
ARM Transport - Active Reliable Multicast Transport
Protocol

Dmitri Kondratiev

dkondr@bigfoot.com

Table of Contents
Abstract ...3
Protocol Description...3
Message Types and Header Definitions...4
Detailed Protocol Operation...18

Abstract
This document provides design overview of the ARM - Active Reliable Multicast
Transport protocol. ARM uses IP Multicast to reliably deliver bulk data to a group
of recivers engaged in one-to-many or many-to-many session. ARM design to some
extent follows the one of NACK-Oriented Reliable Multicast Protocol (NORM) and
also borrows some ideas from StarBurst Multicast File Transfer Protocol (MFTP). In
essence ARM Transport is a simplified version of NORM protocol enchansed with
similar to MFTP mechanism used for session anouncement and data transfer in sep-
arate multicast groups.

Protocol Description

ARM Transport Service Model

The protocol design is principally driven with the assumption of a single sender
transmitting bulk data content to a group of receivers. However, the protocol does
provide for multiple senders to coexist within the context of a ARM Session. In initial
implementations of this protocol, it is anticipated that multiple senders will transmit
independently of one another and receivers will maintain state as necessary for each
independent sender.

As well as [NORM] ARM provides for three types of bulk data content objects
to be reliably transported. These types include static computer memory data
content (ARM_OBJECT_DATA), computer storage files (ARM_OBJECT_FILE),
and non-finite streams of continuous data content (ARM_OBJECT_STREAM). The
distinction between ARM_OBJECT_DATA and ARM_OBJECT_FILE is simply to
provide a "hint" to receivers in ARM Sessions serving multiple types of content as to
what type of storage should be allocated for received content (i.e. memory or file
storage). Other than that distinction, the two are identical, providing for reliable
transport of finite units of content.

The static data and file services are anticpated to be useful for multicast-based cache
applications with the ability to reliably provide transmission/repair of a large set of
static data. Other types of static data/file "casting" services might make use of these
transport object types, too.

ARM_OBJECT_STREAM type may be used for reliable messaging or other
unbounded, perhaps dynamically produced content. The ARM_OBJECT_STREAM
provides for reliable transport analogous to that of the Transmission Control
Protocol (TCP) although ARM receivers will be able to begin receiving stream
content at any point in time (The applicability of this feature will depend upon the
application).

The ARM protocol allows for a small amount of "out-of-band" data (ARM_INFO).
This readilyavailable "out-of-band" data allows multicast receivers to quickly and
efficiently determine the nature of the bulk content (data, file, or stream) being trans-
mitted to allow application-level control of the receiver node’s participation in the
current transport activity. This allows the protocol to be flexible with minimal pre-
coordination among senders and receivers.

Reliable file data transfer is based on "Shared Recovery with Multicast NAKs and
Retransmissions" mechanism. To avoid the NAK implosion receivers share recov-
ery responsibilities. When a receiver detects missing data and sends a NAK, another
receiver that has received the data can potentially respond to the NAK by retransmit-
ting the missing data.

ARM uses NAKs and retransmission requests sent by receivers to a multicast group
address. As a result all ARM receivers equaly participate in repairs. Here ARM duf-
feres from NORM which uses unicast links to send these requests from receivers to
a single sender which is the only one to provide all repairs. ARM algorithm used

3

ARM Transport - Active Reliable Multicast Transport Protocol

to send NAKs and retransmission requests resembles Host Membership Queries in
IGMP.

ARM Multicast NAKs and Retransmissions Algorithm in BSG cloud.

Algorithm

In BSG cloud, BSGs of all levels (level 1 and 2) play the same role of receivers sending
both NACKs and answering retransmission requests as well. Thus, no matter what
level, all BSGs are equal in that they perform the same roles in ARM File protocol.
This assumes some file storage and/or file cache on every BSG to retransmit data.

Below the description of ARM basic retransmission algorithm follows with ’receiver’
used in place of ’BSG’ and vice versa.

• 1. When a receiver detects missing data, it starts a (random) timer.

• 2. When the timer expires and receiver hasn’t yet received a NAK for the miss-
ing data from the group (multicast) address, it sends a NAK to the group (with a
limited scope).

• 3. All receivers within the scope see the NAK, start a (random) timer, and watch
for the requested data to be retransmitted.

• 4. If retransmitted data is seen, receivers stop the timer. Else, if their timer expires
they retransmit the data to the multicast group address (with a limited scope) if
they have it, or send another NAK if not.

Advantages

• Off-load the recovery burden from the sender, and provide faster recovery (since
NAK and retransmitted data have a shorter distance to travel).

• Other receivers that also missed the same data can see the NAKs, and don’t need
to send them to benefit from the retransmitted data.

• Reduced recovery latency.

• Reduced network traffic in the path between sender and receiver.

Caveats.

• May increase overall network traffic.

• Receivers must be capable of gracefully handling redundant data.

• Retransmission must be done in the limited scope.

• Data delivery is delayed because of the time-outs to send NACKs.

