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Abstract

This paper presents the development of a method for solving aerodynamic inverse load
problems. A hybrid of Finite Element Method (FEM) and Artificial Intelligence (AI) is utilized
as a basis for the method. Several illustrative problems are presented, involving static and
dynamic load identification, which are solved by Artificial Neural Networks and Genetic
Algorithm. FEM is used for generating data needed for the neural network training, and also
for calculating fitness values in Genetic Algorithm. The MATLAB and its Neural Network
Toolbox are selected as the main development tool.

1   Introduction

Modeling of physical phenomena always involves the formulation of differential or integral
equations. Once these equations have been formulated with the necessary coefficients, initial and
boundary conditions, then the behavior of the system can be simulated and studied. This is known as
solving direct problems. In contrast, the determination of coefficients, initial or boundary conditions
which give rise to any measured system's behavior is called inverse problems. Mathematically
speaking, the inverse problem is ill conditioned. There is no guarantee of the existence of the solution.
Furthermore, issues such as solution uniqueness, and its stability are also very significant.

Determination of aerodynamic load from its structural response measurement is categorized as an
inverse problem. Aerodynamic load of a flying aircraft can not be measured easily. A direct
conventional method of measuring pressure distribution on the aircraft structure becomes impractical
for a flying aircraft. The instrumentation set-up is highly complex an expensive. Davis and Saltzman
(2000) in their paper, for example, describe the complexity of the instrumentation for measuring the
wing's pressure distribution on the F-16A aircraft.

One alternative method to measure aerodynamic load indirectly is by measuring the observed
structural responses. These quantities are easier to measure. The process of reconstructing
aerodynamic load from these structural measurements using a hybrid Finite Element Method and
Artificial Intelligence is described here. MATLAB and its Neural Network Toolbox are used as the
main tool for developing the algorithm for the whole process (Figure 1). Both the static and dynamic
aerodynamic load estimation are presented to illustrate the effectiveness of the developed method.
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Figure 1: MATLAB Used as a Flatform for Developing a Hybrid FEM-Artificial
Intelligence Method for Solving Inverse Problems

2   Artificial Intelligence Techniques

    There are two artificial intelligence techniques which are suitable for solving many inverse
problems, these are Artificial Neural Networks (ANN) and Genetic Algorithms (GA). Many authors
have reported successful uses of these techniques.

Artificial Neural Networks

    Artificial Neural Network is a massively interconnected processing units known as neurons. It is a
simplified representation of the working knowledge of a human brain. The structural arrangement of
the neurons and its interconnection gives rise to many different network characteristics. One of the
most frequently used networks is the Feedfordward Neural Networks in which the data flows in one
direction from the input to the output, i.e. no feedback loop presents.
    Given sufficient number of neurons, the ANN can be trained to map any input-output
relationships. Network parameters such as weights and bias are adjusted during training. Once
successful training has been reached, these networks parameters are fixed and ready for use in
operation. The training process is that in which a large computational burden occurs, especially when
involving a large sample of training data. Many training algorithms have been developed, and the
MATLAB Neural Network Toolbox (Demuth and Beale, 1998) provides a large number of training
algorithms such as Lavenberg Marquadtl, QuickProp, Kohonen SOM, etc. Hagan (1996) provides
extensive theoretical background of the many algorithms used in the Toolbox.
    The authors have found that the MATLAB Neural Network toolbox version 3 is excellent
software for the ANN development. It has a modular network representation, and hence provides a
great flexibility for the ANN designer. The toolbox has fewer functions than earlier versions, and yet
more powerful. However, it does not have a good graphical user interface. It is therefore not so
suitable for interactive network development. Other commercial software, such as NeuroShell,
FlexNN or STATISTICA Neural Networks are more suited for this purpose. Though, these
softwares do not offer a great programming flexibility as offered by the MATLAB Neural Network
Toolbox version 3.
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Figure 2: Static Aerodynamic Load on a
Wing Estimated from Five
Deformation Sensors

