Complex arithmetic
IMPLEMENTATION
A complex number is a string containing a real and an imaginary part separated by one or more blanks. The COMPLEX function creates a complex number from the real and imaginary parts.
COMPLEX: procedure
parse arg Re, Im; return Re Im
|
The REAL function returns the real part and the IMAGINARY function returns the imaginary part of a complex number.
REAL: procedure
parse arg Re Im; return Re
IMAGINARY: procedure
parse arg Re Im; return Im
|
ADDITION & SUBTRACTION
CADD: procedure
parse arg Ca, Cb
parse var Ca Ar Ai; parse var Cb Br Bi
return (Ar + Br) (Ai + Bi)
|
CSUB: procedure
parse arg Ca, Cb
parse var Ca Ar Ai; parse var Cb Br Bi
return (Ar - Br) (Ai - Bi)
|
MULTIPLICATION
CMUL: procedure
parse arg Ca, Cb
parse var Ca Ar Ai; parse var Cb Br Bi
return (Ar * Br - Ai * Bi),
(Ai * Br + Ar * Bi)
|
DIVISION
CDIV: procedure
parse arg Ca, Cb
parse var Ca Ar Ai; parse var Cb Br Bi
if ABS(Br) >= ABS(Bi)
then do
R = Bi / Br
Den = Br + R * Bi
return,
(Ar + R * Ai)/Den (Ai - R * Ar)/Den
end
else do
R = Br / Bi
Den = Bi + R * Br
return,
(Ar * R + Ai)/Den (Ai * R - Ar)/Den
end
|
MODULUS
CABS: procedure
parse arg Ar Ai
X = ABS(Ar); Y = ABS(Ai)
select
when X = 0 then return Y
when Y = 0 then return X
when X > Y
then do
W = Y/X
return X * SQRT(1 + W * W)
end
otherwise
W = X/Y
return Y * SQRT(1 + W * W)
end
|
SQUARE ROOT
CSQRT: procedure
parse arg Ar Ai
if Ar = 0 & Ai = 0 then return 0 0
X = ABS(Ar); Y = ABS(Ai)
if X >= Y
then do
R = Y/X
W = SQRT(X) *,
SQRT(0.5 * (1 + SQRT(1 + R)))
end
else do
R = X/Y
W = SQRT(Y) *,
SQRT(0.5 * (R + SQRT(1 + R)))
end
if Ar >= 0 then return W (Ai / (2 * W))
else do
if Ai >= 0 then return Ai / (2 * W)
else return Ai / (2 * -W)
end
|
REAL MULTIPLIER
RCMUL: procedure
parse arg C, R
parse var C Ar Ai
return R * Ar R * Ai
|
EXAMPLE The program
C1 = COMPLEX(1, 2)
C2 = COMPLEX(2, -1)
C3 = COMPLEX(0, 3)
say "C1 + C2 =" CADD(C1, C2)
say "C1 - C2 =" CSUB(C1, C2)
say "C1 * C2 =" CMUL(C1, C2)
say "C1 / C2 =" CDIV(C1, C2)
/* |C1| = SQRT(5) */
say "|C1| =" CABS(C1)
/* SQRT(C3) = SQRT(3/2) SQRT(3/2) */
say "SQRT(C3) =" CSQRT(C3)
exit
...
|
displays on the screen:
C1 + C2 = 3 1
C1 - C2 = -1 3
C1 * C2 = 4 3
C1 / C2 = 0 1
|C1| = 2.23606798
SQRT(C3) = 1.22474487 1.22474487
|
CONNECTIONS
Literature Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C : the art of scientific computing - 2nd ed. University Press, Cambridge, 1992
|