• Will not work on network topologies that don’t support many-to-many multicast.

Message Types and Header Definitions
There are two primary classes of ARM messages: messages generated by the sender
of reliable multicast traffic and messages generated by receivers. These are described
in corresponding sections below after the portion of ARM Message header common
to all ARM messages is described.

4

ARM Transport - Active Reliable Multicast Transport Protocol

The multi-octect header fileds contain data in network (big-endian) byte order.

ARM Common Message Header

There are some common message fields contained in all ARM message types. All
ARM protocol messages begin with a common header with information fields as
follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| version | type | sequence |
+-+
| source_id |
+-+

Figure 1. Common Message Header

The "version" field is a 8-bit value indicating the protocol version number. Currently,
ARM implementations SHOULD ignore received messages with a different protocol
version number. This number is intended to indicate and distinguish upgrades of the
protocol which may be non-interoperable. The message "type" field is a 8-bit value
indicating the ARM protocol message type. These types are defined as follows:

Message Value

ARM_INFO 1
ARM_DATA 2
ARM_CMD 3
ARM_NACK 4
ARM_ACK 5
ARM_REPORT 6

Figure 2. Message Types

The "sequence" field is a 16-bit value which is set by the message originator as a
monotonically increasing number incremented with each ARM message transmit-
ted. This value can be monitored by receiving nodes to detect packet losses in the
transmission. Note that this value is NOT used to detect missing reliable data con-
tent, but is intended for use in an algorithm estimating raw packet loss for congestion
control purposes. The size of this field is intended to be sufficient to allow detection
of a reasonable range of packet loss within the expected delay-bandwidth product
of expected network connections. The "source_id" field is a 32-bit value identifying
the node which sent the message. A participant’s ARM node identifier (ArmNodeId)
can be set according to the application needs but unique identifiers must be assigned
within a single ArmSession. In some cases, use of the host IP address or a hash of
it can sufice, but alternative methodologies for assignment and potential collision
resolution of node identifiers within a multicast session need to be considered. For
example, the "source identifier" mechanism defined in the RTPv2 specification [REF
RTP] may be applicable to use for ARM node identifiers. At this point in time, the
protocol makes no assumptions about how these unique identifiers are actually as-
signed.

5

ARM Transport - Active Reliable Multicast Transport Protocol

Sender Messages

ARM_DATA

This is expected to be the predominant message type transmitted by ARM senders.
These messages will contain data content for objects of type ARM_OBJECT_DATA,
ARM_OBJECT_FILE, and ARM_OBJECT_STREAM.

A goal of the protocol design is to provide for parallel transmis- sion of different
streams and data/file sets. ARM_DATA messages will generally consist of original
data content of the application data being transmitted.

The payload size of these messages will depend on the content being transfered. In
case of files, most probably, all messages (except maybe the last one) will have the
fixed payload size that receivers may calculate using the formula:

arm_payload_size = arm_packet_size - arm_headers_size

This allows receivers to allocate appropriate buffering resources and to determine
other information in order to properly process received data messaging.

In case of sending object with different message sizes additional messages may be
used (ARM_INFO or ARM_CMD) to advertize message size as needed.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| flags | grtt | gsize | reserved |
+-+
| session_transport_id | object_transport_id |
+-+
|object_size_b0 |object_size_b1 |object_size_b2 |object_size_b3 |
+-+
|object_size_b4 |object_size_b5 |object_size_b6 |object_size_b7 |
+-+
| block number |
+-+
| payload_data* |

Figure 3. ARM_DATA Header

The "flags" field contains a number of different binary flags pro- viding information
and hints regarding how the receiver should han- dle the identified object. Defined
flags in this field include:

Table 1. ARM_DATA Flags

Flag Value Purpose

ARM_FLAG_REPAIR 0x01 Indicates message is a
repair transmission

ARM_FLAG_INFO 0x02 Indicates availability of
ARM_INFO for object.

ARM_FLAG_UNRELIABLE0x04 Indicates that repair
transmissions for the
specified object will be
unavailable. (One-shot,
best effort transmission)

6

ARM Transport - Active Reliable Multicast Transport Protocol

ARM_FLAG_FILE 0x8 Indicates object is
"file-based" data (hint to
use disk storage for
reception)

ARM_FLAG_STREAM 0x10 Indicates object is of type
ARM_OBJECT_STREAM

The ARM_FLAG_REPAIR flag is set when the associated transmission is a repair
transmission. This information can be used by receivers to facilitate a join policy
where it is desired that newly joining receivers only begin participating in the NACK
process upon receipt of new "fresh" data. The ARM_FLAG_INFO flag is set only
when the optional ARM_INFO content is available for the associated object. Thus,
receivers will NACK for retransmission of ARM_INFO only when it is available. The
ARM_FLAG_UNRELIABLE flag is set when the sender wishes to transmit and ob-
ject with "best effort" delivery only and will not supply repair transmissions for the
object. The ARM_FLAG_FILE flag can be set as a "hint" from the sender that the as-
sociated object should be stored in nonvolatile storage. The ARM_FLAG_STREAM
flag is set when the identified object is of type ARM_OBJECT_STREAM. Note that
the "object_size" field is no longer applicable (Another use for this field for "stream"
objects may be determined as this capability is designed).

