
Chapter 1

Electric Forces and Fields

1.1 Coulomb’s law

The electric field was found experimentally by Coulomb to have the following
form:

F =
kQqr̂

r2 (1.1)

where k = 8.99x109coul−2m3s−2, Q is the source electric charge, q is the electric
charge of interest, and r is the distance between the two charges. The unit
vector, r̂ always points from the source charge to the charge of interest. The
electric force can be written down, alternatively, as

F =
kQq~r

r3 (1.2)

with the vector ~r pointing from the source charge to the charge of interest.
Notice that source charge and charge of interest are always interchangeable–
depending on which charge the electric force is being calculated. The charge of
interest is always the charge for which the force is being calculated. The other
charge experiences an equal and opposite force.

Charge is a primitive concept, like mass. Nobody knows exactly what it
is, only what it does, how things having charge react to other charged objects.
The most common charge in daily experience is that carried by an electron
in electrical circuits. Electric and magnetic forces and fields are always in the
background, playing a grand role in making the universe what it is. Electric
forces make solid objects feel solid, prevent us from falling through the floor,
and are responsible for the vast number of different molecules and compounds
that create the diversity all around us.

The electric force is very much like the gravity force, except that electric
forces can be attractive and repulsive, while gravity forces are always attrac-
tive. The gravity force is considerably weaker than the electric force, however.
Small amounts of charge, such as obtained by combing hair or rubbing a bal-
loon against cloth, result in electric forces stronger than the gravity force of the
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entire Earth!

1.2 The Electric Field

The Electric Field can be obtained from Coulomb’s law by dividing by one
of the charges, q. The idea is that, even in the absence of a second charge, an
isolated charge creates a vector field that permeates space. This may or may
not be true, however it is a useful tool, since often it is possible to create a
relatively fixed distribution of charges which then will affect different particles
with different charges. The electric field need only be calculated once; to get
the different forces on different particles, it is then sufficient to simply multiply
the electric field by the charge, in the given location.

Particle physicists regard forces such as the electric force as arising from
an exchange of particles (usually called ’virtual’). This doesn’t seem entirely
consistent with the concept of a field, but in general no one worries about this.

The electric field ~Eof a charge Q is defined by

~E =
kQr̂
r2 (1.3)

All the pieces are as defined for Coulomb’s law. The easiest way to calculate
an electric field is to put an imaginary charge of 1 Coulomb at the point of
interest, and the calculate the force on it by the given distribution of charges.
This is because, with a test charge of exactly 1 Coulomb, the electric field is
exactly equal to the Coulomb force, except for the units (Newtons for the force,
Newtons/Coulomb for the Electric field). Written out, this would look like

~F = qtest ~E = 1 · ~E = ~E

So if we know how to calculate a force, we can easily calculate a field in the
same way, using the 1 C. test charge.

1.3 Calculating Electric Forces and Fields

1.3.1 Magnitude of a Force between two charged bodies

Simply substitute the numbers into Coulomb’s law, while ignoring the unit vec-
tor.

1.3.2 Calculating Vector Forces in 1-dimension

For any two given charges, substitute in the values (including minus signs, where
the charges are negative) and then choose the unit vector to be either x̂ or −x̂.
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It’s best to put a triangle around the charge of interest, to avoid flip-flopping
on this. The unit vector always points from the field charge towards the point
of interest. Add all quantities.

1.3.3 Vector Forces in two dimensions

Put a triangle around the point of interest, then follow the technique as in one
dimension. The difference is the unit vectors will be harder to find. Again,
there will be for each pair, the charge of interest and the field charge, a different
unit vector. This unit vector r̂can most easily be found geometrically, in the
following way.

Step 1: Compute ~r = ~p − ~s, where ~p points from the origin to the point of
interest, and ~s points from the origin to the field point. The vector ~r now points
from the field point to the point of interest.

Step 2: Find the magnitude of the vector ~r. This can be accomplished with
the dot product, r = (~r · ~r)1/2.

Step 3: r̂ = ~r/r

All this can also be accomplished with trigonometry, but the above prescription
is much, much easier, and generalizes well to continuous distributions of charges.

Once all the unit vectors are found, substitute them in, and then add up all
the vectors forces acting on the charge of interest. Of course, these are added
component-wise.

