Bourne Shell Programming

Scripts

What is a script? A script is a set of commands, either in a file, or typed at the command line, that perform multiple operations on a file or files. Another term for scripts that might be familiar to you is a ``macro''.

How do they work? To run a file as a script, the file must have the execution bit set. As you'll recall from the Unix I course, this means the file has the x, which stands for execution bit, set:

prompt$ ls -l

-rwxr-xr-x 1 joeuser 60 Apr 9 01:57 shellscript

If the execution bit is set, what happens next depends on the first line of the file. If the first two characters are anything other than #! [1], the file is interpreted as a Bourne shell script. If the characters #! are followed by an explicit program location, such as /usr/bin/awk, that program is run as an interpreter on the contents of the file.

As an alternative to setting the execution bits on a file and then running that file directly, it is also possible to source a non-executable file. This runs the current shell as an interpreter on the file being sourced, and thus should be used very carefully, since any environment variables set or changed in the script will be altered in the current shell. As a result, it is safer to run the script in its own subshell.

Example of a simple shell script

These are the contents of a shell script called display:

 cat display

 # This script displays the date, time, username and

 # current directory.

 echo "Date and time is:"

 date

 echo

 echo "Your username is: `whoami` \\n"

 echo "Your current directory is: \\c"

 pwd

The first two lines beginning with a hash (#) are comments and are not interpreted by the shell. Use comments to document your shell script; you will be surprised how easy it is to forget what your own programs do!

The backquotes (`) around the command whoami illustrate the use of command substitution.

The \\n is an option of the echo command that tells the shell to add an extra carriage return at the end of the line. The \\c tells the shell to stay on the same line. See the man page for details of other options.

The argument to the echo command is quoted to prevent the shell interpreting these commands as though they had been escaped with the \\ (backslash) character.

Summary of shell facilities

 		 Bourne 	C TC Korn BASH

__

command history No Yes Yes Yes Yes

command alias No Yes Yes Yes Yes

shell scripts Yes Yes Yes Yes Yes

filename completion No Yes Yes Yes Yes

command line editing No No Yes Yes Yes

job control No Yes Yes Yes Yes

__

Examples of Bourne shell scripts

To read input to a command and process it in some way:

 #!/bin/sh

 # usage: fsplit file1 file2

 total=0; lost=0

 while read next

 do

 total=`expr $total + 1`

 case "$next" in

 [A-Za-z]) echo "$next" >> $1 ;;

 [0-9]) echo "$next" >> $2 ;;

 *) lost=`expr $lost + 1`

 esac

 done

 echo "$total lines read, $lost thrown away"

The user types the command:

 	fsplit file1 file2

They then enter lines of text and issue an EOF instruction. The script then processes the lines as follows:

A line with at least one letter is appended to file1; any line with at least one digit and no letters is appended to file2. All other lines are thrown away.

To read commands from the terminal and process them:

 #!/bin/sh

 # usage: process sub-directory

 dir=`pwd`

 for i in *

 do

 if test -d $dir/$i

 then

 cd $dir/$i

 while echo "$i:"

 read x

 do

 eval $x

 done

 cd ..

 fi

 done

The user types the command:

 process sub-directory

This script will read and process commands in the named sub-directory. The user is prompted to supply the name of the command to be read in. This command is executed using the the builtin eval function.

To create a command:

 #!/bin/sh

 flag=

 for i

 do

 case $i in

 -c) flag=N ;;

 *) if test -f $i

 then

 ln $i junk$$

 rm junk$$

 elif test $flag # true if not null

 then

 echo \'$i\' does not exist

 else

 >$i

 fi ;;

 esac

 done

This command takes filenames as its parameters. If a file exists it changes the modification date. If no file exists it creates a new one. This script is similar in action to the touch command.

The -c argument lets you specify that you only want to update a file that already exists and not to create one if it doesn't.

Passing arguments to the shell

Shell scripts can act like standard UNIX commands and take arguments from the command line.

Arguments are passed from the command line into a shell program using the positional parameters $1 through to $9. Each parameter corresponds to the position of the argument on the command line.

The positional parameter $0 refers to the command name or name of the executable file containing the shell script.

