MEMORANDUM

TO: Mr. Pete Ostafichuk

FROM: Group #8: Galvin Clancey, Mike McNulty, Feras Jallad, Haydon Woo, Colin Mingus

RE: MECH 251 LAUNCHER PROJECT PROGRESS REPORT DATE: March 10, 2004

To date we have been working on and completed the conceptual design process as well as determined which of the conceptual designs would be ideal choice to construct the most successful device possible. Using the Analytical Hierarchical Process we determined the importance of each of the criteria we felt were important based upon the Minimum Functional Requirements, Design Constraints and Design Considerations. We have determined that an air powered launcher will be the ideal device to enter into the Launcher Competition on March 31, 2004. In the next week we plan to complete the design of the device to allow the remaining two weeks for construction and testing. We are currently one day ahead which could prove to be very useful considering the possibility of unexpected tasks arising as we approach the end of the term.

Enclosures: Original Gantt Chart, Problem Definition, Conceptual Designs, Analytical Hierarchical Process, Weighted Design Matrix, Modified Gantt Chart

Problem Definition

Minimum Functional Requirements

- Must shoot a ball 12m
- Must not fall apart

Constraints

- Cost less than \$60
- Must be safe
- Only shoot squash balls
- Equipped with minimal electric devices
- Must be safe to operate
- Human supplied energy
- Shoot 3 balls within 5 minutes

Design Considerations

- Should be accurate within 6" radius
- Easy to operate/ reload/ setup/ transport
- Easy to build/ fabricate
- Utilize materials readily available

Conceptual Designs

Idea	Description	Pros	Cons	Eliminated/Why?
1. Air Gun	Compress a	Very Accurate,	Difficult to	Not Eliminated
	volume of air then	High Speed,	construct, potential	
	rapidly release it	Reliable, Easy to	cost, How to	
	to propel the ball	aim	Pressurize	
	directly toward the			
	target			
2. Trebuchet	Using a mass	Easy to construct	Potential for	Eliminated due to
	balance and a		catastrophic failure	inaccuracy
	whip system, lob		during operation,	
	the ball towards		Inaccurate	
2 (1) (1 (the target	37	F (1	F1 · · · 1 1 · ·
3. Sling Shot	Use elastic	Very easy to	Extremely	Eliminated due to
	materials which	construct, Easy to	inaccurate	inaccuracy and
	are stretched and	use		safety concerns
	shoot the ball to			
	the target			
A Catanult	Use a spring	Easy to construct	Potential for	Eliminated due to
4. Cataputt	loaded catapult to	Lasy to construct	catastrophic failure	inaccuracy
	lob the ball at the		during operation	maccuracy
	target		Inaccurate	
5. Crossbow	Using a bent string	High Speed, Easy	Reliability, Hard to	Not Eliminated
	and a bow, propel	to use.	build, Vibrations,	
	the ball at the		Cost, Could be	
	target using a track		inaccurate	
	for guidance			
6. Golf Swinger	Use a torsion	High Speed	Inaccurate,	Not Eliminated
	spring to propel		potential for	
	the club head, hit		spraying ball in	
	the ball towards		unknown direction	
	the target			
7. Spring Loaded	Use a compression	Very simple, High	Vibrations, Large	Not Eliminated
Gun	spring which is	Speed	spring force need	
	compressed as		to be dissipated	
	to lounch the ball			
	out a barrel in the			
	desired direction			
8. Pitching	Spin two wheels to	Accurate	Very hard to build.	Not Eliminated
Machine	high, equal		Spinning parts.	
	angular velocities		Speed, Consistency	
	and then feed the			
	ball between them.			
9. Centrifuge	Spin the ball to a	High Speed,	Spinning parts,	Not Eliminated
	high speed then	Unique	Hard to construct	
	release the ball			
10. Leaf Spring	Compress a leaf	High speed,	Very Unsafe, Hard	Eliminated due to
	spring from a car	Consistent	to construct	safety concerns
	to propel the ball	performance		
	along a track			

See Figures 1 thru 10 for conceptual design sketches.

CONCEPTUAL DESIGN DRAWINGS

FIGURE 1: AIR GUN CONCEPT

FIGURE 2: TREBUCHET

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD'

FIGURE 3: SLING SHOT

FIGURE 4: CATAPULT

Analytical Hierarchical Process

		More Important							
		Accuracy	Safety	Reliability	Cost	Ease of Use	Ease of Construction		
	Accuracy	1.00	0.33	4.00	7.00	5.00	5.00		
	Safety	3.00	1.00	3.00	5.00	5.00	5.00		
Less Important	Reliability	0.25	0.33	1.00	6.00	3.00	3.00		
	Cost	0.14	0.20	0.17	1.00	2.00	0.25		
	Ease of Use	0.20	0.20	0.33	0.50	1.00	1.00		
	Ease of Construction	0.20	0.20	0.33	4.00	1.00	1.00		
	Total	4.79	2.27	8.83	23.50	17.00	15.25		

More Important

		Accuracy	Safety	Reliability	Cost	Ease of Use	Ease of Construction	Total
	Accuracy	0.21	0.15	0.45	0.30	0.29	0.33	1.73
	Safety	0.63	0.44	0.34	0.21	0.29	0.33	2.24
Less Important	Reliability	0.05	0.15	0.11	0.26	0.18	0.20	0.94
	Cost	0.03	0.09	0.02	0.04	0.12	0.02	0.31
	Ease of Use	0.04	0.09	0.04	0.02	0.06	0.07	0.31
	Ease of Construction	0.04	0.09	0.04	0.17	0.06	0.07	0.46
	Total	1.00	1.00	1.00	1.00	1.00	1.00	6.00

Weighted Values

Accuracy	0.29
Safety	0.37
Reliability	0.16
Cost	0.05
Ease of Use	0.05
Ease of Construction	0.08
Check Total	1.00

Weighted Design Matrix

	Concepts	Air Gun	Crossbow	Golf Swing	Spring Gun	Pitching Machine	Centrifuge
Criteria							
Accuracy		9	6	3	8	6	1
Safety		7	6	3	4	9	3
Reliability		7	5	1	6	6	2
Cost		4	5	7	7	2	6
Ease of Use		7	6	8	7	9	9
Ease of Construction		3	2	9	3	1	4

	Concepts	Air Gun	Crossbow	Golf Swing	Spring Gun	Pitching Machine	Centrifuge
Criteria	Weight						
Accuracy	0.29	2.593	1.728	0.864	2.305	1.728	0.288
Safety	0.37	2.615	2.241	1.121	1.494	3.362	1.121
Reliability	0.16	1.098	0.784	0.157	0.941	0.941	0.314
Cost	0.05	0.209	0.261	0.366	0.366	0.105	0.314
Ease of Use	0.05	0.366	0.313	0.418	0.366	0.470	0.470
Ease of Construction	0.08	0.231	0.154	0.693	0.231	0.077	0.308
Total	1.00	7.111	5.483	3.619	5.702	6.683	2.814

Using the Weighted Design Matrix Concept Evaluation Method, The Air Gun is the best concept based upon the criteria weights set forth by the Analytical Hierarchal Process.