1.3.4 Continuous distributions of charge on a curve

It may be that the source charge is, at least approximately, distributed smoothly
along some curve in space. To find the force of this line charge on a particle,
perform the following steps:
(1) Write down the general expression for a force between the charge of interest,
located at point with position vector ~p, and an infinitesimal portion of charge
on the curve,dq.
(2) Find any convenient vector parametrization of the curve, ~R
(3) Find an infinitesimal displacement vector tangent to this curve, d~s = d~R
(4) Substitute dq = λds where λ is the charge density per unit length and ds is
the magnitude of d~s.
(5) Find, by subtraction, the displacement vector ~r between the infinitesimal
element of charge and the charge of interest, ~r = ~p− ~R.
(6) Find the magnitude, r, of the displacement vector.
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(7) Find the unit vector r̂ corresponding to this displacement vector
(8) Assemble all the parts and integrate the resulting expression over the entire
curve

1.4 Ballistics in Electric Fields

Charged particles respond to electric fields, and the motion described by New-
ton’s second law. The basic equation is

m~a = q ~E (1.4)

If other forces are present, then they are, of course, simply added to the right-
hand side of the equation. In general, this equation is more complicated than
ballistics in a constant gravity field, because ~E often varies significantly as a par-
ticle moves, while near the Earth’s surface, the gravity field is approximately
constant. However, with parallel plates, for example, it is possible to set up uni-
form fields where everything works as it did with simple gravitational ballistics.
In one dimension, for example, with a constant electric field, we have

ma = Eq → a =
Eq
m

Integrating once gives the velocity as a function of time

v =
Eq
m

t + v0

while integrating the velocity gives the position function

x =
1
2

Eq
m

t2 + v0t + x0

The constants v0 and x0, of course, are the initial velocity and position, respec-
tively.

In two dimensions, the analysis is similar to two-dimensional ballistics in a
gravity field.

1.5 Electric Flux and Gauss’s Law

Electric flux may be thought of as similar to a flow of fluid through an area,
in this case the fluid being replaced by ’electric-ness’. The definition is

φe =
∫

~E · d ~A (1.5)
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The main point in defining electric flux is the fact that it figures into the integral
form of Maxwell’s equations, to be discussed later. The most important of these
is Gauss’s law:

∮

~E · d ~A = 4πkQinside (1.6)

The
∮

is, of course, a surface integral over a closed surface. An example of a
closed surface is a beach ball. Gauss’s law is actually equivalent to Coulomb’s
law, and is only true for a force law that goes like r−2. Otherwise, it is very
useful for calculating electric fields for charge distributions with spherical, cylin-
drical, or plane symmetry. It’s important to realize that only the charges inside
a given surface count. The flux of charges outside the surface penetrate one side
and then exit the other, resulting in no net flux. This will be illustrated in the
examples.

1.6 Examples

Example 1. Electric and Gravity Forces in a hydrogen atom
This is a straightforward calculation, involving only the magnitudes of the forces.
The hydrogen atom is assumed to be the Bohr model, where the electron circles
the proton like a tiny planet. Using the tabulated values of the masses of the
proton and electron, and their charges, obtain:

Felec

Fgrav
=

ke2/r2

GMpme/r2 =
ke2

GMpme
≈ 1039

Example 2. Three charges on a line
Suppose a one coulomb charge Qais located at the origin of the x-axis, while a
two coulomb charge Qb is located at x=3. Find the place where the force on a
1 coulomb charge, Qc, would be zero.

Solution: Because the forces due to the two particles must oppose each other,
the particle must be found in between them. Let x be the coordinate of the
point in question. Then 3 − x represents the distance from the charge at x=3.
Summing the two coulomb forces gives the following equation:

Fac + Fbc =
kQaQcx̂

x2 +
kQbQc(−x̂)

(3− x)2
→ kx̂

x2 +
2k(−x̂)
(3− x)2

= 0

Rearranging results in a quadratic equation:

x2 + 6x− 9 = 0 → x = −3± 3
√

2 → x = 1.23

The minus root was rejected, since it would put the charge of interest outside
the interval [0,3]– an unphysical result, since the forces couldn’t balance there.
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Example 3. Three charges in a plane (A) Suppose a 1 coulomb charge is
at the point (-2,1). Find the force on the charge of 3 coulombs at (2,4). (B)
Same problem, but in addition there is another charge of -1 coulombs at (2,0).

