previous models, which are piecewise

linear, the new model is based on a nonlinear dynamical system.

2.  The New Neural Network for Solving LP Problems

Consider a LP problem in the following standard form:

Find x that maximizes: bTx

Subject to the constraints: A x ≤ c, x ≥ 0 (1)

Where x and b ∈ Rn, A ∈ Rm x n, and c ∈ Rm.  The dual problem of (1) is:

Find y that minimizes: cTy

Subject to the constraints: AT y ≥ b y ≥ 0 (2)

The topology of the new neural network for solving (1) and (2) is described in figure 1.  There

are two layers of neurons, one for the primal variables, and one for the dual variables.  The

outputs from one layer are the inputs to the other layer.  Unlike in Tank and Hopfield network,

the primal and dual neurons in the new network are symmetrical.  The bias (constant) inputs to

the primal and dual neurons are vectors b and c respectively.
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Figure 1: Topology and neuron configuration of the new network

Figure 1 also illustrates the configuration of a primal neuron.  A new feature of the above neuron

is that it takes as inputs not only the dual neurons’  outputs y but also their derivatives dy/dt.  This

feature introduces nonlinearity into the system.  Coefficient k is some positive constant, which

will be discussed later.  The dual neurons have a similar configuration.  Mathematically, the

outputs of the above primal and dual neurons can be described by the following nonlinear

dynamical system:
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  dx/ dt  =  b – AT( y + k( dy/ dt ) )   ,  x ≥ 0 ( 3)

  dy/ dt  = - c + A ( x + k( dx/ dt ) )  ,  y ≥ 0      ( 4)

It can be seen that (3) and (4) are equivalent to a system of second order differential equations.

The main property of the above system is stated in following theorem:

Theorem 1: If the neural network whose dynamics is described by the differential equations (3)

and (4) converges to a stable state, then the convergence will be the optimal solutions for the LP

problem (1) and its dual problem (2).

Proof:  Let xi be the i th element of x.  Equation (3) can be rewritten as:

dx i / dt  =  [ b – AT( y + k( dy/ dt ) ) ] i i f  x i  > 0 ,  ∀i ( 5a)

dx i / dt  =  max{ [ b – AT( y + k( dy/ dt ) ) ] i ,  0} i f  x i  = 0 ,  ∀i ( 5b)

Condition (5b) is to ensure that x will be bounded from below by 0.

Let x* ,  y*  be the limit of x and y respectively.  Because of the stability of the convergence, we

have dx* /dt = 0 and dy* /dt = 0.  Equations (5a) and (5b) then become:

0 = [ b – ATy* ] i i f  x i *  > 0 ( 6a)

0 =  max{ [ b – ATy* ] i ,  0} i f  x i *  = 0 ( 6b)

In other words:

[ b – ATy* ] i = 0 i f  x i *  > 0 ( 7a)

[ b – ATy* ] i ≤ 0 i f  x i *  = 0 ( 7b)

Or: b – ATy*  ≤ 0 ∀ i ( 8)

Similarly, taking the limit of (4) we will have:
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Ax*  -  c ≤ 0 ( 9)

Equations (8) and (9) shows that x*  and y*  are the feasible solutions for the problems (1) and (2).

Furthermore, from (7a) and (7b) we have:

xi * [ b – ATy* ] i  = 0 ,  ∀i ( 10)

Or in vector form: bTx*  -  x* ATy*  = 0 ( 11)

Similarly, from (4): x* ATy*  -  cT
 yj *  = 0 ,  ∀j ( 12)

From (11) and (12): bTx*  = cT
 yj * ( 13)

By the LP Duality theory, from (13) and the feasibility of x*  and y* , we can conclude that x*  and

y*  are the optimal solutions for the LP problems (1) and (2).

Although a proof for the global (Liapunov) stability of the new model has not been found yet,

experiments indicated that the system always converge to a stable state if k>0.  The convergence

has the form of dampened oscillations (Figure 2).  The convergence speed depends on the

coefficient k.  Intuitively, k acts like the coefficient of a kinetic friction that dampens the

oscillations.  If  k = 0 (no friction), the system will oscillates indefinitely without converging.

A discrete simulation of the above network has been implemented.  The Euler method is used to

solve differential equations (3) and (4).   Experiments show that the system converges very fast.

For a LP problem with 5 variables and 4 constraints, the discrete model converges after about

1000 iterations.  In comparison, it takes more than 200,000 iterations to solve the same problem

using Xia model (Figure 2).  The performance improvement of the new model is primarily due to

its ability to handle larger discrete time step (dt) without becoming unstable.  Finally, the
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complexity of the new neural network (about n+m adders and 2n.m multipliers) is only about

half of Xia network’s.

