p - School:    Famous Curves

         
1. Astroid


The blue curve is Astroid
The Pedal Curve is the
locus of the point P
of intersection of the perpendicular (1,2,3,4)
from the Pedal Point O
to a Tangent (5, 6, 7, 8)
to the Original Curve
(Astroid in this example)
Pedal Curve

Cartesian equation: x2/3 + y2/3 = a2/3 or       (x2 + y2 - a2)3 + 27a2x2y2 = 0
Parametrically equation: x = a cos3(t), y = a sin3(t),   Area of Curve: 3pa2/8,  
Let's calculate the length of astroid L .    xt' = -3a cos2(t) sin(t),  yt' = 3a sin2(t) cos(t),
(xt')2 + (yt')2 = (3a sin(t)cos(t))2 = (3a sin(2t)/2)2
L = 4ò 0p/2  Ö  (xt')2 + (yt')2   =  -4 * 3a/2 * 1/2 * cos(2t) ½0p/2   =  
-3a* (cos(p) - cos(0)) = 6a


The Inverse Curve is the locus of the inverse point P Pi and Qi are inverse if
      OPi * OQi = r2
Points (Q1,Q2,Q3,Q4)
belong to the Original Curve (here Astroid),
(P1,P2,P3,P4) belong to the Inverse Curve


The first to investigate the curve was Roemer (1674).
Also Johann Bernoulli (1691) worked on the curve.
Leibniz corresponded about the curve in 1715.


Astroid is defined as the trace of a point
on a circle of radius r rolling inside
a fixed circle of radius 4 r or 4/3 r. The latter is known as double generation.


To see the clip Astroid Trammel in the format mov the Quick Time
Movie Viewer plug-in should be installed for your browser.

The length of tangent cut 
by the axes is constant.
 A 
mechanical device where
a fixed bar with endings
sliding on two penpendicular
tracks is called the 
Trammel of Archimedes

Let's T is the point of tangency of tangent AB of astroid and coordinates of point T are:
  x0 = a cos3(t0),    y0 = a sin3(t0).    xt'(t0) = -3a cos2(t0) sin(t0),  yt'(t0) = 3a sin2(t0) cos(t0).
Derivation yx'(t0) = yt'(t0)/xt'(t0) = -tg(t0) and the equation of AB is:
(y - a sin3(t0))/ (x - a cos3(t0)) = -tg(t0).
Point B:   yB = 0 and xB = a sin3(t0)/tg(t0) + a cos3(t0) = a cos(t0).
Point A:   xB = 0 and yB = a cos3(t0)tg(t0) + a sin3(t0) = a sin(t0).
Therefore, length of Trammel of Archimedes is a.


2. Hypotrochoid and Epitrochoid


Parametric equation of Hypotrochoid:
   x = (a - b)cos(t) + h cos((a/b - 1)t),    y = (a - b)sin(t) - h sin((a/b - 1)t),


Defenition of Hypotrochoid:
   If circle B (radus b) roll inside circle A (radius a) without slipping and
   Q is a point fixed on B (tracing point, distance from the Q to the center
   of circle B is h), then the traced curve is called hypotrochoid.

Astroid is the case {1,1/4,1/4} of Hypotrochoid i.e. a/4 = b = h because
x = a/4 (3cos(t) + cos(3t)) and cos(3t) = cos3(t) - 3 sin2t cos(t) ,i.e x = (a/4) 4cos3(t)
y = a/4 (3sin(t) - sin(3t)) and sin(3t) = 3 cos2(t)sin(t) - sin3t , i.e. y = (a/4) 4sin3(t)
In the same way Astroid is the case {1,3/4,3/4} of Hypotrochoid i.e. a/4 = b = h


{1,3/4,5/13}


To see next famous clips in
the format mov the Quick Time
Movie Viewer plug-in should
be installed for your browser.
Astroid Generation (format mov)
Hypotrochoid (format mov)
For more details see many
Hypotrochoid Examples
Or Hypotrochoid Java Applet

{1,7/13,15/13}



Parametric equation of Epitrochoid:
   x = (a + b)cos(t) + h cos((a/b + 1)t),    y = (a + b)sin(t) + h sin((a/b + 1)t)

Defenition of Epitrochoid:
   If circle B (radus b) roll around circle A (radius a) without slipping and
   Q is a point fixed on B (tracing point, distance from the Q to the center
   of circle B is h), then the traced curve is called epitrochoid.

Cardioid is the case {1,1,1} of Epitrochoid i.e. a = b = h.
Therefore, parametric equation of Cardioid:
x = 2a cos(t) + a cos(2t)) = 2a cos(t)(1+cos(t)) - 2a
y = 2a sin(t) + a sin(2t)) = 2a sin(t)(1+cos(t))
From this the polar equation of the Cardioid: r(t) = 2a (1 + cos(t)).



{1,1/5,.6}
Epitrochoid formulas
Cardiod Generation(format mov)
Famous Curves Index
School of Mathematical and Computational Sciences University of St Andrews
JAVA Gallery of Interactive Geometry
Geometry Formulas and Facts
Hearty Munching on Cardioids

{1,3/5,.6}



Hypotrochoid and epitrochoid are roulette of two circles.
If one circle is inside another, the curve traced are called hypotrochoids.
Otherwise (one rolls outside another), the curves are called epitrochoids.
If the tracing point is on the (circumference) rolling circle,
the curves are called hypocycloid or epicycloids.