Solution: This is simply a matter of computing the unit vector and distance,
then plugging in all the values of the charges and adding the vectors. The best
way to proceed is to first find a vector that lies down between the two points.
This can best be done by subtraction of one coordinate from another–essentially
subtracting one position vector from the other. The magnitude is then r.

~r = (2, 4)− (−2, 1) = (4, 3) → r = |~r| =
√

42 + 32 = 5 → r̂ =
~r
r

=
(

4
5
,
3
5

)

These results can now be assembled:

~FAB =
kQAQB r̂

r2 =
3k
25

(

4
5
,
3
5

)

For part B, simply calculate the other vector and add it in to the result of part
A.

~FCB =
kQCQB r̂

r2 =
−3k
16

(0, 1)

~Ftot = ~FAB + ~FCB =
(

12k
125

,
9k
125

)

+
(

0,
−3k
16

)

= etc

Example 4. Line of charge in one dimension
A line of charge, with charge density given by λ = αx, lies between −L < x < 0.
Calculate the electric field at the point x0.

Solution: Proceed formally, according to the above sequence of steps.
Step 1:

d ~E =
kdqr̂
r2

Step 2:
~R = (x, 0)

Step 3:
d~s = d~R = (dx, 0)

Step 4:
dq = λds = λdx

Step 5:
~r = ~p− ~s = (x0, 0)− (x, 0) = (x0 − x, 0)
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Step 6:
r = (x0 − x, 0)

Step 7:
r̂ = x̂

Step 8:

d ~E =
kλdxx̂

(x0 − x)2
=

kαxdx
(x0 − x)2

x̂

Substitute u = x0 − x, which then results in

~E =
∫ 0

−L

−k(x0 − u)du
u2 =

∫

k
u
−kx0du

u2 = k ln u+
k
u

=
(

k ln(x0 − x) +
k

x0 − x

)

∣

∣
0
−L =

= k ln x0 − k ln(x0 + L) +
k
x0
− k

x0 + L
= k ln

(

x0

x0 + L

)

+
kL

x0(x0 + L)

Example 5.An infinite line of constant linear charge density
Suppose a line of charge exists along the x-axis having constant charge per unit
length, λ. Find the electric field at the point (0, y0).

Solution: This requires an integral which can be set up intuitively, however
it’s better to use the above steps.
Step 1:

d ~E =
kdqr̂
r2

Step 2:
~R = (x, 0)

Step 3:
d~s = d~R = (dx, 0)

Step 4:
dq = λds = λdx

Step 5:
~r = ~p− ~R = (0, y0)− (x, 0) = (−x, y0)

Step 6:
r = (~r · ~r)1/2 =

(

x2 + y0
2)1/2
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Step 7:

r̂ =
~r
r

=
(−x, y0)

(x2 + y0
2)1/2

Step 8:
~E =

∫ ∞

−∞
kλdx

(−x, y0)

(x2 + y0
2)3/2

The x-component in the integral is an odd function, hence integrates to zero
over the given domain. The y-component can be integrated by trigonometric
substitution, resulting in

Ey =
2kλ
y0

The quantity y0 is arbitrary, so this means that the electric field of the line
charge falls off as 1/r , not 1/r2.

Example 6. Charges on a semi-circle, E at the origin.
Find the electric field at the origin due to a semi-circle of radius R with constant
linear charge density.

Solution: Follow the same steps as before.
Step 1:

d ~E =
kdqr̂
r2

Step 2:
~R = (R cos θ, R sin θ)

Step 3:
d~s = d~R = (−R sin θdθ, R cos θdθ)

Step 4:
dq = λds = λRdθ

Step 5:

~r = ~p− ~R = (0, 0)− (R cos θ, R sin θ) = (−R cos θ,−R sin θ)

Step 6:
r = (~r · ~r)1/2 =

(

R2 cos2 θ + R2 sin2 θ
)1/2

= R

Step 7:

r̂ =
~r
r

= (− cos θ,− sin θ)
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Step 8:
~E =

∫ π

0
kλRdθ (− cos θ, sin θ)

Example 7: Ballistics in Electric Fields, one dimension
The electric field near the surface of the Earth is approximately -150 N/C. (A)
How much charge would a 70 kg man have to carry (say, on a special suit) in
order to negate his weight? (B) Suppose he carried a charge of lesser magnitude
than this, say -3 coulombs. If he could jump 0.5 meters without the suit, how
high could he jump with the suit?

