Assignments

Advanced C++ IV will be based on 100 points during the quarter. Assignments are 50 percent of your grade. They may be accepted up to the last day of class. If mitigating circumstances occur, they may be turned in up to a week after the last day of class.

Submit your source on-line where I can grade it, and give back notes on it.

	Week
	Chapter
	Assignment

	1
	Generic Programming
4 points each (12 points)
	1a. Use the STL to reduce a series of numbers (unique and sorted).
1b. Use a Template to reduce the code.
1c. Code up a functor index on a container with real data (days of week, states, ...).

Generics Survey

	2
	Exception Safety

4 points each (12 points)
	2a. Code an exception object. Show the try, catch block and catch the exception.

2b. Code up an exception handler and show its usage.

2c. Add valid exceptions to the stack program.

Exceptions Survey

	3
	Class Design & Inheritance

4 points
	3. Update code for inheritance.

Design Survey

	4
	Compiler, Names, & Interfaces
	Quiz 1
Compiler Namespaces Survey

	5
	Memory Management

5 points each (10 points)
	4. Allocate a memory pool of Stack objects. Show a Stack of a Stack recovery with Sutter style exceptions.
Memory Survey

	6
	Traps, Pitfalls, and Anti-Idioms

6 points
	4. Given base code of re-factoring, add the re-factored code.

C++ Tips, Traps, Pitfalls Survey

	7
	Persistence I

6 points

	5. Given the base of code, create multiple inheritance. The queue template has tests with CppUnit.

	8
	Persistence II
	Project due

	9
	Miscellaneous Topics
	Quiz 2

Grades

There are 50 points for assignments, 30 points for quizzes, and 20 points for a project.
Grades are on the 100 point grading scale (50 + 30 + 20).

Project Notes: 5 points each

 Use Standard Templates Library

 Create at least one exception

 Show inheritance and/or multiple classes

 Use C++ style guidelines

C++ Style guidelines

 Keep open braces consistent like on the same line as the opening statements

 Capitalize the first letter of all class names; declare each class in class usage order

 Use a lower case letter as the first letter of all variables

 Use ALL_CAPITALS for constants; make literals CONSTANT especially for LIMITS.

 Use descriptive names for documentation, self-documenting code

 Use method names to describe the object behavior (verbs)

 Use class names to describe the Object (nouns)

 Use spaces for readability like before and after most operators

 Name template types conceptually like the STL names

 Document any unclear item you have to think about

 Avoid obscure code like a nested “?” operator or the “,” operator.

 All class data shall remain private (encapsulated)