Table 0: The Effect of Measurement Noise to the
Accuracy of the ANN Estimation

Measurement noise level
0% 1% 3% 5% 10%

R 1 0.997 0.957 0.905 0.673

MSE (x10-13) 0 6.922 103 164 374

Genetic Algorithms

Genetic Algorithm (GA) is one of modern heuristic optimization techniques. This algorithm is
originally developed by Holland (1975) and is based on the mechanism of the Darwinian evolution.
GA is a population-based algorithm. The population may consist of several potential optimal
solutions which is called individuals. These individuals are subjected to different 'genetic operations'
such as selection, crossover and mutation. These operations are designed to drive the whole
population to a near global optimal solution. Many GA parameters can be tuned to produce a good
performance. Parameters such as the number of individual in the population, crossover probability,
mutation probability are tunable for any given problems.

The Genetic Algorithm is conceptually simple. The program can be easily written in MATLAB.
Meanwhile, software products such as GENEHUNTER and FLEX-GA are commercially available,
and can be easily run in MATLAB.

3   Static Aerodynamic Load Identification

The inverse problem discussed here is formulated as follows. It is desired to calculate the
aerodynamic load acting on an aircraft wing as modeled in figure 2. Five deformation sensors are
placed 20 cm apart along a 1-meter wing. The rigidity of the wing is 107Pa.kg.m4. Two different
approaches namely ANN and GA are used to solve this inverse problem. The structure of the wing
is modeled using finite element method, and is written in MATLAB using object-oriented
programming (OO). The MATLAB 5 or later versions offer a facility to write a program in OO
philosophy. This has made the finite element programming much simpler than it would be otherwise
with procedural language. For example, an FEM cantilever beam of length 1-meter, divided into 10
beam elements can be easily constructed using a command like, cantilever(1,10,steel), where steel
is a material object (Sofyan, 1999).
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Figure 3: Aerodynamic Load Reconstruction Using Artificial Neural Networks
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Figure 4: Aerodynamic Load Reconstruction Using Genetic Algorithm
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Load Estimation Using Artificial Neural Networks

The MATLAB Neural Network Toolbox is used in designing the networks. The toolbox is highly
flexible and can be used to design, train and simulate any kind of networks with relative ease. Here, a
feed-forward neural network is used and trained using a Lavenberg-Mardquadtl algorithm. The
training data is obtained by solving a number of direct problems as shown in Figure 3. The error
estimate is then used to update the network weights and bias.

The training of the feedforward network converged to a small error of 9x10-13Pa2 in 15 epochs.
One epoch is defined as one iteration of the network training utilizing the whole training data. This
indicated that the designed network had successfully mapped the inverse relationship.

Next, the effect of noise in the measurement on the accuracy of the identification was investigated.
The noise was simulated as a white Gaussian noise added to the measurement. Table 1 shows the
error of the estimation from different signal to noise ratio in the measurement. The data shows that
the ANN still gives a good result for up to 5% noise in the measurement.

Load Estimation Using Genetic Algorithm

    The same problem as described above is solved here using Genetic Algorithm (see Figure 4).
Here suppose that a 5% noise is present in all the deformation measurements. A binary
representation with 5 bits resolution is used to estimate the Fourier parameters describing the
aerodynamic load. Two hundreds individual were used to initiate the population. The algorithm was
run with crossover and mutation probabilities of 0.9 and 0.01 respectively. Figure 5 shows the
convergence history of the algorithm, whilst Figure 6 shows the comparison between the estimated
and true aerodynamic load.



4   Dynamic Aerodynamic Load Identification

In contrast to static load identification, the dynamic load identification involves temporal and
spatial variations. The aerodynamic load to be estimated varies with time, and so too the structural
response measurements. Here the mass and damping distribution of the structure should be included
in the modeling.