Only nine command line arguments can be accessed, but you can access more than nine using the shift command.

All the positional parameters can be referred to using the special parameter $*. This is useful when passing filenames as arguments. For example:

 cat printps

 # This script converts ASCII files to PostScript

 # and sends them to the PostScript printer ps1

 # It uses a local utility "a2ps"

 a2ps $* | lpr -Pps1

 printps elm.txt vi.ref msg

This processes the three files given as arguments to the command printps.

Examples of passing arguments to the shell

To pass several arguments from the command line to the shell:

 cat first_5args

 # This script echoes the first five arguments

 # supplied to the script

 echo The first five command line

 echo arguments are $1 $2 $3 $4 $5

 first_5args mines a pint john o.k.

 The first five command line

 arguments are mines a pint john o.k.

This passes the arguments represented by parameters $1 through $5 to the shell script.

To pass the value of each positional parameter to the shell script:

 cat printps

 # This script converts ASCII files to PostScript

 # and sends them to the PostScript printer ps1

 # It uses a local utility "a2ps"

 a2ps $* | lpr -Pps1

 printps elm.txt vi.ref msg

This processes the three files given as arguments to the command printps.

Example of using the shift command

To successively shift the argument that is represented by each positional parameter:

 cat shift_demo

 #!/bin/sh

 echo "arg1=$1 arg2=$2 arg3=$3"

 shift

 echo "arg1=$1 arg2=$2 arg3=$3"

 shift

 echo "arg1=$1 arg2=$2 arg3=$3"

 shift

 echo "arg1=$1 arg2=$2 arg3=$3"

 shift_demo one two three four five six seven

 arg1=one arg2=two arg3=three

 arg1=two arg2=three arg3=four

 arg1=three arg2=four arg3=five

 arg1=four arg2=five arg3=six

 arg1=five arg2=six arg3=seven

Special shell variables

There are some variables which are set internally by the shell and which are available to the user:

Name Description

--

$1 - $9 these variables are the positional parameters.

$0 the name of the command currently being executed.

$# the number of positional arguments given to this

 invocation of the shell.

$? the exit status of the last command executed is

 given as a decimal string. When a command

 completes successfully, it returns the exit status

 of 0 (zero), otherwise it returns a non-zero exit

 status.

$$ the process number of this shell - useful for

 including in filenames, to make them unique.

$! the process id of the last command run in

 the background.

$- the current options supplied to this invocation

 of the shell.

$* a string containing all the arguments to the

 shell, starting at $1.

$@@ same as above, except when quoted.

--

Notes

$* and $@@ when unquoted are identical and expand into the arguments.

"$*" is a single word, comprising all the arguments to the shell, joined together with spaces. For example '1 2' 3 becomes "1 2 3".

"$@@" is identical to the arguments received by the shell, the resulting list of words completely match what was given to the shell. For example '1 2' 3 becomes "1 2" "3"

Evaluating shell variables

The following set of rules govern the evaluation of all shell variables.

Definition Description

--

$var signifies the value of var or nothing,

 if var is undefined.

${var} same as above except the braces enclose

 the name of the variable to be substituted.

${var-thing} value of var if var is defined; otherwise thing.

 $var is not set to thing.

${var=thing} value of var if var is defined; otherwise thing.

 If undefined $var is set to thing.

${var?message} If defined, $var; otherwise print message

 and exit the shell. If the message is

 empty, print a standard message.

${var+thing} thing if $var is defined, otherwise nothing.

--

Reading user input

To read standard input into a shell script use the read command. For example:

 echo "Please enter your name:"

 read name

 echo "Welcome to Edinburgh $name"

This prompts the user for input, assigns this to the variable name and then displays the value of this variable to standard output.

If there is more than one word in the input, each word can be assigned to a different variable. Any words left over are assigned to the last named variable. For example:

 echo "Please enter your surname\n"

 echo "followed by your first name: \c"

 read name1 name2

 echo "Welcome to Glasgow $name2 $name1"

The if statement

The if statement uses the exit status of the given command and conditionally executes the statements following. The general syntax is:

 if test

 then

 commands (if condition is true)

 else

 commands (if condition is false)

 fi

then, else and fi are shell reserved words and as such are only recognised after a newline or ; (semicolon). Make sure that you end each if construct with a fi statement.

if statements may be nested:

 if ...

 then ...

 else if ...