Figure 2: System Convergence

The following Matlab code describes the discrete implementation of the above neural network.

Coefficient k is set to equal the time step dt to simplify the calculations.

 f or  i =1: n
    dx = ( b – A' * ( y + dy) )  *  dt ;
    dx = max( x + dx,  0)  -  x;        % t o make x >=0
    x = x + dx;
    dy = ( - c + A * ( x + dx) )  *  dt ;
    dy = max( y + dy,  0)  -  y;        % t o make y >=0
    y = y + dy;
 end;

3.  Economic Interpretation

The intuition of the above neural network can be demonstrated by the following economic

interpretation of the system.  Consider a resource allocation problem in which there are n

different types of products made from m resources of limited supply. The LP problem is to

maximize the value of products made bTx, given the limitations of the resources Ax ≤ c, where A

defines the amounts of resources needed to make one unit of each product, b is the products’  unit

values, and c is the supply limitations of the resources.  In this interpretation, each primal neuron
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plays the role of a producer of a given type of products, and each dual neuron plays the role of a

resource owner selling a given resource.  Primal variables x are the amounts of the products

made, and dual variables y are the prices of the resources.  Equation (3) specifies the strategy of a

producer: the amount of products made is proportional to the profitability of that product (value

minus cost = b - ATy).  The more profitable, the higher increase in production (dx/dt).  The term

k(dy/dt) signifies the fact that the producers not only use the current resource prices in their cost

calculation but also take into account the trend of these prices.  Given the same resource prices,

increasing prices will result in less productivity than declining prices.

Similarly, the resource owner’s pricing strategy is described by (4).  The price of a resource is

based on the supply and demand law (demand minus supply = Ax – c).  The higher demand, the

higher the price.  Like the producers, the resource owners base their decisions not only on the

current demands Ax but also on the trend of these demands Adx/dt.  As a result of these market

interactions among the producers and resource owners, the system will eventually reach a state

where the optimal amounts of products are made, which are the optimal solution to the

underlying LP problem.  It’s interesting to note that if these market players (producers and

resource owners) do not take into account the future trends in their calculation (i.e. k=0), the

system will oscillate indefinitely without converging.  This shows how business forecasting is

important to the market economy.

4.  Conclusions

The new neural network proposed in this paper has many advantages compared to existing neural

networks for solving linear programming problems.  It converges to the exact solutions of the LP
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problem and the dual problem without requiring any parameter tuning.  The new model is also

very simple.  Yet despite its simplicity, the system converges very fast.  Experiment with a

limited number of cases showed that the new model outperformed Xia model by more than two

orders of magnitude.  Another advantage of the new model is that it is very intuitive and can be

explained in common sense without formal mathematics.  As one potential application, the new

model can be used to understand better the dynamics of the free market economy and to explain

what Adam Smith [5] called “ the invisible hand” that made the market economy achieve the best

efficiency.  Finally, more studies need to be done to see whether the model can be extended to

solve other optimization problems, including convex optimization and other nonlinear

programming problems
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Note: The following appendixes are provided to facilitate the reviewers’  duplication of the

research results and may not need to be included in the final publication.

Appendix 1: LP problem used in performance evaluation (Figure 2).

Maximizes: bTx

Subject to: A x ≤ c, x ≥ 0

Where:

A = [  14,   4,    1,    3,   2

      7. 5,  15,   3. 3,  3,   1. 5

      2. 5,  3,    17,   2,   2. 3

      3. 2,  1. 6,  2. 5,  5,   7  ] ;

b = [  32,  43,  36,  28,  29 ] ’ ;

c = [  3. 5,  3. 6,  2. 4,  2. 8 ] ’ ;

Primal optimal solution (apprx): [ 0. 1340,  0. 0760,  0. 0586,  0. 4207,  0. 0000] ’

Dual optimal solution (apprx):     [ 0. 0215,  2. 2308,  1. 1247,  3. 7987] ’

Appendix 2: Discrete implementation of the new neural network in Matlab code.

x = [  0, 0, 0, 0, 0 ] ' ;

y  = [  0, 0, 0, 0 ] ' ;

dy= [  0, 0, 0, 0 ] ' ;

dt  = 0. 02;

n = 2000;

f or  i =1: n

    dx = dt * (  b – A' * ( y + dy) ) ;

    dx = max( x+dx,  0)  – x;     % t o make x >= 0

    x = x + dx;

    dy = dt * ( - c + A * ( x + dx) ) ;

    dy = max( y+dy,  0)  – y;     % t o make y >= 0

    y = y + dy;

end;