Solution: (A) This can be solved with Newton’s second law. The forces in-
volved are the gravity field and the electric field. To nullify, the sum of the
forces must be zero. Write down this expression and solve for q:

ma = −mg + Eq = 0 → q =
mg
E

=
70 · 9.8
−150

= −4.57 C.

(B) The ballistics equations for constant acceleration are needed here. We’ll
use all three, though in fact we could get by with only one, using it twice. The
acceleration, of course, is given by a = −g + Eq/m = −9.8 + (−150)(−3)/70 =
−3.37m/s. We also need the initial velocity. It would be fairly safe to assume
that his initial velocity with the charged suit is the same as when he doesn’t
have the charged suit. The velocity can be obtained from the usual ballistics
equation:

v2 − v2
0 = 2a(y − y0) → 0− v2

0 = 2 · −9.8(0.5− 0) → v−) =
√

9.8 = 3.13 m/s

We could complete this problem by reusing this equation, but for practice, we’ll
use the other two. The velocity equation, for the case where there is both a
constant electric and gravity field, is given by

v =
(

−g +
Eq
m

)

t + v0 → −3.37t + 3.13 = 0 → t = 0.929 s

For the height,

y = at2 + v0t + y0 = −1
2
· 3.370.9292 + 3.13(0.929) = 1.45 m

Example 8. Electric Flux through a rectangle in x-y plane
Find the flux of the electric field (1,2,3) through a rectangle in the x-y plane,
bounded by x=0, x=2,y=0,y=5.

Solution: First, we need to find d ~A. This is the infinitesimal area element
for a typical location on the surface, which is always multiplied by a vector
perpendicular to the surface. In this case, intuition suffices: d ~A = dxdyẑ. Then
the formula for flux gives

∫

~E · d ~A =
∫ 5

0

∫ 2

0
(1, 2, 3) · dxdyẑ =

∫ 5

0

∫ 2

0
3dxdy = 30 Nm2/C
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Example 9. Flux through rectangle at x=2 and parallel to y-z plane
Suppose a rectangle is parallel to the y-z plane at x=2, with −1 < y < 2 and
0 < z < 3. Find the electric flux of ~E = (x + y + z, 2, xz) through this surface.

Solution: Notice that if the surface isn’t closed, an orientation for the surface
must be chosen, which corresponds to the area vector pointing up from one
side or the other. In this case, we’ll choose the positive x-direction for the
orientation.

∫

~E · d ~A =
∫

(x + y + z, 2, xz) · x̂dydz =
∫ 3

0

∫ 2

−1
x + y + zdydz =

=
∫ 3

0
xy +

1
2
y2 + yz

∣

∣
2
−1 dz =

∫ 3

0
3x +

3
2

+ 3zdz = 3xz +
3
2
z +

3
2
z

∣

∣
3
0 =

= 9x +
9
2

+
9
2

= 27 N −m2

Notice in the last line we used the fact that x=2 on this rectangle.

Example 10. Gauss’s law applied to charges inside a bizarre surface
Suppose charges of 3 C., -6 C. ,7 C, and 9 C. are inside a bizarre shape, while
22 C., -14 C., and 7 C. are outside. Find the total flux through the surface.

Solution: The flux due to the external charges is zero–only the internal charges
count. Add them up, getting a total charge of 13 C. The electric flux is subse-
quently given by Gauss’s law:

φe =
∮

~E · d ~A = 4πkQinside = 52πk

Example 11. Gauss’s law for a thick spherical conductor with charge
at the origin and on the sphere
Suppose a thick spherical conductor has inner radius a and outer radius b.
Suppose, furthermore, that +Q coulombs of charge is at the exact center, while
-3Q coulombs of charge is placed on the sphere. Find the electric field inside
the sphere, inside the conductor, and outside the sphere.