 ...

 fi

 fi

The elif statement can be used as shorthand for an else if statement. For example:

 if ...

 then ...

 elif ...

 ...

 fi

Example of using an if construct

To carry out a conditional action:

 if who | grep -s keith > /dev/null

 then

 echo keith is logged in

 else

 echo keith not available

 fi

This lists who is currently logged on to the sytem and pipes the output through grep to search for the username keith.

The -s option causes grep to work silently and any error messages are directed to the file /dev/null instead of the standard output.

If the command is succesful i.e. the username keith is found in the list of users currently logged in then the message

 keith is logged on

is displayed, otherwise the second message is displayed.

The && operator

You can use the && operator to execute a command and, if it is successful, execute the next command in the list. For example:

 cmd1 && cmd2

cmd1 is executed and its exit status examined. Only if cmd1 succeeds is cmd2 executed. This is a terse notation for:

if cmd1

 then

 cmd2

 fi

Example of using the && operator

To notify the user about the outcome of a previous command:

 cat deliver

 #!/bin/sh

 # usage: deliver username filename

 { cat $2 | write $1 ; } && echo done

The user types a command such as:

 deliver keith greeting

The first command { cat $2 | write $1 ; } concatenates and displays the message held in the file greeting and pipes the output through the write command whose argument is the name of the user to whom the message is to be sent.

Note the use of the positional parameters $1 and $2. The ; (semicolon) is needed to sequentially execute the preceeding pipeline.

If this command is successful, the message done is displayed on standard output.

The || operator

You can use the || operator to execute a command and, if it fails, execute the next command in the command list. For example:

 cmd1 || cmd2

cmd1 is executed and its exit status examined. If cmd1fails then cmd2 is executed. This is a terse notation for:

 cmd1

 if 	test $? -ne 0

 then

 cmd2

 fi

Example of using the || operator

To send a message to a user using the appropriate utility:

 cat writemail

 #!/bin/sh

 # usage: writemail user message

 echo "$2" |{ write "$1" || mail "$1" ;}

The user types a command such as:

 writemail sarah 'call me'

The message entered by the user is piped through the command { write "$1" || mail "$1" ; }.

If the the message cannot be sent to the user's terminal (they are not logged on) with the command write "$1" then the message is sent to the user by mail.

Testing for files and variables with the test command

The shell uses a command called test to evaluate conditional expressions. Full details of this command can be found in the test manual page. For example:

 if test ! -f $FILE

 then

 if test "$WARN" = "yes"

 then

 echo "$FILE does not exist"

 fi

 fi

First, we test to see if the filename specified by the variable $FILE exists and is a regular file. If it does not then we test to see if the variable $WARN is assigned the value yes, and if it is a message that the filename does not exist is displayed.

The case statement

case is a flow control construct that provides for multi-way branching based on patterns.

Program flow is controlled on the basis of the wordgiven. This word is compared with each pattern in order until a match is found, at which point the associated command(s) are executed.

 case word in

 pattern1) command(s)

 ;;

 pattern2) command(s)

 ;;

 patternN) command(s)

 ;;

 esac

When all the commands are executed control is passed to the first statement after the esac. Each list of commands must end with a double semi-colon (;;).

A command can be associated with more than one pattern. Patterns can be separated from each other by a | symbol. For example:

 case word in

 pattern1|pattern2) command

 ...					;;

Patterns are checked for a match in the order in which they appear. A command is always carried out after the first instance of a pattern.

The * character can be used to specify a default pattern as the * character is the shell wildcard character.

