Advanced C++ Syllabus

Instructor: David Scott – mailto:prof2dragon@yahoo.com
http://www.geocities.com/leapingfrog/
Required text:

Exceptional C++, 1st Ed. by Herb Sutter

Recommended:
Effective STL by Scott Meyers

Excellent to get:
Effective C++ CD: 85 ways to improve your programs and designs

CUJ CDRom, http://www.ddj.com
Reference Books:
STL Programming from the Ground Up by Herbert Schildt

C++ on CDRom by Herbert Schildt

Topics:

Expanding on several topics in C++, this course includes object-oriented analysis, design, and programming. Advanced memory management, stream and file I/O, persistence, multiple inheritance, advanced polymorphic programming, templates, STL libraries, and C++ style, and efficiency are also discussed.

Lessons:

	Week
	Chapters
	Extra topics

	1
	Generic Programming and the C++ Standard Library
	An STL Roadmap,

Web STL references: concepts, man pages, samples.

	2
	Exception-Safety Issues and Techniques
	Exceptions from the C++ library reference,

Exception Bugs found,

The golden rule of exceptions.

	3
	Class Design and Inheritance
	Object land terminology (adopting one language), types verses objects,

http://www.devx.com tips,

quick examples.

	4
	Compilers, Names, and Interfaces.
	Using volatile for mutual access, portable multi-threading,

Testing with CppUnit.

	5
	Memory Management
	Intro to design by color,

Overwrite new and delete,

Create a memory pool,

Problems with autoptr.

	6
	Traps, Pitfalls, and Anti-Idioms
	Re-factoring to improve design – a complete example, Design by color example.

	7
	Persistence I
	File Persistence with STL,

Creating an index functor,

Generic resizeable arrays.

	8
	Persistence II
	Object Persistence with STL, a simple HTML class and a design review, Code review of object persistence

	9
	Miscellaneous Topics
	Using formatting with streams of user objects,

Efficiency and the great American shootout,

 Final + review

Week 1 - Generic Programming and the C++ Standard Library

C++ design goal: make objects have the look and feel of types.

Bjarne Stroustrup's homepage: http://www.research.att.com/~bs/
STL concepts: http://www.sgi.com/tech/stl/stl_introduction.html
Man pages on STL: http://www.dinkumware.com/htm_stl/index.html
FAQ on STL: http://www.cs.utexas.edu/~lavender/courses/stl/
Review the Flash Card project
Week 2 - Exception-Safety Issues and Techniques

 Tom Cargill on exceptions

A template exception solution: http://www.ddj.com/dept/cpp/184403758
Scott Meyers on reference counting for strings

Testing Framework: See cookbook.htm
Review the Hangman project and exception examples.
Week 3 – Class Design and Inheritance

An acronym summarizing David Taylor’s Object Oriented Management book:

Mom is Messages surrounding Objects invoking Methods

Objects communicate with messages. Each message corresponds to a method call within the Object. This basic behavior allows objects to have behavior based on methods. Each object has it own set of data which the methods can access.

“Kissa” is a Class with inheritance with super-class and sub-class forming abstractions.

Classes define the parts of an object. They form a template defining all the methods and data available for that object. A class may have a hierarchy of inheritance. The super-class may be inherited from a sub-class. In this way one can create abstract objects to represent the real world. An abstract vehicle class becomes a super class for both the auto and airplane classes. An auto or airplane IS A vehicle – the IS A relationship.

“Pie” is polymorphism implemented in objects by instantiation and encapsulation.

Polymorphism literally means many forms. Through inheritance we see classes taking many forms. There are many other ways to express many forms with objects. One object may contain another object. Objects also may be composed as needed to form complex systems. Polymorphism means that the same messages perform differently. The instance of a single object is when one uses a class to create a new object. Objects can then populate the application, each with its own context. Each object hides its data from the rest of the world. This manner of data hiding is called encapsulation. It guarantees that only the class owner or programmer makes the changes necessary to change its own methods.

Peter Coad’s view

Prefer Const to Defines

Stopwatch class: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0500.asp
Random shuffle: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1299.asp
Singleton Pattern: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0200.asp
Overloading <<: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0400.asp
Searching for examples

Review the Bike Rental project.
Week 4 - Compilers, Names, and Interfaces

Understanding volatile: http://www.ddj.com/dept/cpp/184403766
Golden gloves of testing: http://www.extremeprogramming.org/lessons.html
An example test class: http://cppunit.sourceforge.net/
Heterogeneous classes: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0900.asp
Review the Soccer League project.

