The purpose of these standards is to provide class guidelines for writing batch COBOL programs. Guidelines are provided that follow structured programming conventions for organizing and coding modules that reduce complexity, improve clarity, and are more easily maintained. These standards are an extract of those adopted by the Information Systems department at Consolidated Freightways Corporation for batch COBOL VS II programs and are not meant to be representative of industry standards.

A. Identification Division

Include the program title or id, author, and date written. The program’s purpose is to be contained in a comment box immediately following the Identification Division. This overview is to provide the reader a synopsis of the program function. Comment box boundaries should extend from column 7 to column 70.

B. Environment Division

The SELECT/ASSIGN statements are to be in the following order:

 	- input file(s)

	- output file(s)

Data Division

FD statements must appear in the same sequence as the corresponding SELECT statements. A comment box will be written for each FD and contain a brief description of the file.

Working storage fields must be grouped together in the following sequence:

	- sequence and indicator fields

	- counters and accumulators

	- work fields

	- input record

	- output records (header lines, detail line, footer lines)

Each group should begin with a comment box, blank line, and an 01 level. Comments must be used in Working Storage to separate and identify groups of data fields. All comments must be in a comment box. Comments must be clear and meaningful.

All level numbers should be aligned as follows:

	- level number 01 must always be coded in columns 8-9

	- all level numbers greater than 01 will be divisible by 5 and in increments of 5

	- successively higher level numbers will each be indented an additional 4 columns, so level 05 will be

 coded in columns 12-13, level 10 will be coded in columns 16-17, etc.

- there must be exactly two spaces between the level number and the data name

- '88' levels will be indented 2 columns

	

All Working Storage fields should have a VALUE clause reflective of their initial value.

Individual clauses will be vertically aligned, beginning in the following columns:

	- PICTURE	column 36

	- VALUE	column 48

- USAGE	column 60

	Deviations are allowed, as long as they consistent for each page.

Data Names. When creating data names make them as long as necessary to avoid ambiguity and to make the names self-documenting. For example, INV-NO could be invoice number or inventory number, but INVOICE-NBR is more explicit.

Common prefixes. The following field types must be named using the prefix shown. No other field type may use them as a prefix.

	- Input fields will be prefixed using IN-

	- Sequence fields will use CURR- and PREV-

	- Indicators will use IND-

	- Counters will be prefixed by CNT- or CNTR-

	- Accumulators will use ACCM- or ACCUM-

	- Work fields will use WS- or WK-

- Report fields will the prefix RP- or RPT-, when more than one report is created the prefix will be

 RP1- or RPT1- for the first report, RP2 for the second, etc.

D. Procedure Division

All COBOL programs will conform to the principles of Structured Programming Theory. The following conventions are necessary to satisfy the basic goals of structured programming:

All programs that considered by the instructor as not following these principles will be returned with an immediate 10 point deduction. You will have until the beginning of the next scheduled class to bring the program up to these standards for it to be considered for a grade.

A program will consist of modules or paragraphs of code, each module being devoted to one specific function. All code within a module should be directly concerned with accomplishing that one function.. A function may be a ‘packed function’. This is a combination of a few small, related functions. For example, a paragraph whose purpose is to obtain a record from a file may contain	three functions: READ, check the record sequence, and increment the record count.

Within the Procedure Division, modules should be arranged according to where they are performed. The first module will be the control module for the program. The rest of the program will be performed, directly or indirectly, from this point.

A control module is level 0. Any module performed by a control module would be level 1. All modules performed from any level 1 module are of level 2, etc.

Paragraph names are to be descriptive of the processing that occurs in that paragraph and are to be coded in the following format: ANNN-DESCRIPTIVE-NAME. ‘A’ is a single alphabetic character which relates all of the paragraphs performed by a level 0 paragraph back to that paragraph. ‘NNN’ is a numeric code that is indicative of the level of the paragraph.

There must be a comment box at the beginning of each paragraph in the Procedure Division. Comments will explain what the program is doing, not how it is doing it. Only in the event that a particular piece of code is too complex to be easily understood should an explanation of how a task is being accomplished be included. Comments must be clear and meaningful.

Formatting.

To standardize the visual format and graphically highlight the structure of the code, the following rules are to be followed in formatting the code of the Procedure Division.

Code only one COBOL verb and/or logical connective (AND, OR, AND NOT, OR NOT) per line.

Statements that are subordinate to an IF, ELSE, or an EVALUATE statement are to be indented 4 columns from the IF, ELSE, or EVALUATE statement.

When an ELSE is used, it is to be coded on a line by itself beginning in the same column as the IF to which it corresponds.

Each WHEN in an EVALUATE structure will start on a new line indented 4 spaces from the EVALUATE.

Statements requiring more than one line of code and not specifically covered above are to be indented at least 6 spaces on successive lines.

Periods must be coded at the end of each and every sentence.

When a scope delimiter (END-IF, END-PERFORM, etc.) is used, it is to be coded on a line by itself beginning in the same column as the word to which it corresponds.

A PERFORMed paragraph must appear after the paragraph that performs it with the exception of common or utility paragraphs that go at the end of the program.

GO TO statements are not allowed.

When coding test conditions, use the symbols ‘=‘, ‘>‘, and ‘<‘ for relational operators rather than coding IS EQUAL TO, etc.

There must be only one OPEN and one CLOSE statement in a program. There must be only one WRITE verb associated with each file. However, the paragraph containing the WRITE statement may be performed from more than one place in the program.

The output report or file must conform to the program specification.	

CIS 133C Class Coding