The "grtt" field contains a non-linear quantized representation of the sender’s current
estimate of group round-trip time (GRTT). This value is used to control timing of the
NACK repair process and other aspects of protocol operation as described in this
document.

The "gsize" field contains a representation of the sender’s current estimate of group
size. This value is used to control feedback suppression mechanisms within the pro-
tocol. The 8-bit "gsize" field consists of 4 bits of mantissa in the 4 most significant
bits and 4 bits of base 10 exponent (order of magnitude) information in the 4 least
significant bits. For example, to represent an approximate group size of 100 (or 1e02),
the value of the upper 4 bits is 0x01 (to represent the mantissa of 1) and the lower 4
bits value would be 0x02 for an 8-bit representation of "0x12". As another example,
a group size of 9000 (9e03) would be represented by the value 0x93. The group size
does not need to be represented with a high degree of precision to appropriately scale
backoff timers, etc.

The "session_transport_id" field is a monotonically and incrementally increasing
value assigned by a sender to the session being transmitted. Transmissions and
repair requests related to that session use the same "session_transport_id" value.
For sessions of very long or indefinite duration, the "session_transport_id" field
may be repeated, but it is presumed that the 16-bit field size provides an adequate
enough sequence space to prevent temporary object confusion amongst receivers
and sources (i.e. receivers SHOULD resynchronize with a server when receiving
session sequence identifiers sufficiently out-of-range with the current state kept for
a given source).

The "object_transport_id" field is a monotonically and incrementally increasing value
assigned by a sender to the object being transmitted in context of one session. Trans-
missions and repair requests related to that session and object use the same "ses-
sion_transport_id","object_transport_id" value. During the course of its transmission
within a ARM session, an object is uniquely identified by the concatenation of the
sender "node_id" and the given "session_transport_id","object_transport_id". Note
that ARM_INFO messages associated with the identified object carry the same "ob-
ject_transport_id" value.

The 64-bit "object_size" field indicate the total size of the object (in bytes). Object size
in this field is encoded in network byte order (big-endian) with the most significant
byte in the lowest address and other octets following in reverse order of significance
(object_size_b0, object_size_b1 ... object_size_b7).

7

ARM Transport - Active Reliable Multicast Transport Protocol

This information is used by receivers to determine storage requirements and/or allo-
cate storage for the received object. Receivers with insufficient storage capability may
wish to forego reception (i.e. not NACK for) of the indicated object. The "object_size"
fields are not applicable for objects of type ARM_OBJECT_STREAM. (Note: The "ob-
ject_size" fields _may_ be defined to serve an alternative use in this case).

The 32-bit "block number" field contains the number of data block sent in this mes-
sage. Block number is relative to "object_transport_id", which means that this number
starts from 0 for every new ARM_OBJECT sent.

The "payload_data" field contains original data, where:

arm_payload_size = arm_packet_size - arm_headers_size

ARM_INFO

The ARM_INFO message is used to convey _optional_ "out-of-band" context infor-
mation for objects transmitted. An example may be MIME type information for the
associated file, data, or stream object. Receivers might use this information to make
a decision as whether to participate in reliable reception of the associated object.
Each ArmObject may have an independent unit of ARM_INFO associated with it.
ARM_DATA messages contain a flag to indicate the availability of ARM_INFO for
a given NormObject. ARM receivers may NACK for retransmission of ARM_INFO
when they have not received it for a given NormObject. The size of the ARM_INFO
content is limited to that of a single ARM message for the given sender. This atomic
nature allows the ARM_INFO to be rapidly and efficiently repaired within the ARM
reliabel transmission process.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| flags | grtt | gsize | reserved |
+-+
| session_transport_id | object_transport_id |
+-+
|object_size_b0 |object_size_b1 |object_size_b2 |object_size_b3 |
+-+
|object_size_b4 |object_size_b5 |object_size_b6 |object_size_b7 |
+-+
| payload_data* |

Figure 4. ARM_INFO Header

The "flags", "grtt", "gsize", "session_transport_id", "object_transport_id" and
"object_size" fields carry the same information and serve the same purpose as with
ARM_DATA messages. These values allow the receiver to prepare buffering, etc
for further transmissions from the sender if this is the first message received. The
"payload_data" field contains application-defined content which can be used by the
receiver application for various purposes.

