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1   Introduction

Conventionally, the aerodynamic load on a
structure such as an aircraft's wing is determined by
measuring its pressure distribution around its
contour. This however, requires a large number of
pressure sensors to enable accurate determination of
aerodynamic load on the structure. Moreover, this
method of measuring aerodynamic load becomes
impractical when the aerodynamic load of an aircraft
in-flight is to be estimated [1, 4].

Alternatively, the aerodynamic load on the wing
can be measured indirectly by measuring the wing's
structural responses such as wing's deformation,
structural acceleration, and structural strain. These
structural responses are easily measured and require
no expensive instrumentation to be set up [6].

In this paper, the aerodynamic load is to be
estimated from the structural response measurements.
This process involves solving an inverse problem
which is normally ill posed. An artificial neural
network  (ANN) is used here to solve this inverse
problem. The capability of ANN to learn any mapping
between variables is exploited. The network is to learn
the data obtained from structural finite element
simulations. The effectiveness of this approach is
demonstrated by solving cases involving static and
dynamic aerodynamic load on an aircraft wing.

2   Inverse Load Identification

The inverse load problem addressed here involves
with the identification of the possible applied load on
a structure from the knowledge its structural

response. For example, consider a simple cantilever
beam structure, given as:

(1)

Where P(x,t) is the applied load, and y(x,t) is the
deformation. The beam properties are given as
Young's modulus E(x), inertia I(x) and mass m(x).

In a direct problem, y is calculated from the
knowledge of load P from applied to the structure. In
contrast, the inverse problem calculates the load P the
measurement of y. A number of difficulties associated
with solving such an inverse problem includes the
possibility of having multiple solutions, and the
stability of the solutions. Normally, a regularization
method is used to 'smooth' the solution due to the ill
posedness of the problem.

Here, the inverse problem is solved using artificial
neural networks combined with finite element
methods. First, a forward problem is solved using
finite element method to obtain several structural
responses for several sets of aerodynamic load. The
result is then used to obtain an inverse mapping
using artificial neural networks. The structural
response data becomes an input to the ANN, and the
applied aerodynamic load an output (see Figure 1).
The error between actual and estimated ANN is used
to iteratively update the neural network's parameter
until the error reaches its minimum. The
Backpropagation method is used here to train the
neural network [2, 3]. Enhancement of the basic
backpropagation method is possible by adding the
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FIGURE 1. ANN for inverse load identification
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momentum and adaptive learning rate terms in the
optimization process of the training.

The success of the network training depends
heavily on the information content of the data. The
training data should be unique, i.e. no ambiguity in
the inverse mapping. This can be achieved by
separating the training region appropriately, or by
extending the input dimension of the network i.e.
increasing the number of sensors.

3   Static Aerodynamic Load Identification

A problem of estimating static aerodynamic load
on an aircraft wing is approach by assuming the wing
as a cantilever beam subjected to arbitrary distributed
load represented as a Fourier series. The values of the
Fourier coefficients are to be estimated from the
structural response measurements.

As an illustration, here the wing is 1 metre in span
with flexural rigidity EI=107Pa.kg.m4. Five sensors are
placed 20 cm apart to measure deformations (Figure
2).

A feed-forward neural network, trained by a back-
propagation method was used. The data for the
training was created using finite element simulation
written in Matlab script language. Similarly, the
design of the neural network was created with the
help of the MATLAB Neural Network Toolbox [2].

The training of the feedforward network
converged to a small error of 9x10-13Pa2 in 15 epochs.
One epoch is defined as one iteration of the network
training utilizing the whole training data. This
indicated that the designed network had successfully
mapped the inverse relationship.

Next, the effect of noise in the measurement on
the accuracy of the identification was investigated.
The noise was simulated as a white Gaussian noise
added to the measurement. Table 1 shows the error of

the estimation from different signal to noise ratio in
the measurement. It is shown that the ANN still gives
a good result up to 5% noise in the measurement.
Figure 3 shows the result of the load estimation when
the deformation contained 5% measurement error.

4   Dynamic Aerodynamic Load Identification

In contrast to static load identification, the
dynamic load identification involves temporal and
spatial variations. The structure of the neural network
must be modified by adding a series of delay units at
the input layer to capture the temporal variation of the
load (Figure 4). This in effect increases the
dimensionality of the input variables and hence
increases the approximation capability of the network.

To illustrate the effectiveness of the method to
the identification of dynamic aerodynamic load, the
simulation of a wing modeled as a plate structure was
performed using the finite element modeling package
NASTRAN [5]. The wing's dimension was 10x1 metre
with elastic modulus E=12000 Pa, density = 106 kg/m3

and Poisson's ratio of 0.3. The wing was trained with
several input forms with different spatial and temporal
variations.

arbitrary distributed load
represented as Fourier

series

5 deflection readings 20 cm apart

x axis

Measurement noise level
0% 1% 3% 5% 10%

R 1 0.997 0.957 0.905 0.67
3

MSE (Pa2) 0 6.922 103 164 374

TABLE 1: The effect of measurement noise to the
accuracy of the ANN estimation, given as regression

coefficient (R) and mean square error (MSE)

FIGURE 2. Static aerodynamic load on a wing estimated
from five deformation sensors
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FIGURE 3. Static load estimated in the presence of 5%
measurement noise (+) as compared to no noise case (-)



Inverse Load Identification

The equation for the applied load is of the form:

(2)

Where a, b, c represent spatial variation, whereas ω
and θ are frequency (rad/s) and phase shift (rad)
respectively.

The structural responses used to estimate
aerodynamic loads were strain data at the wing root
and quarter span. The sampling rate of 100Hz was
used to record the structural responses.

A feedforward  neural network with four delays
was successfully trained in 6 epochs. The mean
square error achieved was 4.9x10-5Pa2. To test the
generalization of the network, an unseen aerodynamic
not used in the training, was estimated from strain
measurements. Here the load to be estimated was
P(x,t)=(0.5-0.5x2) sin(6πt).

Figure 5 and 6 show the estimated aerodynamic
load and its error respectively. It can be seen that the
dynamic applied load can be estimated accurately
using this approach.

5   Conclusions

A method of solving an inverse aerodynamic load
from structural response data has been presented.
The method is based on applying a mapping
capability of neural networks, combined with
structural finite element modeling (FEM). The FEM is
used to generate data required for training the neural
networks. The effectiveness of the method has been
demonstrated on the identification of both static and
dynamic aerodynamic load on a wing structure. The
structural response used to estimate the load can be
of deformation, strain or acceleration measurements.
The next stage of the research will involve the
development of an optimization procedure in
selecting the best sensor types and locations to
estimate aerodynamic load on a given structure.
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FIGURE 5. Dynamic pressure load estimated from
strain data using ANN

FIGURE 6. Errors in estimating pressure load using
ANN
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FIGURE 4. The layout of the ANN used for the dynamic load identification
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