To illustrate the effectiveness of the method to the identification of dynamic aerodynamic load, the
simulation of a wing modeled as a plate structure was performed using the finite element modeling
package NASTRAN (1985). The wing's dimension was 10x1 metre with elastic modulus E=12000
Pa, density = 106 kg/m3 and Poisson's ratio of 0.3.

Load Estimation Using Artificial Neural Networks

A time delayed neural network is used for the estimation of the dynamic aerodynamic load. Figure
7 shows the structure of the network with the addition of delay units at the input neurons. The delays
at the input neurons are created by setting net.InputWeight{..}.delays to, for example [1 2 3 4] for
the addition of four delay units. The network was then trained with data from running FEM
simulations of several input forms with different spatial and temporal variations. The equation for the
applied aerodynamic load is in the following form:

(1)

Where a, b, c represent spatial variation, whereas ω and θ are frequency (rad/s) and phase shift
(rad) respectively. The structural responses used to estimate aerodynamic loads were strain data at
the wing root and quarter span. The sampling rate of 100Hz was used to record the structural
responses.

Figure 6: Distributed Load Estimated
Using GA

Figure 5: Convergence History of the
Genetic Algorithm
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Figure  7 Network’s Configuration for the Temporal and Spatial Load Identification
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    A feedforward  neural network with four delays was successfully trained in 6 epochs. The mean
square error achieved was 4.9x10-5Pa2. To test the generalization of the network, an unseen
aerodynamic not used in the training, was estimated from strain measurements. Here the load to be
estimated was P(x,t)=(0.5-0.5x2) sin(6πt).
    Figure 8 and 9 show the estimated aerodynamic load and its error respectively. It can be seen that
the dynamic applied load can be estimated accurately using this approach.

Sensor Selection Using Genetic Algorithm

It has been shown above that a delayed neural network can be trained to learn the inverse
relationship between the measured structural responses and the applied aerodynamic load. The
success of the training and the resulting network's performance depends on the information content
and its quality of the measured data. Hence, the selection of this measured data is crucial. Here, an
optimization using genetic algorithm was carried out to select the sensor data needed for the selection
of the best sensor combination in the estimation of aerodynamic load (see Figure 10). For this
particular problem, two sensors are to be placed on the wing to measure bending strain. The
possible sensor locations are given as shown in Figure 11.

Figure 8: Dynamic pressure load
estimated from strain data Figure 9: Errors in estimating pressure

load using ANN
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Figure 10: Sensor Selection Using Genetic Algorithm
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Figure 11: Strain Gage Sensor Locations on the Wing

    Table 2 shows the results of running the algorithm 10 times. It can be shown that the optimal
sensor location for this particular problem is found to be at 1 and 3 meter from the wing's root.
Alternatively, combination sensors 1-5 or 1-4 can also be used with less accuracy.



Table 2: Sensor Optimization Result Using GA

No run Best sensor
combination

Achieved
MSE

Generation
number

1 1 - 3 3.5574e-5 3
2 1 - 4 3.7028e-5 9
3 1 - 4 3.7028e-5 5
4 1 - 3 3.5574e-5 3
5 1 - 3 3.5574e-5 3
6 1 - 3 3.5574e-5 9
7 1 - 5 3.6998e-5 4
8 1 - 5 3.6998e-5 7
9 1 - 7 3.9536e-5 4

10 1 - 4 3.7028e-5 5

5   Conclusions

A method of solving an inverse aerodynamic load from structural response data has been
presented. The method is based on applying a mapping capability of neural networks, and an
optimization strategy of Genetic Algorithm, combined with structural Finite Element Modeling
(FEM). The FEM is used to generate data required for training the neural networks, and to provide
data for the fitness calculation for the GA. MATLAB and its Neural Network Toolbox have been
used intensively in the development of the method. Lastly, the effectiveness of the method has been
demonstrated on the identification of both static and dynamic aerodynamic load on a wing structure.
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