3. Cardioid

For any chord passes through cusp of a cardioid, the sum of distances
from the cusp to the intersections
is equal to the diameter of the cardioid. Really, this sum is equal
  r(t) + r(t + p) =
2a(1+cos(t)) + 2a(1+cos(t+p)) =  4a, because
cos(t) + cos(t + p)) = 0;
Cardiod Perimeter and Area
Cardiod Generation(format mov)
Special Plane Curves:Cardioid
A Visual Dictionary of Special Plane Curves

A tangent direction is given by the yx' = yt' / xt' = (2a sin(t)(1+cos(t))' / (2a cos(t)(1+cos(t))' =
(cos(t) + cos(2t))/(sin(t) + sin(2t)). If yx' = k, then cos(t) - k sin(t) + cos(2t) - k sin(2t) = 0.
Let's k = tg(a), then cos(t + a) + cos(2t + a) = 0. Therefore, 2cos(3t/2 + a) cos(t/2) = 0,
3t/2 + a = p/2 + p n,  t = 2pn/3 + (p/3 - a). On the other words a tangent direction is
repeating every 2p/3. Given any direction, there are exactly three tangents parallel to it.
If we connect the points of tangency to the cusp, the three segments meet at equal angles of 2p/3.


Three parallel red tangents have the points of tangency A, B, C. So, angles AOB, BOC, COA
are equal angles of 2p/3. O is
the casp point of cardioid.
Three parallel green
tangents
 have the points of
tangency D, E, F. So, angles DOE, EOF, FOD are equal angles of 2p/3.
Since cos(x) + cos(y) =
2cos((x+y)/2)cos((x-y)/2) then
cos(a+2p/3))+ cos(a+4p/3))=
2cos(a+p)cos(p/3)=
cos(a+p)= -cos(a). Hence,, sum of distances AO+BO+CO (or DO+EO+FO) is equal to
2a(1+cos(a))+
2a(1+cos(a+2p/3))+
2a(1+cos(a+4p/3)) = 6a for every a.


4. Hypocycloid and Epicycloid


Parametric equation of hypocycloid
   x = (a - b)cos(t) + b cos((a/b - 1)t),    y = (a - b)sin(t) - b sin((a/b - 1)t),
Hypocycloid is the hypotrochoid for b = h.

Parametric equation of epicycloids:
   x = (a + b)cos(t) + b cos((a/b + 1)t),    y = (a + b)sin(t) + b sin((a/b + 1)t),
Epicycloid is the epitrochoid for b = h.


THE EPICYCLOID
Curve Family Index
An epicycloid with some cusps

How to get epicycloid equation? Circle 1 (center C,radius b) roll around circle 2
(center O,radius a), point A moved to the point B, point B moved to the point D.
Point C' moved to the point C'. So, the point D has coordinates

b cos(b+g ) and b sin(b+g )

respecting the center C'.On the other hand point C' has coordinates

(a+b) cos(g ) and (a+b) sin(g )

respecting the center O. Hence, point D has coordinates

(a+b) cos(g ) + b cos(b+g ) and (a+b) sin(g ) + b sin(b+g )

respecting the center O. Let's found b . The arc length traced by point D is
equal to the distance circle 2 rolles around circle 1:

s = a * g , s' = b * b   and s = s' , i.e. b = (a/b)g .

Therefore, D has coordinates:
(a+b) cos(g) + b cos((a/b + 1)g) and (a+b) sin(g) + b sin((a/b + 1)g)

In the same way coordinates of point on the hypocycloid are
(a - b)cos(g) + b cos((a/b - 1)g), (a - b)sin(g) - b sin((a/b - 1)g)

If a = b for epicycloid we get equation
of the cardioid:
x = 2a cos(g ) + a cos(2g )
y = 2a sin(g ) + a sin(2g )
If b = a/4 for hypocycloid we get equation
of the astroid:
x = 3a cos(g ) + a cos(3g )
y = 3a sin(g ) - a sin(3g )


5. n-cusped epicycloid

From the equation of epicycloid
r2 = (a+b)2 + b2 + 2 b (a+b)[ cos((a/b + 1)g) cos(g) + sin((a/b + 1)g) sin(g)] =
(a+b)2 + b2 + 2 b (a+b)cos((a/b)g)
To get n cusps in the epicycloid, b = a/n, because then n rotations of b
bring the point on the edge back to its starting position.
r2 = a2/n2[(n2+n+2)+ 2(n+1)cos(ng)].

1-cusped epicycloid
r = 2a (1 + cos(g ))

x = 2a cos(g ) + a cos(2g )
y = 2a sin(g ) + a sin(2g )
It's not difficalt to calculate that cartesian equation is:
(x2 + y2 - 4 a x)2 = 4 a2(x2 + y2)
2-cusped epicycloid
r =

x = 3a cos(g ) + a cos(3g )
y = 3a sin(g ) + a sin(3g )
Cartesian equation: (x2 + y2 -4 a2)3 = 108 a4y2
3-cusped epicycloid
r =

x = 4a cos(g ) + a cos(4g )
y = 4a sin(g ) + a sin(4g )
4-cusped epicycloid
r =

x = 5a cos(g ) + a cos(5g )
y = 5a sin(g ) + a sin(5g )


Maintained by Rafael Stekolshchik       
klivlend1@yahoo.com
1