Solution: Inside the sphere, create an imaginary surface a distance r from the
central charge Q, with r < a. Gauss’s law then gives

∮

~E · d ~A = E(4πr2) = 4πkQ → E =
kQ
r2

Inside the conductor the electric field is zero, since the charges are free to move
and will cluster around the inner surface, until the surface charge density on the
inner surface exactly balanced the charge at the center–equal and opposite it.
Then by Gauss’s law there will be no electric field inside the metal sphere, so
no further charge will collect on the inner surface. Any residual charge will flee,
the repulsive effect sending them outward (or rather, displacing large numbers
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of charges outwards). This migration will continue until all excess charge is on
the outer surface. The electric field outside the surface is given by:

∮

~E · d ~A = E(4πr2) = 4πk(Q− 3Q) → E =
−2kQ

r2

The charge distribution will find -1 C of charge on the inner surface of the
conductor. This is because negative charge will flow inwards towards the +1 C
charge at the center, until such time that the +1 C charge is shielded (i.e. when
the inner surface charge amounts to -1 C). And if -1 C is on the inner surface,
then -2 C must be on the outer surface, since the total on the thick, spherical
conductor is -3 C.

Example 12. Gauss’s law for an infinite thin cylinder with surface
charge density
Suppose an infinite cylinder of radius R has a constant charge per unit area, σ.
Find the electric field inside and out.

Solution: Create an imaginary cylinder inside the cylinder, at radius r < R
from the center. No charge is contained inside, so by Gauss’s law the electric
field must be zero. Outside the cylinder, make a similar imaginary surface, with
r > R. Then Gauss’s law gives:

∮

~E · d ~A = E(2πrL) = 4πkQinside = 4πk(σ2πRL) → E =
4πkσR

r

Example 13. Gauss’s law for an infinite plane
Suppose an infinite plane carries a uniform charge density σ. Find the electric
field. (B) Now suppose there are two metal plates a distance d apart, one of
them carrying positive charge and the other carrying an equal and opposite
negative charge. Find the electric field between the plates. (This is called a
parallel plate capacitor.)

Solution: (A) Make a small pillbox containing a certain area A of charge. Then
both end caps each have area A, also. The flux through the sides of the pillbox is
zero, since by symmetry the electric field is perpendicular to the plate. Gauss’s
law gives:

∮

~E · d ~A = E(2A) = 4πk(σA) → E = 2πkσ =
σ

2ε0

(B) In this case, imagine a positive charge placed between the two plates. As-
sume, for concreteness, that the bottom plate is positive and the top is negative.
The positive test charge is repelled upward by the bottom plate and attracted
with equal force upward by the negatively charged plate. Thus, the field is
doubled, and for a parallel plate capacitor,

E =
σ
ε0
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Example 14. Gauss’s law for a solid sphere with constant charge
density
Suppose a sphere of radius R has constant charge density ρ. Find the electric
field inside and outside the sphere.

Solution: Outside the sphere is easy: for r > R, Gauss’s law gives:
∮

~E · d ~A = E(4πr2) = 4πkQtot → E =
kQ
r2

This answer is identical to that of a point particle, and in fact this will always
be the case for a radially-symmetric charge distribution. For r < R:

∮

~E · d ~A = E(4πr2) = 4πkQinside = 4πk(ρ
4
3
πr3) → E =

4πkρr
3

The total charge is Qtot = 4πr3ρ/3. Solving this for ρ and substituting results
in:

E =
kQtotr

R3

This is obviously continuous with the external electric field.



Chapter 2

Electric Energy and
Potential Fields

2.1 Electric Potential Energy

The electric potential energy is similar to gravitational potential energy. It
comes from the work done by the electric field on an object moving through the
field, and can be defined as follows:

Wab =
∫ b

a
q ~E · d~s ≡ −(Ub − Ua) = −∆Uab (2.1)

”Wab is the work done by the electric field as the particle moves from point a
to point b. ”Uab” is the change in the electric potential energy, also denoted as
∆U . Defined in this way, the electric work can be transferred to the right hand
side of the work-energy theorm, which is

Wother = ∆K + ∆U (2.2)

”Wother” means work due to forces other than electric and gravitational forces.
It turns out that the electric potential energy calculated with the above line
integral is the same no matter what path is taken from a to b. So the electric
field is a conservative field, like the gravity field. The form of U is easy to find
for a point particle, which is:

U =
kQq

r
(2.3)

The advantage of defining an electric potential energy is that it is a scalar
quantity, rather than a vector. Typically, problems involve finding out some-
thing at one location, given some information at another location, using the
work-energy theorem.

The potential energy of a collection of charges can be found by simply adding
up all the contributions of all the different possible pairs of charges. This is

13
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equal to the work necessary to bring all the charges together from infinity into
the given configuration, as can be seen by inspecting the work-energy theorem.
Formally, this can be written down as

U =
∑

i<j

kQiQj

rij
(2.4)

The curious condition i < j is necessary to prevent counting contributions
twice, and to avoid counting a non-existent potential energy between a charge
and itself.

