[image: image1.jpg]
Report Submitted to the Research Experience for Undergraduates Program at the USF College of Engineering.

Title: KDDTree: A Dynamic Spatial Data Structure for Intersect Searching

Name: Kevin Albrecht

Level: Senior

Number of semesters participated: 1

Date of submission: 12/12/2003

Advisor: Dr. Saigal / Dr. Fink

Department: Civil Engineering / Computer Science

This report has been approved:_________________________________Date:________

(Advisor signature)

Report can be published on the REU website: YES

KDDTree: A Dynamic Spatial Data Structure for Intersect Searching

Kevin Albrecht

1. Introduction

KDDTree is a dynamic version of a three-dimensional k-d tree. Like k-d trees, KDDTree is a multidimensional binary search tree. Unlike k-d trees, however, KDDTree also holds any three-dimensional object that can be bounded by a box (called the object’s “bounding box”) and allows dynamic insertions and deletions. KDDTree handles associative retrieval, which is retrieval based on multiple keys. Objects are sorted within the tree based on the center point of the bounding box.

Each level of the tree has an associated discriminator, either “x,” “y,” or “z.” The discriminators rotate by level, so that the first level is x-discriminating, the second level is y-discriminating, the third level is z-discriminating, the fourth level is x-discriminating, and so on. All nodes on an n-discriminating level discriminate based on the n-coordinate of the node’s associated bounding box. If a node A is x-discriminating, it means that the x-coordinate of the center points of all nodes in the left sub-tree of A are less than or equal to the x-coordinate of the center point of A. And the x-coordinate of the center points of all nodes in the right sub-tree of A are greater than the x-coordinate of the center point of A.

The structure has two modes which are set when the tree is created: self-balancing and non-self-balancing. The behavior of many algorithms depends on which mode is set.

2. Definitions

KDDTree uses the following procedures and values in addition to the major algorithms defined in the remainder of this document:

P.DISC is the discriminating dimension of the node P. Note that all nodes on the same level also have the same discriminating dimension: “x”, “y”, or “z”

P.GET_CHILD gets the child of P in the given direction.

P.SET_CHILD sets the child of P in the given direction.

NEXT_DIMENSION returns the next dimension in the rotating list of dimensions. If the dimension is “x”, then it returns “y”; if it is “y”, then it returns “z”; if it is “z”, it returns “x”.

P.VALUE returns the center coordinate of P in the given dimension.

OVERLAP returns true if the two given boxes overlap in three dimensions.

VALID returns true if the given node has not been marked for deletion.

3. Node Insertion

When the ADD procedure is called for a new object to be inserted into the tree, the object is not immediately inserted into the tree. Instead, the object is added to a list called the ADD_LIST. There are two ways that objects in the ADD_LIST are inserted into the tree. When there are objects are in the ADD_LIST and the REMOVE, FIND, or K_NEAREST_NEIGHBOR procedures are called, one of two things may happen: if self-balancing is on, the BALANCE procedure is called, causing the all the nodes on the ADD_LIST to be built into the tree as well; if self-balancing is off, the INSERT procedure is called for each object in the ADD_LIST. The running time of INSERT is O(log n) in the average case.

Procedure INSERT

Input: a node P which contains data to be inserted.

Result: the node P has been added to the tree.

if (root = null)

root <- P

P.DISC = “x”

else

T <- root

while (T != null)

F <- T

D <- COMPARE (P, T)

set safety box of T to enclose both P and T

T <- T.GET_CHILD (D)

end

F.SET_CHILD (P, D)

F.DISC = NEXT_DIMENSION(F.DISC)

end

The COMPARE procedure allows traversal of the tree by determining the relationship between two nodes. If the value (in the discriminating dimension) of P is less than the value of Q, then the procedure returns “left”; otherwise, it returns right.