ARM_CMD

ARM_CMD messages are transmitted by senders to perform a number of different
protocol functions. This includes round-trip timing collection, potential congestion
control functions, synchronization of receiver NACKing "windows", notification of
sender status and other core protocol functions. A core set of ARM_CMD messages
will be enumerated. A range of command types will remain undefined for potential
application-specific usage. Some ARM_CMD types (possibly including application-
defined commands) may have some dynamic content attached. This content will

8

ARM Transport - Active Reliable Multicast Transport Protocol

be limited to a single ARM message to retain the atomic nature of commands. The
ARM_CMD message begins with a common header, following the usual ARM mes-
sage common header. The header format is defined as:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor | ...
+-+

Figure 5. ARM_CMD Common Header

The "grtt" and "gsize" fields provide the same information and serve the same pur-
pose as with ARM_DATA and ARM_INFO messages. The "flavor" field indicates the
type of command to follow. The command flavors (types) include:

Table 2. ARM_CMD Flavors

Command Flavor Value Purpose

ARM_CMD(FLUSH) 1 Indicates sender
temporary or permanent
end-of-transmission.
(Assists in robustly
initiating outstanding
repair requests from
receivers).

* ARM_CMD(SQUELCH) 2 Advertisement of current
repair window in response
to out-of-range NACKs.

ARM_CMD(ACK_REQ) 3 Requests positive
acknowledgement from a
list of receivers.

*
ARM_CMD(REPAIR_ADV)

4 Advertise sender’s
aggregated NACKs for
suppression of unicast
feedback.

* ARM_CMD(CC) 5 Probe possibly used for
explicitly collecting
congestion control
feedback.

ARM_CMD(APPLICATION)6 Robustly repeated
application-defined
command which can
temporarily preempt ARM
data transmission.

* Currently unsupported ARM_CMD flavors

ARM_CMD(FLUSH)

The ARM_CMD(FLUSH) command is sent when the sender reaches the end of any
data content and pending repairs it has queued for transmission. This command is re-
peated once per 2*GRTT to excite the receiver set for any outstanding repair requests
for data up to and including the point indicated by the FLUSH message. The num-
ber of repeats is equal to ROBUST_FACTOR. The greater this number, the higher the
probability that all applicable receivers will be excited for repair requests (NACKs)

9

ARM Transport - Active Reliable Multicast Transport Protocol

and the corresponding NACKs are delivered to the sender. If a NACK message
interrupts the flush process, the sender will re-initiate the flush process when repair
transmissions are completed. Note that receivers also employ a timeout mechanism
to self-initiate NACKing when a sender is determined to have gone "idle". This in-
activity timeout is related to 2*GRTT*ROBUST_FACTOR and will be discussed more
later. With a sufficient ROBUST_FACTOR value, data content is delivered with a high
assurance of reliability. The penalty of a large ROBUST_FACTOR value is potentially
excess sender ARM_CMD(FLUSH) transmissions and a longer timeout for receivers
to self-initiate a terminal NACK process. The format of the ARM_CMD(FLUSH) mes-
sage (in addition to the ARM message common header) is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 1 | flags |
+-+
| session_transport_id | object_transport_id |
+-+
| block_number |
+-+

Figure 6. ARM_CMD(FLUSH) Message

In addition to the common ARM_CMD "grtt", "gsize", and "flavor" fields, the
ARM_CMD(FLUSH) message contains fields to identify the current logical
transmit position of the sender. These fields consist of "session_transport_id",
"object_transport_id" and "block_num ber". These fields are interpreted in the same
manner as the fields of the same names in the ARM_DATA message type. Receivers
are expected to check their completion state and initiate the NACK repair process
if they have outstanding repair needs up through this transmission point. If the
receivers have no outstanding repair needs, no response is generated.

A single "flag" value is currently defined:

ARM_FLUSH_FLAG_EOT = 0x01

When the ARM_FLUSH_FLAG_EOT is set, it indicates the sender is preparing to ter-
minate transmission and no longer provide response to repair requests. This allows
the receiver set to gracefully reach closure of operation with this sender and free any
resources which are no longer needed.

ARM_CMD(ACK_REQ)

The ARM_CMD(ACK_REQ) message is used by the sender to request acknowledge-
ment from a specified list of receivers. This message serves in a lightweight posi-
tive acknowledgement mechanism which can be optionally employed by the reli-
able multicast application to deterministically determine that watermark points in
the reliable transmission have been achieved by specific receivers. The format of the
ARM_CMD(ACK_REQ) message (in addition to the ARM message common header)
is shown below.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 3 | ack_flavor |
+-+
| ack_req_content |
+-+
| ack_req_content (cont’d) |
+-+

10

ARM Transport - Active Reliable Multicast Transport Protocol

| acking_node_list ... |

Figure 7. ARM_CMD(ACK_REQ) Message

The ARM_CMD(ACK_REQ) Message consists of "grtt", "gsize", and "flavor" fields as
with other ARM_CMD messages. Then an "ack_flavor" field is specified followed by
64-bits of "ack_flavor" specific content and a list of ArmNodeIds which are expected
to explicitly respond to the acknowledgement request. The "wildcard" ArmNodeId
may be listed when a response is expected from all receivers.

