submitted to the Journal Nature
An Alternative to Mersenne Primes:
Finding the Largest Prime Using Convergent Sequences of Primitive Pythagorean Triples
2--(7 million zeroes)--2--(7 million zeros)--1
by Richard Allen Brown and Dr. John McKee
1248 Insititute, Charleston and Santa Barbara
Powered by Mathematica
Summary
Table 1.
The first 10,000 Pythagorean Triples Coverging to an angle of ZERO
Sequence | Small Side | Diagonal | Prime Factors |
n | k(n)=2*n+1 | m(n)=2*n**2 + 2*n + 1 | |
1 | 3 | 5 | prime 1/1 |
2 | 5 | 13 | prime 2/2 |
3 | 7 | 25 | 5*5 |
4 | 9 | 41 | prime 3/4 |
5 | 11 | 61 | prime 4/5 |
6 | 13 | 85 | 5*17 |
7 | 15 | 113 | prime 5/7 |
8 | 17 | 145 | 5*29 |
9 | 19 | 181 | prime 6/9 |
10 | 21 | 221 | 13*17 |
11 | 23 | 265 | 5*53 |
12 | 25 | 313 | prime 7/12 |
13 | 27 | 365 | 5*73 |
14 | 29 | 421 | prime 8/14 |
15 | 31 | 481 | 13*37 |
16 | 33 | 545 | 5*109 |
17 | 35 | 613 | prime 9/17 |
18 | 37 | 685 | 5*137 |
19 | 39 | 761 | prime 10/19 |
20 | 41 | 841 | 29*29 |
21 | 43 | 925 | 5*5*37 |
22 | 45 | 1013 | prime 11/22 |
23 | 47 | 1105 | 5*221 |
24 | 49 | 1201 | prime 12/24 |
25 | 51 | 1301 | prime 13/25 |
26 | 53 | 1405 | 5*281 |
27 | 55 | 1513 | 17*89 |
28 | 57 | 1625 | 5*5*5*13 |
29 | 59 | 1741 | prime 14/29 |
30 | 61 | 1861 | prime 15/30 |
31 | 63 | 1985 | 5*397 |
32 | 65 | 2113 | prime 16/32 |
33 | 67 | 2245 | 5*449 |
34 | 69 | 2381 | prime 17/34 |
35 | 71 | 2521 | prime 18/35 |
36 | 73 | 2665 | 5*13*41 |
37 | 75 | 2813 | 29*97 |
38 | 77 | 2965 | 5*593 |
39 | 79 | 3121 | prime 19/39 |
40 | 81 | 3281 | 17*193 |
41 | 83 | 3365 | 5*673 |
42 | 85 | 3613 | prime 20/42 |
43 | 87 | 3785 | 5*757 |
44 | 89 | 3961 | 13*233 |
45 | 91 | 4141 | 41*101 |
46 | 93 | 4325 | 5*5*173 |
47 | 95 | 4513 | prime 21/47 |
48 | 97 | 4705 | 5*941 |
49 | 99 | 4901 | 13*13*29 |
50 | 101 | 5101 | prime 22/50 |
51 | 103 | 5305 | 5*1061 |
52 | 105 | 5513 | 37*149 |
53 | 107 | 5725 | 5*5*229 |
54 | 109 | 5941 | 13*457 |
55 | 111 | 6161 | 61*101 |
56 | 113 | 6385 | 5*1277 |
57 | 115 | 6613 | 17*389 |
58 | 117 | 6845 | 5*37*37 |
59 | 119 | 7081 | 73*97 |
60 | 121 | 7321 | prime 23/60 |
61 | 123 | 7565 | 5*17*89 |
62 | 125 | 7813 | 13*601 |
63 | 127 | 8065 | 5*1613 |
64 | 129 | 8321 | 53*157 |
65 | 131 | 8581 | prime 24/65 |
66 | 133 | 8845 | 5*29*61 |
67 | 135 | 9113 | 13*701 |
68 | 137 | 9385 | 5*1877 |
69 | 139 | 9661 | prime 25/69 |
70 | 141 | 9941 | prime 26/70 |
71 | 143 | 10225 | 5*5*409 |
72 | 145 | 10513 | prime 27/72 |
73 | 147 | 10805 | 5*2161 |
74 | 149 | 11101 | 17*653 |
75 | 151 | 11401 | 13*877 |
76 | 153 | 11705 | 5*2341 |
77 | 155 | 12013 | 41*293 |
78 | 157 | 12325 | 5*5*17*29 |
