\documentclass[10pt]{amsart} \title{The Biquadratic Character of 2} \author{Jeff Garrett} \date{February 20, 2001} \usepackage{amsmath, amsthm} \theoremstyle{plain} %% Default \newtheorem{thm}{Theorem} \theoremstyle{definition} \newtheorem{defn}{Definition} \begin{document} %% \begin{abstract} %% \end{abstract} \maketitle \begin{thm} The primes $p \equiv \pmod 4$ for which $2$ is a biquadratic residue modulo $p$ are exactly those of the form $A^2 + 64 B^2$. \end{thm} \begin{proof} Suppose that $p \equiv 1 \pmod 4$. Write $p = a^2 + b^2$ with $a$ odd. The idea is to compute $(a+b/p)$ by two different methods. Let $f$ be such that $b \equiv af \pmod p$. Then $p = a^2 + b^2 = a^2 (1 + f^2) \equiv 0 \pmod p$ and so $f^2 \equiv -1 \pmod p$. First, note that $(a+b)^2 + (a-b)^2 = 2p$ so that $1 = (2p/a+b) = (2/a+b)(p/a+b) = (-1)^{((a+b)^2 - 1)/8} (p/a+b)$. Thus $(a+b/p) = (-1)^{(a+b-1)(p-1)/4} (p/a+b) = (-1)^{((a+b)^2 - 1)/8} \equiv f^{((a+b)^2 - 1)/4} \pmod p$. Second, since $(a+b)^2 \equiv 2ab \pmod p$, $(a+b/p) \equiv (a+b)^{(p-1)/2} \equiv (2ab)^{(p-1)/4} \equiv (2f)^{(p-1)/4} \pmod p$ since $(a/p) = (-1)^{(p-1)(a-1)/4} (p/a) = 1$. Equating the two expressions, we have $2^{(p-1)/4} \equiv f^{ab/2} \pmod p$. $2$ is a biquadratic residue iff this is $1$, but since $f$ is of order $4$, this happens iff $8$ divides $b$, i.e. $p$ is of the form required. \end{proof} \end{document}