The "ack_flavor" field is used to indicate the interpretation of the 64-bit
ack_req_content" field space following the "ack_flavor" field. The following
"ack_flavor" values are defined:

+--------------------+--------------+----------------------------------+
| ACK Type | Flavor Value | Purpose |
+--------------------+--------------+----------------------------------+
ARM_ACK(WATERMARK)	1	Request for acknowledgement of
		reliable reception of watermark
		transmission point.
+--------------------+--------------+----------------------------------+		
ARM_ACK(SESSION)	2	Request for acknowledgement of
		reliable reception of
		complete session
+--------------------+--------------+----------------------------------+		
ARM_ACK(RTT)	3	Sender timestamp information and
		optional request for explicit
		RTT collection response
+--------------------+--------------+----------------------------------+

ARM_ACK(WATERMARK) and ARM_ACK(SESSION)

The ARM_ACK(WATERMARK) identifies a watermark point in the sender’s reliable
transmission and explicitly requests positive acknowledgement from a portion of the
receiver set.

The ARM_ACK(SESSION) also identifies a watermark point - end of session - in
the sender’s reliable transmission and explicitly requests positive acknowledgement
from receiver. This command indicates to reciever that no more data will be sent in
the current session and session ends.

The only difference in format of the ARM_CMD(ACK_REQ(WATERMARK)) and
ARM_CMD(ACK_REQ(SESSION)) message is the value of "ack_flavor" field. The
format (in addition to the ARM common message header) is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 3 | ack_flavor |
+-+
| session_transport_id | object_transport_id |
+-+
| block_number |
+-+
| acking_node_list ... |

Figure 8. ARM_CMD(ACK_REQ(WATERMARK)) and and
ARM_CMD(ACK_REQ(SESSION)) Messages

The "session_transport_id", "object_transport_id" and "block_number" are used to
identify the watermark point for which the positive acknowledgement request ap-
plies. This watermark point is similar to that used in ARM_CMD(FLUSH) message.

11

ARM Transport - Active Reliable Multicast Transport Protocol

It should be noted that all receivers are expected to treat the ACK_REQ command
equivalently to a FLUSH command and appropriately initiate NACK repair cycles in
response to any detected missing data up to the watermark point.

The "acking_node_list" field contains the current list of receiver ArmNodeIds which
should reply with postive acknowledgement to this request. The packet payload
length implies the length of the "acking_node_list" and its length is limited to the
ArmSegmentSize. The ArmNodeIds are listed in network (Big Endian) order. The
indicated receivers SHALL send a ARM_ACK message in response to this request
IF they have no outstanding repair needs up to and including the watermark point.
Note this does _not_ necessarily mean the receivers actually received all of the data,
but simply that, for whatever reason (including the fact they may have already re-
ceived the data or if the receiving application simply chose _not_ to receive the indi-
cated data), they have no outstanding repair needs prior to the watermark point. Ver-
ification of actual received data content may also be accomplished by another means
outside of this transport layer protocol. Receivers SHALL randomly spread their re-
sponse to this request using a uniform distribution over 1 GRTT of time. Again, note
the size of the included list is limited to the sender’s ArmSegmentSize setting. Thus,
multiple ARM_CMD(ACK_REQ) cycles may be required to achieve responses from
all receivers specified. Also, the number of attempts to excite a response from a given
receiver SHALL be limited to ROBUST_FACTOR. The ARM_CMD(ACK_REQ) is re-
peated at a rate of once per 2*GRTT. Note that the content of the attached ArmNodeId
list will be dynamically updated as this process progresses and ACKs are received
from the specified receiver set. The process SHALL terminate when all desired re-
ceivers have responded or the maximum number of attempts has been achieved.
Note that repair requests can interrupt the positive acknowledgement process and
the positive acknowledgment process will resume only when there are no pending
repair transmissions up to the specified watermark point.

ARM_CMD(ACK_REQ(RTT))

The ARM_CMD(ACK_REQ(RTT)) is periodically transmitted by the sender to pro-
vide a reference point (a timestamp) so that receivers can calculate appropriate re-
sponse content in ARM_NACK and ARM_ACK messages from which the sender
can monitor and estimate the current GRTT. Currently, this reference is sent sepa-
rately from other sender message and not included in every message because of the
excessive overhead it may impose on data transmission. Generally, the GRTT is not
expected to be so dynamic as to require rapid update. However, a technique is be-
ing investigated by the NORM author to provide a low overhead reference which
could be attached to every sender transmission and used for the receiver response
generation [REF].

This command may also potentially be leveraged to serve as part of ARM conges-
tion control to periodically provide updated congestion control information and/or
probing to the group. If this is the case, there will likely be sufficient content in this
message that it merits a separate message rather than be periodically included in the
overhead of other sender transmissions.