2.2 Electric Potential

The electric potential is very nearly the same as the electric potential energy,
and for a point particle is given by

V =
kQ
r

(2.5)

As can be seen, the electric potential is obtained from the electric potential
energy simply by dividing by q, the charge of interest. In this way, it is possible
to discuss fields due to a distribution of particles independent of their affect on
a particular charge. Like the electric field, it’s convenient to define an electric
potential which pervades space and is independent of some particular charge of
interest.

The electric potential energy and electric potential are useful in a variety of
contexts, and are much easier to use than Coulomb’s law, since they are scalars
rather than vectors.

2.3 Calculating Potentials

The methods of calculating electric potentials follow the calculations of electric
fields, with the difference that no unit vectors need be found, and the answers
are all scalars, not vectors. Finally, the potential field of a point particle falls
off like r−1 rather than r−2.

2.3.1 Point Particles

V =
∑

i

kQi

|~r − ~ri|
(2.6)

where ~ri is a position vector to the ith charge and ~r is a position vector to the
point of interest. To find the potential field at an arbitrary point in space, given
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by the coordinates (x, y, z), the above equation becomes

V (x, y, z) =
∑

i

kQi

|~r − ~ri|
=

∑

i

kQi

((x− xi)2 + (y − yi)2 + (z − zi)2)
1/2

2.4 Examples

Example 1. Two protons, off to infinity
Suppose two protons are placed a distance r0 away from each other, and subse-
quently released. What are their velocities at infinity?

Solution: By symmetry, they’ll have the same velocity at infinity. Thus con-
servation of energy gives:

∆K + ∆U = (Kf −Ki) + (Uf −Ui) =
(

1
2
mv2 +

1
2
mv2 − 0

)

+
(

0− ke2

r0

)

= 0

v =

√

ke2

mr0

Example 2. A proton and an alpha particle
A proton and an α particle (fully ionized helium nucleus) are placed within r0

of each other and released. Find their velocities at infinity.

Solution: Unlike the previous example, both conservation of energy and of
momentum are required. This is because the symmetry of the previous problem
has been lost: clearly, the proton and alpha particle will have different velocities
at infinity. With an additional unknown, an additional equation is needed.
Conservation of energy gives the equation

∆K+∆U = (Kf−Ki)+(Uf−Ui) =
(

1
2
mv2 +

1
2
MV 2 − 0

)

+
(

0− ke(2e)
r0

)

= 0

In the above equation, large M and V correspond to the alpha particle, while
the lower case m and v refer to the proton. From conservation of momentum:

pbefore = pafter → 0 = mv + MV → v = −MV
m

Substituting this into the conservation of energy equation gives
(

1
2

M2

m
V 2 +

1
2
MV 2 − 0

)

+
(

0− ke(2e)
r0

)

= 0

(

M2 + Mm
m

)

V 2 =
2ke2

r0
= 0 → V =

√

2mke2

M2 + Mm

Using the momentum equation, v can also be found.

Example 3. Alpha particle stopped by gold nucleus



16 CHAPTER 2. ELECTRIC ENERGY AND POTENTIAL FIELDS

An alpha particle (helium nucleus) having kinetic energy of 1 × 1025 J flies
directly at a gold nucleus (charge 79e). How close does it get?

Solution: Use conservation of energy. The particle is coming effectively from
infinity, where the potential is zero.

∆K + ∆U = Kf −Ki + Uf − Ui = 0−Ki + Uf − 0 = −Ki +
k(2e)(79e)

rf
= 0

→ rf =
158ke2

Ki

Example 4. Two protons and an alpha particle
Two protons and an alpha particle are in an equilateral triangle with sides 10
femtometers in length. If by some mechanism the one proton is released, while
the other particles remain fixed, find the velocity of the proton at infinity.