Example of using the case statement

To specify an action when a word matches the pattern:

 cat diary

 #!/bin/sh

 today=`date +%m/%d`	(presents the date in the format 01/31)

 case	$today in

 07/18)	echo	"Aonoch Mhor"

 ;;

 07/21)	echo	"Ben Wyvis"

 ;;

 08/02)	echo	"Buicheille Etive Mhor"

 ;;

 08/03)	echo	"Slioch"

 ;;

 *)		echo	"Wet..low level today"

 esac

 date +%m/%d

 07/18

 diary

 Aonoch Mhor

The value for the word $today is generated by the date command. This is then compared with various patterns so that the appropriate commands are executed.

Note the use of the pattern *, this can be used to specify default patterns as the * character is the shell wildcard character.

The for statement

The for loop notation has the general form:

 for var in list-of-words

 do

 commands

 done

commands is a sequence of one or more commands separated by a newline or ; (semicolon).

The reserved words do and done must be preceded by a newline or ; (semicolon). Small loops can be written on a single line. For example:

 for var in list; do commands; done

Examples of using the for statement

To take each argument in turn and see if that person is logged onto the system.

 cat snooper

 #!/bin/sh

 # see if a number of people are logged in

 for i in $*

 do

 if who | grep -s $i > /dev/null

 then

 echo $i is logged in

 else

 echo $i not available

 fi

 done

For each username given as an argument an if statement is used to test if that person is logged on and an appropriate message is then displayed.

To go through each file in the current directory and compare it with the same filename in another directory:

 #!/bin/sh

 # compare files to same file in directory "old"

 for i in *

 do

 echo $i:

 cmp $i old/$i

 echo

 done

If the list-of-words is omitted, then the loop is executed once for each positional argument (i.e. assumes $* in the for statement). In this case the loop will create the empty files whose names are given as arguments.

 #!/bin/sh

 # create all named files

 for i

 do

 > $i

 done

Some examples of command substitution in for loops:

 #!/bin/sh

 # do something for all files in current

 # directory according to time modified

 for i in `ls -t`

 do

 ...

 done

 # do something for all non-fred files.

 for i in `cat filelist | grep -v fred`

 do

 ...

 done

 # do something to each sub-directory found

 for i in `for i in *

 do

 if test -d $i

 then

 echo $i

 fi

 done`

 do

 ...

 done

The while and until statements

The while statement has the general form:

 while command-list1

 do

 command-list2

 done

The commands in command-list1 are executed; and if the exit status of the last command in that list is 0 (zero), the commands in command-list2 are executed.

The sequence is repeated as long as the exit status of command-list1 is 0 (zero).

The until statement has the general form:

 until command-list1

 do

 command-list2

 done

This is identical in function to the while command except that the loop is executed as long as the exit status of command-list1 is non-zero.

The exit status of a while/until command is the exit status of the last command executed in command-list2. If no such command list is executed, a while/until has an exit status of 0 (zero).

Examples of using the while and until statements

To wait for someone to logout:

 #!/bin/sh

 while who |grep -s $1 >/dev/null

 do

 sleep 60

 done

 echo "$1 has logged out"

This script checks to see if the username given as an argument to the script is logged on. While they are, the script waits for 60 seconds before checking again. When it is found that the user is no longer logged on a message that they have logged out is displayed.

To declare when a file has been created:

 #!/bin/sh

 until test -f $FILE

 do

 sleep 60

 done

 echo "$FILE now exists"

This tests every 60 seconds until the filename represented by the variable $FILE exists. A message is then displayed.

To watch for someone to log in:

 #!/bin/sh

 # make sure we pick up the correct commands

 PATH=/bin:/usr/bin

 # remember $# is number of positional arguments

 case $# in

 1) ;;

 *) echo 'usage: watchfor username' ; exit 1

 esac

 until who | grep -s "$1" >/dev/null

 do

 sleep 60

 done

 echo "$1 has logged in"

If more than one username is given to the command watchfor the message

 usage: watchfor username

is displayed and the command fails.

The break and continue statements

It is often necessary to handle exception conditions within loops. The statements break and continue are used for this.

The break command terminates the execution of the innermost enclosing loop, causing execution to resume after the nearest done statement.

To exit from n levels, use the command:

 break n

This will cause execution to resume after the done n levels up.

The continue command causes execution to resume at the while, until or for statement which begins the loop containing the continue command.