This command may also be extended to assume some responsibility in initializing
and updating a group size estimator used to appropriately scale NACK suppres-
sion back-off timing, etc. For now, a minimal format is defined as a placeholder for
this message. The format of the ARM_CMD(GRTT_REQ) message (in addition to the
ARM message common header and the ARM_CMD common header) is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 3 | ack_flavor = 2|
+-+
| send_time_sec |

12

ARM Transport - Active Reliable Multicast Transport Protocol

+-+
| send_time_usec |
+-+
| acking_node_list ... |

Figure 9. ARM_CMD(ACK_REQ(RTT)) Message

The "send_time" field is a precision timestamp indicating the time that the
ARM_CMD(GRTT_REQ) message was transmitted. This consists of a 64-bit field
containing 32-bits with the time in seconds ("sent_time_sec") and 32-bits with the
time in microseconds ("send_time_usec") since some reference time the source
maintains (usually 00:00:00, 1 January 1970). The ordering of the fields in Big Endian
network order.

The "acking_node_list" again is a list of ArmNodeIds for receivers which should ex-
plicitly respond to the request. The "wildcard" NormNodeId may be listed when a
response is expected from all receivers. When this "wildcard" response is elicited,
the receiver set is expected to randomly spread their response over time, scaled as a
function of the "grtt" and "gsize" values to avoid response implosion. The receivers
corresponding to other listed specific ArmNodeIds are expected to respond imme-
diately with an appropriate ARM_ACK message (unless a ARM_NACK message is
already queued for response). Both ARM_NACK and ARM_ACK messages are de-
signed to contain information to allow the sender to determine round trip times for
responding receivers.

ARM_CMD(APPLICATION)

This command allows the ARM application to robustly transmit application defined
content. The message is repeated ROBUST_FACTOR times at a rate of once per
2*GRTT. This rate of repeat allows the application to collect a response (if that is the
application’s purpose for the command) before it is repeated.

Some commands of this type may be sent in parallel with ongoing data while others
preempts any existing transmission. In later case regular data object transmission is
resumed when the repeated transmission of this message has completed.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 6 | reserved |
+-+
| application defined content ... |

Figure 10. ARM_CMD(APPLICATION) Message

ARM_CMD(APPLICATION(SESSION_INFO))

This message contains current session info. Receivers may use information in this
command to get additional properties of the session. At the moment of writing
ARM_CMD(APPLICATION(SESSION_INFO)) contains information about file
session and has the following format :

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| grtt | gsize | flavor = 6 | app_flavor |
+-+
| file_desc_count | total_file_desc_size |
+++
| file_descriptor ... file_descriptor ... |

13

ARM Transport - Active Reliable Multicast Transport Protocol

Figure 11. ARM_CMD(APPLICATION(SESSION_INFO)) Message

Where "app_flavor" defines ARM_CMD(APPLICATION) subtype and currently has
a single value:

app_flavor Value
ARM_CMD_APPLICATION_SESSION_INFO 1

The "file_desc_count" field contains a count of "file_descriptor" records in this mes-
sage.

The "total_file_desc_size" fieled contains the total size (in bytes) of of all
"file_descriptor" records in this message.

The "file_descriptor" is a record of the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| file_size |
+-+
| str_size | file_name |

Figure 12. Session Info File Descriptor

Receiver Messages

ARM_NACK

The principal purpose of ARM_NACK messages will be for receivers to request re-
pair of content via negative acknowledgement upon detection of incomplete data.
ARM_NACKs will be transmitted according to the rules of NACK generation and
suppression of the ARM NACK process. A goal for the content of these messages
is to use a format which can be potentially used by compatible intermedi- ate sys-
tems [REF Generic Router Assist Building Block] to provide assistance in promoting
protocol scalability and efficiency when available. ARM_NACK messages generated
will also contain addi- tional content to provide feedback to sender(s) for purposes
of round-trip timing collection, congestion control, etc.

ARM_NACK messages are transmitted by ARM receivers in response to the de-
tection of missing data in the sequence of transmissions received from a particular
source. The specific times and condi- tions under which receivers will generate and
transmit these ARM_NACK messages are governed by the processes described in
detail later in this document. The payload of ARM_NACK messages contains one or
more "ObjectNACKs" for different objects and por- tions of those objects. In addition
to the common message header the ARM_NACK messages contain the following
fields:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| server_id |
+-+
| grtt_response_sec |
+-+
| grtt_response_usec |
+-+
| loss_estimate | grtt_req_sequence |
+-+

14

ARM Transport - Active Reliable Multicast Transport Protocol

| watermark_received |
+-+
| nack_content ... |

Figure 13. ARM_NACK Header

The "server_id" field identifies the source to which the ARM_NACK message
is destined. Other sources should ignore this message. (Note that this another
reason why multiple potential sources within an ARM session MUST have unique
NormNodeIds).