Solution: Assume the alpha particle is on the y-axis, with the protons on the
x-axis in the x-y plane. Let the right hand particle escape. Then

∆K = Kf −Ki =
1
2
mv2 − 0 =

1
2
mv2

where m, v are the mass and velocity of the proton, respectively. Meanwhile:

∆U = Uf − Ui =
ke(2e)

r0
−

(

ke(2e)
r0

+
ke(2e)

r0
+

ke2

r0

)

= −
(

ke(2e)
r0

+
ke2

r0

)

Note that the term with e(2e), the potential energy of an alpha particle and
proton, appears twice in Ui because there are two protons. Assembling:

∆K + ∆U =
1
2
mv2 −

(

ke(2e)
r0

+
ke2

r0

)

→ v =

√

6e2

mr0

Example 5. Potential of a line segment of charge.
Find the potential at x0 > 0 for a uniform line of charge lying in −L < x < 0.

Solution: This can be done formally, but in this case is very easy, so that
formalism will be dispensed with.

V =
∫ 0

−L

kλdx
x0 − x

= −kλ ln (x0 − x)|0−L =

= −kλ (ln x0 − ln (x0 + L)) = kλ ln
(

x0 + L
x0

)

Example 6. ∆Uvia integration
Find change in the electric potential energy for a particle with 3 microcoulombs
of charge which is moved from (-1,2) to (3,3) through an electric field ~E = (0, 20).



2.4. EXAMPLES 17

Solution: The path wasn’t specified, so we’ll go along two different paths,
hopefully getting the same answer (since that answer is supposed to be inde-
pendent of the path). The easiest path would be to go horizontally and then
vertically.

∆U = −
∫ b

a

~E · d~s = −
∫ 3

−1
(0, 20) · (dx, 0)−

∫ 3

2
(0, 20) · (0, dy)

The x and y lines were parameterized in the obvious way, ~s = (x, 2) and ~s =
(3, y), respectively. The first integral gives zero, while the second integral results
in

∆U =
∫ 3

2
(0, 20) · (0, dy) =

∫ 3

2
20 dy = 20 J.

Let’s try another path. Parameterize the straight line by first finding the equa-
tion of the line, which is

y =
1
4
x +

9
4

Then

~s =
(

x,
1
4
x +

9
4

)

→ d~s =
(

1,
1
4

)

∆U = −
∫ 3

−1
(0, 20) ·

(

1,
1
4

)

=
∫ 3

−1
5 dx = 5x

∣

∣
3
−1 = 20 J.

Example 7. The Electric Field as the Gradient of a potential
Suppose an electric potential is given by V = x2 − xy + z3. Find the electric
field corresponding to this potential.

Solution: This is simply a matter of calculating the three partial derivatives
of this expression and assembling them into a vector.

~E = −∇V = −
(

∂V
∂x

,
∂V
∂y

,
∂V
∂z

)

=
(

−2x + y, +x,−3z2)

Obviously this is a fairly strange electric field, and could only be due to a bizarre
charge distribution of some kind, but hey, that’s how this calculation is done,
and it’s easy.

Example 8. Circle of uniform charge in x-z plane.
A circle of charge of radius R with uniform linear density λ lies in the x-z plane,
centered at the origin. Find the electric field at the point (0, y0, 0).

Solution: This is straightforward, following the technique developed for electric
fields.
Step 1:

dV =
kdq
r

=
kλds

r
Step 2:

~s = (R cos θ, 0, R sin θ)
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Step 3:
d~s = (−R sin θdθ, 0, R cos θdθ)

Step 4:
ds = (d~s · d~s)1/2 = Rdθ

Step 5:
~r = ~P − ~s = (−R cos θ, y0,−R sin θ)

Step 6:

r = (d~r · d~r)1/2 =
(

R2 cos2 θ + y2
0 + R2 sin2 θ

)1/2
=

(

R2 + y2
0

)1/2

Step 7:

V =
∫ 2π

0

kλRdθ

(R2 + y2
0)1/2 =

2πkλR

(R2 + y2
0)1/2

Notice in the final integral all quantities were constants, resulting in a very
simple calculation!

Example 9. Find a potential difference with differential equations.
Suppose the electric field for a given distribution of charges is given by ~E =
(y, x + y2, 2z). Find the potential function, V .
Solution: Start with a set of differential equations, defined by

~E = −∇V = −
(

∂V
∂x

,
∂V
∂y

,
∂V
∂z

)

= (y, x + y2, 2z)

This gives three partial differential equations from which we can get V . Start
with the x- component, and integrate one component at a time, always remem-
bering to add an unknown function at each step.