Week 5 - Memory Management
Overriding new and delete: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1100.asp
Using AutoPtr class: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1199.asp
Linked lists: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0599.asp
Classes by archetype: http://www.togethersoft.com/jmcu/jmcu.html

 Moment-Intervals, Person-Place-Things, Roles, Description

 http://bdn.borland.com/article/0,1410,29697,00.html
Trouble with Auto Pointers

Review the Battleship project.

Week 6 - Traps, Pitfalls, and Anti-Idioms

Pick out archetypes from Moment-Intervals, Party-Place-Things, Roles and Descriptions.

 Lucent Technologies Savings Account Bank of America

 Stocks Account Bank Officer

 Bonds Portfolio Deposit Withdrawal

 Shareholder Compliance Officer Credit Advancement

 Split-Stock Dividend Teller Customer

 IBM Shares John Jones Checking Account $450.00

Class relationships: Is-a, Has-a, Use-a, Is-a-kind-of, Is-like-a, Is-implemented-as-a

Inheritance and Class Design by Scott Meyers

 Only Is-A

 What do I really mean?

Refactoring in any language: http://www.refactoring.com/
Refactoring example in C++: http://jczeus.com/refac_cpp.html
Review the Rail Simulator project.

Week 7 – Persistence I

For each or Transform?: http://www.ddj.com/dept/cpp/184403769
Generic Resizable N Dimensional Array, by G. Bavestrelli: http://www.ddj.com/dept/cpp/184401319
Threads and STL: http://www.sgi.com/tech/stl/thread_safety.html
Week 8 – Persistence II

Review iostream library; introduce Persistent Object Broker design

STL object persistence: http://www.ddj.com/showArticle.jhtml;jsessionid=Y3LRLN2IBRMIWQSNDLPSKH0CJUNN2JVN?articleID=184401272
HTML class: http://www.ddj.com/dept/cpp/184401217
Using IO Streams (a string stream): http://www.ddj.com/dept/cpp/184403764
Code review of the Persistent Object Broker by Gary Hsiao

 Download the August 2000 code at: ftp://66.77.27.238/sourcecode/cuj/
Week 9 – Final, Final Review, Miscellaneous Topics

Standard Librarian: User defined Format Flags: http://www.ddj.com/dept/cpp/184403767
 “What would int do?” Scott Meyers

To compile or not? http://www.aceshardware.com/Spades/read.php?article_id=153
Efficiency, the great shootout: http://shootout.alioth.debian.org/
Other interesting links/subjects:

Casting template for performance: http://www.ddj.com/dept/cpp/184403724
Define a function object: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0100.asp
Environment variable access: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0700.asp
Executing a class member function in a thread: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0800.asp
Function Pointers & callbacks: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0300.asp
Martin Fowler - as an Object Oriented Spokesperson

Abusing Use Cases: abuse.pdf file://abuse.pdf
Is there such a thing as Object Oriented Analysis?: file://analysis.pdf
What is a model for?: file://purpose.pdf
Doing program design (refactoring) after the program runs: file://refactoring.pdf
Keeping software soft - flexible verses dynamic design: file://soft.pdf
Testing Methods - the Ugly Duckling: file://duckling.pdf
Observer pattern encapsulated: http://www.ddj.com/dept/cpp/184403556
Placing classes in a namespace: http://gethelp.devx.com/techtips/cpp_pro/10min/10min1099.asp
Pointers to class members: http://gethelp.devx.com/techtips/cpp_pro/10min/10minJuly98.asp
Putting an object at a memory location: http://gethelp.devx.com/techtips/cpp_pro/10min/10min0999.asp
Test framework: http://www.ddj.com/dept/cpp/184401279
Visual C++ console code

Create with a win32 console project and choose the empty option when creating files. Use the “#include <conio.h>” with a “getch();” at the end of the program to keep the file output on the screen for printing.

Visual C++ debug statements

This code seems to work for placing debug comments as needed:

 #define COMMENT SLASH(/)

 #define SLASH(s) /##s

 …

 #ifdef _DEBUG

 #include <iostream>

 #define dout std::cout

 #else

 #define dout COMMENT

 #endif

 dout << “something to say here” << endl;

 // no doubt

Patterns to discuss: Dispatch of functions

Strategy (Concrete, Abstract)

 O sort comparitors

Dispatching functions verses objects

#include <stdio.h>

 void func1() {printf("func1\n");}

 void func2() {printf("func2\n");}

 typedef void (*fp)(void);

 fp funcs[] = {&func1, &func2, 0};

 int main() {

 int i = 0;

 while (funcs[i])

 funcs[i++]();

 return 0;

 }
}

In object land create an interface, implement to the interface, execute off a collection of interfaced object method calls.