The "grtt_response" fields contain a timestamp indicating the time at which the
ARM_NACK was transmitted. The format of this timestamp is the same as the
"send_time" field of the ARM_CMD(ACK_REQ(RTT)). However, note that the
"grtt_response" timestamp is _relative_ to the "send_time" the source provided with
the corresponding ARM_CMD(ACK_REQ(RTT)) command. The receiver adjusts
the source’s ARM_CMD(ACK_REQ(RTT)) "send_time" timestamp by the time
differential from when the receiver received the ARM_CMD(ACK_REQ(RTT)) to
when the ARM_NACK was transmitted to calculate the value in the "grtt_response"
field. This is the "receive_to_response_differential" value in he following formula:

"grtt_response" = request "send_time" + receive_to_response_differential

The receiver may set the "grtt_response" to a ZERO value, to indicate that the it has
not yet received a ARM_CMD(ACK_REQ(RTT)) command from the source and the
source should ignore the grtt_response in this message.

The "loss_estimate" field is the receiver’s current packet loss fraction estimate for the
indicated source. The loss fraction is a value from 0.0 to 1.0 corresponding to a range
of zero to 100 percent packet loss. The 16-bit "loss_estimate" value is calculated by
the following formula:

"loss_estimate" = decimal_loss_fraction * 65535.0

The "grtt_req_sequence" field contains the loss sequence number identifier of the
received ARM_CMD(ACK_REQ(RTT)) to which the response information in this
ARM_NACK applies. This sequence number is the one from the ARM common mes-
sage header for the applicable ARM_CMD(ACK_REQ(RTT)) command. This infor-
mation can possibly assist the sender in congestion control operation.

The "watermark_received" field indicates the maximum "object_transport_id,
block_number" received at the moment of sending this NACK. It has the following
format:

+-+
| session_transport_id | object_transport_id |
+-+
| block_number |
+-+

Figure 14. Watermark Received

The "nack_content" of the ARM_NACK message specifies the repair needs of this
client pertaining to the indicated "server_id". The repair needs are specified as one
or more lists of individual "items", "ranges" of identified ARM_DATA and/or
ARM_INFO messages required for the receiver to complete reliable reception of
objects being transmitted by the sender.

Each list of "items", "ranges" is specified with the following packet format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| form | flags | length |
+-+

15

ARM Transport - Active Reliable Multicast Transport Protocol

| app_nack_flavor | app_nack_content |
+-+
| session_transport_id | object_transport_id |
+-+
| block_number |
+-+
| ... |

Figure 15. NACK Content

The "form" field indicates currently whether the NACK content that follows is a list of
ARM_NACK_ITEMS or ARM_NACK_RANGES. Possible values for the "form" field
include:

Form Value
ARM_NACK_ITEMS 1
ARM_NACK_RANGES 2

When the list consists of individual ARM_NACK_ITEMS, each concatenation of "ses-
sion_transport_id, object_transport_id, block_number" identifies an individual re-
pair need of the NACKing receiver. When the list consists of ARM_NACK_RANGES,
pairs of "session_transport_id, object_transport_id, block_number" sets are given to
indicate the inclusive range of sender information needed by the receiver.

The "flags" field is currently used to indicate if the NACK content applies to
ARM_DATA content, ARM_INFO content, or both. Thus, defined flags in this field
include:

+------------------+-------+--+
| Flag | Value | Purpose |
+------------------+-------+--+
|ARM_NACK_BLOCK | 0x01 | Indicates the entire listed block(s) are |
| | | required as repair. |
+------------------+-------+--+
|ARM_NACK_INFO | 0x02 | Indicates the object’s ARM_INFO is |
| | | required as repair. |
+------------------+-------+--+
|ARM_NACK_OBJECT | 0x04 | Indicates the entire listed object(s) |
| | | are required as repair. |
+------------------+-------+--+
|ARM_NACK_APP | 0x08 | Indicates NACK content |
| | | defined by application |
+------------------+-------+--+

When the ARM_NACK_BLOCK flag is set, this indicates the receiver is missing the
indicated block(s) for the indicated "object_transport_id".

When the ARM_NACK_INFO flag is set, this indicates the receiver is missing
the ARM_INFO message for the indicated "object_transport_id". Note the
ARM_NACK_INFO may be set in combination with the ARM_NACK_BLOCK or
may be set alone.

When the ARM_NACK_OBJECT flag is set, this indicates the receiver is missing the
entire ArmTransportObject referenced by the "object_transport_id". This implicitly
includes any available ARM_INFO if applicable. The "block_number" field is ignored
when this flag is set.

The "length" field is given (in bytes) to indicate the length of the list of
ARM_NACK_ITEMS or ARM_NACK_RANGES. Multiple lists of NACK items
and/or ranges may be concatenated together within a sin- gle ARM_NACK
message.

When the ARM_NACK_APP flag is set, this indicates the receiver is missing _ap-
plication defined_ NACK content which apllication may set in "app_nack_content"
field according to the value of "app_nack_flavor". Also apllication may chose to use

16

ARM Transport - Active Reliable Multicast Transport Protocol

the rest of the packet starting from "app_nack_content" when it needs space for ad-
ditional NACK content.

The "app_nack_flavor" field is set to application defined subtype or flavor of NACK
content. At the moment of this writing the only value for this field defined is:

nack_flavor Value
ARM_NACK_APP_SESSION_INFO 1

The "app_nack_content" field may contain _application defined_ NACK content as
required by "app_nack_flavor" type.