Procedure COMPARE

Input: two nodes to compare, P and Q

Output: the subtree that P should be placed in if Q

 were its parent.

if (P.VALUE(P.DISC) <= Q.VALUE(P.DISC))

return “left”

else

return “right”

end

4. Tree Balancing

The BALANCE procedure causes the tree to become balanced so that all leaf nodes occur on no more than two adjacent levels. BALANCE is called in two possible ways. When self-balancing is on, it is called automatically by the REMOVE, FIND, and K_NEAREST_NEIGHBOR procedures when there are nodes on the ADD_LIST. When self-balancing is off, the balance procedure can be called to manually balance the tree. The average running time of BALANCE is O(n log n).

Procedure BALANCE

Input:

 D: the dimension being discriminated

 L, R: the left and right bounds of the array

 portion being balanced

 A: the array containing all nodes of tree

Result: the tree has been balanced

if (L > R)

return null

else

if L != R

K = MODIFIND (D, L, R, A)

P = A[K]

else

K = L

P = A[L]

end

Set safety box of P to include all bounding

boxes of array elements A[L] through A[R]

P.left = BALANCE (NEXT_DIMENSION(D), L, K-1, A)

P.right = BALANCE (NEXT_DIMENSION(D), K+1, R, A)

return P

end

The BALANCE procedure uses the MODIFIND algorithm. MODIFIND is given an array of n elements, where n = R-L+1 and L and R are the left and right bounds of the array portion to modify. MODIFIND then partitions the array portion into two parts so that the following holds:

A[L], A[L+1], …, A[K–2], A[K–1] <= A[K] <= A[K+1], A[K+2], …, A[R-1], A[R]

Where K is the median element and A[K] is the median value in the array portion: K = floor ((R – L + 1) / 2) + L + 1. MODIFIND is a modified version of C.A.R. Hoare’s FIND algorithm which is in turn a modification of the quick sort algorithm. The MODIFIND algorithm partitions in O(n) average case and O(n2) worst case.

Procedure MODIFIND

Input:

 D: the dimension being discriminated

 left,right: bounds of the array portion to partition

 A: the array containing all nodes of tree

Result: the array portion has been partitioned so that

 A[left] …, A[K–1] <= A[K] <= A[K+1], …, A[right]

Output:

 K, the median element in the array portion

 K = FLOOR ((R – L + 1) / 2) + L + 1

L = left + 1

R = right + 1

while (L < R)

X = A[K – 1]

I = L

J = R

do until ((J < K) || (K < I))

while (A[I-1].D < X.D)

I = I + 1

end

while (X.D < A[J-1].D)

J = J - 1

end

Swap A[I-1] with A[J-1]

 I = I + 1

J = J – 1

end

if (J < K) then L = I

if (K < I) then R = J

end

return K – 1

5. Node Removal

When an object is removed using the REMOVE procedure, the node is not actually removed from the tree. Instead, the node is simply marked as deleted. FIND and K_NEAREST_NEIGHBOR procedures ignore nodes marked as deleted by the REMOVE procedure. When the BALANCE procedure is called, nodes marked as deleted are actually deleted. In the worst case, REMOVE marks the node in O(n) time. Average case is O(lg n).
6. Intersect Find

The major use of the KDDTree data structure is to facilitate intersect finds. The FIND algorithm is given a box and returns a list of all the nodes in the tree whose bounding boxes intersect the given box. The algorithm uses the safety boxes of each node to determine if any of the boxes below that node in the tree could possibly intersect the given box.

Procedure FIND

Input:

 R: root of the subtree being examined

 B: box to test for intersections

 L: list to hold nodes found during search

Result: L contains all the elements on the tree which

 intersect with B

if (OVERLAP (B, R.SAFETY_BOX))

if (OVERLAP (B, R.BOUNDING_BOX) and VALID(R))

L.ADD (R)

End

if (R.LEFT != null)

FIND (R.LEFT, B, L)

end

if (R.RIGHT != null)

FIND (R.RIGHT, B, L)

end

end

References

1. Vladimir Zabrodsky. MODIFIND, Elektronika, number 6, pages 33-34, 1992.

2. Jon Louis Bentley. Multidimensional binary search trees used for associative searching. In Communications of the ACM, 18(9), pages 509-517, September 1975.

3. Hanan Samet. Design and Analysis of Spatial Data Structures. Computer Science Department, University of Maryland, December 2002.