You can also specify an argument n|FR to continue which will cause execution to continue at the n|FRth enclosing loop up

Example of using the break and continue statements

To prompt for commands to run:

 #!/bin/sh

 while echo "Please enter command"

 read response

 do

 case "$response" in

 'done') break # no more commands

 ;;

 "") continue # null command

 ;;

 *) eval $response # do the command

 ;;

 esac

 done

This prompts the user to enter a command. While they enter a command or null string the script continues to run. To stop the command the user enters done at the prompt.

Including text in a shell script

Text can be included in the shell script by using a here document, a special form of input redirection.

The << symbol is used to indicate that text should be read up to a given mark. For example:

 #!/bin/sh

 # this script outputs the given text before it runs

 cat << EOF

 This shellscript is currently under development, please

 report any problems to Danny (danny@cornflake.ed)

 EOF

 exec /usr/local/test/bin/test_version

The text is read from the script until a pattern is found which matches that after the << symbol; execution then proceeds as normal.

Forcing evaluation of commands

Another built-in function is eval which takes the arguments on the command line and executes them as a command. For example:

 #!/bin/sh

 echo "enter a command:"

 read command

 eval $command

Forcing evaluation of commands

Another built-in function is eval which takes the arguments on the command line and executes them as a command. For example:

 #!/bin/sh

 echo "enter a command:"

 read command

 eval $command

Trapping operating system signals

Shell procedures may use the trap command to catch or ignore Unix operating system signals. The form of the trap command is:

 trap 'command-list' signal-list

Several traps may be in effect at the same time. If multiple signals are received simultaneously, they are serviced in ascending order.

To check what traps are currently set use the trap command. For example:

 trap

Signals to be caught

The following are the signals that are usually caught with the trap command.

 0 shell exit (for any reason, including end of file EOF).

 1 hangup.

 2 interrupt (^C).

 3 quit (^\\ ; causes program to produce a core dump).

 9 kill (cannot be caught or ignored).

 15 terminate; default signal generated by kill.

trap: Handling command lists

The command list is placed between single quotes, as the command line is scanned twice, once when the shell first encounters the trap command and again when it is being executed.

 trap 'command-list' signal-list

The single quotes inhibit immediate command and variable substitution but are stripped off after the first scan, so that the commands are processed when the command is actually executed.

If command-list is not specified, then the action taken on receipt of any signal in the signal-list is reset to the default system action.

If command-list is an explicitly quoted null command (' ' or " "), then the signals in signal-list are ignored by the shell.

The command-list is treated like a subroutine call. The commands in the list are executed when the signal is trapped and control is then returned to the place at which it was interrupted.

Examples of interrupt handling

To use single quotes to inhibit command substitution:

 #!/bin/sh

 trap 'echo `pwd` >>$HOME/errdir' 2 3 15

 for i in /bin /usr/bin /usr/any/bin

 do

 cd $i

 some series of commands in the directory $i

 done

The file errdir will contain the name of the directory being worked on when the procedure is interrupted. What happens if the same procedure has double quotes around it?

 trap "echo `pwd` >errdir" 2 3 15

The file errdir will just contain the name of the directory from which the procedure was invoked because the pwd command would be substituted on the first scan by the shell and not when it is invoked in the script.

To remove temporary files when a procedure is interrupted:

 #!/bin/sh

 temp=/tmp/file.$$

 trap 'rm $temp; exit' 0 1 2 3 15

 ls > $temp

If any of the named signals are encountered, the command rm $temp; exit will be executed. The exit command is needed to terminate the execution of the whole procedure.

To continue processing commands after a trap command:

 #!/bin/sh

 # read and process commands

 dir=`pwd`

 for i in *

 do

 if test -d $dir/$i

 then

 cd $dir/$i

 while echo ''$i:''

 trap exit 2 # trap ^C

 read x

 do

 trap ' ' 2 # ignore interrupts

 eval $x

 done

 fi

 done

The shell continues to process commands after a trap command. The entire procedure is terminated if interrupted when waiting for input, but the interrupt is ignored while executing a command. The command list is an explicitly quoted null command and so the signal is ignored by the shell.

�PÁGINA �

�PÁGINA �13�

