submitted to the Journal Nature

An Alternative to Mersenne Primes:

Finding the Largest Prime Using Convergent Sequences of Primitive Pythagorean Triples



2--(7 million zeroes)--2--(7 million zeros)--1

by Richard Allen Brown and Dr. John McKee

1248 Insititute, Charleston and Santa Barbara



Powered by Mathematica



Summary


Table 1. The first 10,000 Pythagorean Triples Coverging to an angle of ZERO

SequenceSmall SideDiagonalPrime Factors
nk(n)=2*n+1m(n)=2*n**2 + 2*n + 1
135prime 1/1
2513prime 2/2
37255*5
4941prime 3/4
51161prime 4/5
613855*17
715113prime 5/7
8171455*29
919181prime 6/9
102122113*17
11232655*53
1225313prime 7/12
13273655*73
1429421prime 8/14
153148113*37
16335455*109
1735613prime 9/17
18376855*137
1939761prime 10/19
204184129*29
21439255*5*37
22451013prime 11/22
234711055*221
24491201prime 12/24
25511301prime 13/25
265314055*281
2755151317*89
285716255*5*5*13
29591741prime 14/29
30611861prime 15/30
316319855*397
32652113prime 16/32
336722455*449
34692381prime 17/34
35712521prime 18/35
367326655*13*41
3775281329*97
387729655*593
39793121prime 19/39
4081328117*193
418333655*673
42853613prime 20/42
438737855*757
4489396113*233
4591414141*101
469343255*5*173
47954513prime 21/47
489747055*941
4999490113*13*29
501015101prime 22/50
5110353055*1061
52105551337*149
5310757255*5*229
54109594113*457
55111616161*101
5611363855*1277
57115661317*389
5811768455*37*37
59119708173*97
601217321prime 23/60
6112375655*17*89
62125781313*601
6312780655*1613
64129832153*157
651318581prime 24/65
6613388455*29*61
67135911313*701
6813793855*1877
691399661prime 25/69
701419941prime 26/70
71143102255*5*409
7214510513prime 27/72
73147108055*2161
741491110117*653
751511140113*877
76153117055*2341
771551201341*293
78157123255*5*17*29
7915912641prime 28/79
801611296113*997
81163132855*2657
8216513613prime 29/82
83167139455*2789
8416914281prime 30/84
8517114621prime 31/85
86173149655*41*73
8717515313prime 32/87
88177156655*13*241
891791602137*433
9018116381prime 33/90
91183167455*17*197
9218517113109*157
93187174855*13*269
941891786153*337
951911824117*29*37
96193186255*5*5*149
9719519013prime 34/97
98197194055*3881
9919919801prime 35/99
10020120201prime 36/100

<

Table 2. The First 31 Primitive Pythagorean Triples of the Form n= 10**k, for all k = 1 through 31

Definition: 20000200001 = 2<4>2<4>1

kSequencesmall sidelarge sidediagonal
kn=10**kp(n)=2*n+1q(n)=2*n**2+2*nr(n)=2*n**2+2*n+1
01345 Prime
11021220221=13*17
21002012020020201 Prime
31000200120020002002001 Prime
410,00020001200020000200020001
5100,0002<4>12<4>20<5>2<4>2<4>1
61,000,0002<5>12<5>2<6>2<5>2<5>1 Prime
710**72<6>12<6>2<7>2<6>2<6>1
810**82<7>12<7>2<8>2<7>2<7>1
910**92<8>12<8>2<9>2<8>2<8>1
1010**102<9>12<9>2<10>2<9>2<9>1 Prime
1110**112<10>12<10>2<11>2<10>2<10>1
1210**122<11>12<11>2<12>2<11>2<11>1
1310**132<12>12<12>2<13>2<12>2<12>1
1410**142<13>12<13>2<14>2<13>2<13>1
1510**152<14>12<14>2<15>2<14>2<14>1
1610**162<15>12<15>2<16>2<15>2<15>1
1710**172<16>12<16>2<17>2<16>2<16>1
1810**182<17>12<17>2<18>2<17>2<17>1
1910**192<18>12<18>2<19>2<18>2<18>1
2010**202<19>12<19>2<20>2<19>2<19>1
2110**212<20>12<20>2<21>2<20>2<20>1
2210**222<21>12<21>2<22>2<21>2<21>1
2310**232<22>12<22>2<23>2<22>2<22>1
2410**242<23>12<23>2<24>2<23>2<23>1
2510**252<24>12<24>2<25>2<24>2<24>1
2610**262<25>12<25>2<26>2<25>2<25>1
2710**272<26>12<26>2<27>2<26>2<26>1
2810**282<27>12<27>2<28>2<27>2<27>1
2910**292<28>12<28>2<29>2<28>2<28>1
3010**302<29>12<29>2<30>2<29>2<29>1
3110**312<30>12<30>2<31>2<30>2<30>1
32
33
34
7*10**610**(7*10**6)-------2--(7 million zeros)--2--(7 million zeros)--1)
N large10**(N large)------2--(N large zeros)--2--(N large zeros)--1
1