ARM_NACK_APP_SESSION_INFO message is sent by recivers to request retransmit
of ARM_CMD(APPLICATION(SESSION_INFO)) message.

ARM_ACK

The basic operation of ARM transport will _not_ rely on the use ARM_ACK (positive
acknowledgement) messages. However, some applications may benefit from some
limited form of positive acknowledgement for certain functions. A simple, scalable
positive acknowledgement scheme is defined which can be leveraged by protocol
implementations when appropriate.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| server_id |
+-+
| grtt_response_sec |
+-+
| grtt_response_usec |
+-+
| loss_estimate | grtt_req_sequence |
+-+
| ack_flavor | reserved |
+-+
| ACK Content ... |

Figure 16. ARM_ACK Message

The "server_id", "grtt_response_sec", "grtt_response_usec", "loss_estimate", and
"grtt_req_sequence" fields serve the same purpose as the corresponding fields in
ARM_NACK messages.

The "ack_flavor" field indicates the nature of the following ACK content. This directly
corresponds to the "ack_flavor" field of the ARM_CMD(ACK_REQ) message.

Currently these include: ARM_ACK(WATERMARK), ARM_ACK(SESSION) and
ARM_ACK(RTT)

For example, if the sender has requested explicit positive acknowledgement
of reception of a watermark "object_transport_id", the receiver will respond
with "ack_flavor=ARM_ACK(WATERMARK) and appopriately valued
"object_transport_id" field. If the ARM_ACK is simply a response to an explicit
ARM_CMD(GRTT_REQ), the "ack_flavor" is set to ARM_ACK(RTT) and there is
no ACK content. (The length of the content may be inferred from the ARM_ACK
packet payload size).

17

ARM Transport - Active Reliable Multicast Transport Protocol

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| session_transport_id | object_transport_id |
+-+
| block_number |
+-+

Figure 17. ARM_ACK(WATERMARK) and ARM_ACK(SESSION) Content

The "session_transport_id", "object_transport_id" and "block_number" are used by
the receiver to acknowledge a ARM_CMD(ACK_REQ(WATERMARK)) transmitted
by the sender identified by the "server_id" field.

The ARM_ACK(RTT) message has no attached content. Only the ARM_ACK header
applies.

Since it may be useful for applications to leverage the ARM positive acknowledge-
ment mechanism for other purposes, additional ARM_ACK "ack_flavors" may be
used by the application for other purposes. The content of the ARM_ACK message
(past the ARM_ACK header "reserved" field) for application-defined "ack_flavor"
values, is specific to the application but is limited by ARM message size of the sender
referenced by the "server_id".

Detailed Protocol Operation
This section describes the detailed interactions of senders and receivers participating
in a ARM session. A simple synopsis of protocol operation is given in the following
items.

• 1) The sender transmits an ordinal set of ArmObjects in the form of ARM_DATA
(and optional ARM_INFO) messages labelled with ArmSessionTransportIds, Ar-
mObjectTransportIds and block numbers.

• 2) The sender periodically transmits ARM_CMD(ACK_REQ(RTT)) messages
and/or ARM_CMD(CC) (TBD) messages as needed to initialize and collect
roundtrip timing and congestion control feedback from the receiver set. These
messages are transmited without interuption of ARM_DATA, ARM_NACK and
other messages.

• 3) As receivers detect missing content from the receiver, they initiate repair re-
quests with ARM_NACK messages. Note the receivers track the sender’s most
recent "session_transport_id, object_transport_id and block_number" transmit po-
sition and NACK _only_ for content ordinally prior to that transmit position. The
receivers use random backoff timeouts before generating ARM_NACK messages
and wait an appropriate amount of time before repeating the ARM_NACK if their
repair request is not satisified.

• 4) The sender aggregates repair requests from the receiver set and "rewinds" to
send appropriate repair messages. The sender sends repairs for the earliest ordinal
transmit position first and main- tains this ordinal repair transmission sequence.

• 5) The sender transmits ARM_CMD(FLUSH) messages when it reaches the end of
newly available transmit content. Receivers respond to the ARM_CMD(FLUSH)
messages with ARM_NACK transmissions (following the same suppression back-
off timeout strategy as for data).

• 6) The sender transmits ARM_CMD(ACK_REQ(WATERMARK)) and and
ARM_CMD(ACK_REQ(SESSION)) messages when it reaches the end of newly
available transmit content or completes current session. Receivers first respond

18

ARM Transport - Active Reliable Multicast Transport Protocol

with ARM_NACK requests and when all missing data is collected, then with
ARM_ACK

• 7) The sender transmission rate is subject to rate control limits determined by
congestion control. Each sender in a ArmSession maintains its own independent
congestion control state.

While the overall concept of the protocol is relatively simple, there are details to each
of these aspects which need to be addressed for successful, robust, and scalable op-
eration.

19

ARM Transport - Active Reliable Multicast Transport Protocol

20

