Boyer-Moore algorithm
PROBLEM
The text is an array T.1,T.2,...,T.N and the pattern is an array P.1,P.2,...,P.M. The elements of P. and T. are characters drawn from a finite alphabet Sigma., Sigma. is an array of R elements. We say that pattern P. occurs with shift S in text T. if 0<=S<=N-M and if T.SpJ=P.J, where SpJ indicates S+J, for J=1,...,M. String-matching problem is the problem of finding all valid shifts with which a given pattern occurs in a given text.
ALGORITHM
The BOYER_MOORE_MATCHER algorithm was invented by Robert S. Boyer and J. Strother Moore. Its worst-case running time is O((N-M+1)*M+R).
PRACTICE
When a text and a pattern are real strings then the fastest solution is by REAL_STRING_MATCHER. In general case there is not an unambiguous winner. You have to test subroutines:
on your data. Example, where M respectively R is number of elements in P. respectively in Sigma. and S is number of valid shifts:
Running time in seconds for N=100000 |
Algorithm |
M=10,R=1999,S=50 |
M=10,R=4,S=10000 |
M=100,R=4,S=10000 |
Naive |
16 |
25 |
150 |
KMP |
21 |
22 |
23 |
Boyer-Moore |
4 |
15 |
138 |
IMPLEMENTATION
Unit:
internal subroutine
Global variables: array T.1,...,T.N of strings, array P.1,...,P.M of strings, array Sigma.1,...,Sigma.R of strings
Parameters:
positive integer N - number of elements in T., positive integer M - number of elements in P., positive integer R - number of elements in Sigma.
Output:
displays on the screen Pattern occurs with shift S for all valid shift S
BOYER_MOORE_MATCHER:
procedure expose T. P. Sigma.
parse arg M, N, R
call COMPUTE_LAST_OCCURENCE_FUNCTION M, R
call COMPUTE_GOOD_SUFFIX_FUNCTION M
S = 0
do while S <= N - M
do J = M to 1 by -1
SpJ = S + J
if P.J <> T.SpJ then leave
end
if J = 0
then do
say "Pattern occurs at shift" S
S = S + Gama.0
end
else do
SpJ = S + J; TSpJ = T.SpJ
S = S + MAX(Gama.J, J - Lambda.TSpJ)
end
end
return
COMPUTE_LAST_OCCURENCE_FUNCTION:
procedure expose P. Lambda. Sigma.
parse arg M, R
do I = 1 to R
SigmaI = Sigma.I; Lambda.SigmaI = 0
end
do J = 1 to M
PJ = P.J; Lambda.PJ = J
end
return
COMPUTE_GOOD_SUFFIX_FUNCTION:
procedure expose Gama. P.
parse arg M
call COMPUTE_PREFIX_FUNCTION M
do I = 1 to M
PuvPi.I = Pi.I; PuvP.I = P.I
end
do I = M to 1 by -1
MmIp1 = M - I + 1; P.I = PuvP.MmIp1
end
call COMPUTE_PREFIX_FUNCTION M
do I = 1 to M; P.I = PuvP.I; end
do J = 0 to M
Gama.J = M - PuvPi.M
end
do L = 1 to M
J = M - Pi.L
if Gama.J > L - Pi.L
then Gama.J = L - Pi.L
end
return
COMPUTE_PREFIX_FUNCTION:
procedure expose Pi. P.
parse arg M
Pi.1 = 0; K = 0
do Q = 2 to M
Kp1 = K + 1
do while K > 0 & P.Kp1 <> P.Q
K = Pi.K; Kp1 = K + 1
end
Kp1 = K + 1
if P.Kp1 = P.Q then K = K + 1
Pi.Q = K
end
return
|
CONNECTIONS
Literature
Cormen T. H., Leiserson Ch. E., Rivest R. L. Introduction to Algorithms The MIT Press, Cambridge, 1990
|