79 | 159 | 12641 | prime 28/79 |
80 | 161 | 12961 | 13*997 |
81 | 163 | 13285 | 5*2657 |
82 | 165 | 13613 | prime 29/82 |
83 | 167 | 13945 | 5*2789 |
84 | 169 | 14281 | prime 30/84 |
85 | 171 | 14621 | prime 31/85 |
86 | 173 | 14965 | 5*41*73 |
87 | 175 | 15313 | prime 32/87 |
88 | 177 | 15665 | 5*13*241 |
89 | 179 | 16021 | 37*433 |
90 | 181 | 16381 | prime 33/90 |
91 | 183 | 16745 | 5*17*197 |
92 | 185 | 17113 | 109*157 |
93 | 187 | 17485 | 5*13*269 |
94 | 189 | 17861 | 53*337 |
95 | 191 | 18241 | 17*29*37 |
96 | 193 | 18625 | 5*5*5*149 |
97 | 195 | 19013 | prime 34/97 |
98 | 197 | 19405 | 5*3881 |
99 | 199 | 19801 | prime 35/99 |
100 | 201 | 20201 | prime 36/100 |
Table 2. The First 31 Primitive Pythagorean Triples of the Form n= 10**k, for all k = 1 through 31
Definition: 20000200001 = 2<4>2<4>1
k | Sequence | small side | large side | diagonal |
k | n=10**k | p(n)=2*n+1 | q(n)=2*n**2+2*n | r(n)=2*n**2+2*n+1 |
0 | 1 | 3 | 4 | 5 Prime |
1 | 10 | 21 | 220 | 221=13*17 |
2 | 100 | 201 | 20200 | 20201 Prime |
3 | 1000 | 2001 | 2002000 | 2002001 Prime |
4 | 10,000 | 20001 | 200020000 | 200020001 |
5 | 100,000 | 2<4>1 | 2<4>20<5> | 2<4>2<4>1 |
6 | 1,000,000 | 2<5>1 | 2<5>2<6> | 2<5>2<5>1 Prime |
7 | 10**7 | 2<6>1 | 2<6>2<7> | 2<6>2<6>1 |
8 | 10**8 | 2<7>1 | 2<7>2<8> | 2<7>2<7>1 |
9 | 10**9 | 2<8>1 | 2<8>2<9> | 2<8>2<8>1 |
10 | 10**10 | 2<9>1 | 2<9>2<10> | 2<9>2<9>1 Prime |
11 | 10**11 | 2<10>1 | 2<10>2<11> | 2<10>2<10>1 |
12 | 10**12 | 2<11>1 | 2<11>2<12> | 2<11>2<11>1 | <
13 | 10**13 | 2<12>1 | 2<12>2<13> | 2<12>2<12>1 |
14 | 10**14 | 2<13>1 | 2<13>2<14> | 2<13>2<13>1 |
15 | 10**15 | 2<14>1 | 2<14>2<15> | 2<14>2<14>1 |
16 | 10**16 | 2<15>1 | 2<15>2<16> | 2<15>2<15>1 |
17 | 10**17 | 2<16>1 | 2<16>2<17> | 2<16>2<16>1 |
18 | 10**18 | 2<17>1 | 2<17>2<18> | 2<17>2<17>1 |
19 | 10**19 | 2<18>1 | 2<18>2<19> | 2<18>2<18>1 |
20 | 10**20 | 2<19>1 | 2<19>2<20> | 2<19>2<19>1 |
21 | 10**21 | 2<20>1 | 2<20>2<21> | 2<20>2<20>1 |
22 | 10**22 | 2<21>1 | 2<21>2<22> | 2<21>2<21>1 |
23 | 10**23 | 2<22>1 | 2<22>2<23> | 2<22>2<22>1 |
24 | 10**24 | 2<23>1 | 2<23>2<24> | 2<23>2<23>1 |
25 | 10**25 | 2<24>1 | 2<24>2<25> | 2<24>2<24>1 |
26 | 10**26 | 2<25>1 | 2<25>2<26> | 2<25>2<25>1 |
27 | 10**27 | 2<26>1 | 2<26>2<27> | 2<26>2<26>1 |
28 | 10**28 | 2<27>1 | 2<27>2<28> | 2<27>2<27>1 |
29 | 10**29 | 2<28>1 | 2<28>2<29> | 2<28>2<28>1 |
30 | 10**30 | 2<29>1 | 2<29>2<30> | 2<29>2<29>1 |
31 | 10**31 | 2<30>1 | 2<30>2<31> | 2<30>2<30>1 |
32 |
33 |
34 |
7*10**6 | 10**(7*10**6) | --- | ---- | 2--(7 million zeros)--2--(7 million zeros)--1) |
N large | 10**(N large) | --- | --- | 2--(N large zeros)--2--(N large zeros)--1 |
---|