∂V
∂x

= −y → V =
∫

−ydx = −xy + f(y, z)

∂V
∂y

= −x +
∂f
∂y

= −x− y2 → ∂f
∂y

= −y2 → f =
∫

−y2dy = −1
3
y3 + h(z)

So
V = −xy − 1

3
y3 + h(z)

Finally

∂V
∂z

= h′(z) = −2z → h = −z2 + C → V = −xy − 1
3
y3 − z2 + C



Chapter 3

Capacitors

3.1 Basic Facts

Capacitors store charge by exploiting geometry, positive charges on one surface
holding negative charges on another surface through the coulomb force.. They
are easy to make. A simple example is the parallel plate capacitor, which consists
of two metal plates facing each other and connected by a battery. Positive charge
collects on one plate, and negative charge collects on the other. Even if the
battery is now removed, the charges remain, and store electrostatic energy. In
TV sets and other electronic devices, there can be capacitors with dangerously
large charge. Capacitance is defined by

C =
Q

∆V
(3.1)

As simple as this equation seems, it isn’t always easy to calculate the capacitance
of a given distribution of charges, with a given geometry. The parallel plate
capacitor is easy, however. Let A be the area of the plate, σ the surface charge
density, and d the distance between the plates. Then

C =
Q

∆V
=

σA
Ed

=
σA
σ
ε0

d
=

ε0A
d

(3.2)

Two capacitors in series have the same charge. This is because of the geometry.
Consider two capacitors in series, one to the left of the other. If Q collects
on the left hand plate, then -Q must collect on the other plate, drawn by this
positive charge. This is actually an isolated conductor that looks like an ’H’.
Since the isolated conductor has no net charge, the other, right hand plate of
the H must have a charge of +Q. Finally, this means the right hand plate of the
second conductor must have charge -Q. This fact can be used to find the single
capacitor which is equivalent to two capacitors in series. Let ∆V be the drop
across both capacitors. Then

∆V =
Q

Ceq
= ∆V1 + ∆V2 =

Q
C1

+
Q
C2

19
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Note that the fact that the charge is the same on both capacitors and on the
equivalent single capacitor has been exploited. From this equation, it is easy to
see that for capacitors in series:

1
Ceq

=
1
C1

+
1
C2

(3.3)

Capacitors in parallel have the same voltage drop across them. This is easy to
understand, since in the circuit, to either side of either capacitor, the electrical
environment looks identical. It’s analogous to a pair of masses at the same
height in a gravity field. The gravity potential, gh, is the same for both of them
(though the energy will be different, given different masses). By the geometry,
different charges can be stored independently in the different capacitors. These
two facts can be exploited.

Qtot = Q1 + Q2 → Ceq∆V = C1∆V1 + C2∆V2

Since all the voltages in the above equation are the same, we have, for capacitors
in parallel,

Ceq = C1 + C2 (3.4)

The stored energy on a capacitor can be easily found.

∆V = q/C → dU = dq∆V = dq q/C → U =
∫ Q

0

q
C

dq

U =
1
2

Q2

C
=

1
2
C∆V 2 (3.5)

3.2 Dielectrics

Dielectric materials (aka dielectrics are composed of molecules that have
some dipole moment associated with them, or higher moment. When an electric
field is applied, the molecules try to align themselves with the field, with the
more positively charged regions trying to move in the direction of the electric
field, and the negatively charged parts trying to go the opposite way. In a
capacitor, from the illustration, it is clear that a simple polar molecule will try to
arrange so that its negative pole is closer to the positive plate, while the positive
pole is closer to the negative plate. This will effectively neutralize, partly, the
charges on the plates, allowing more charge to be stored. Putting dielectrics
inside a parallel plate capacitor (or any other kind of capacitor) increases the
capacitance. Dielectrics also have an added benefit of preventing collapse of the
plates, which would attract each other, being oppositely charged.

The dielectric-ness of a material is modeled by a dielectric constant, K, which
is equal to one for free space but larger for various materials. The effect of the
dielectric material is effectively to reduce electric fields and potential differences,
since the positive charges in the material bend closer to the negative plate in the
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capacitor, while the negative charges in the material bend towards the positive
plate. The new potential difference will be given by

∆Vnew =
∆Vold

K
(3.6)

with a similar equation holding for the electric field. This is for a fixed original
field, in terms of fixed charges. When a battery enters the system, there is the
possibility of flowing charge, which prevents any change in potential. This will
be illustrated in the example, below.

Alternatively, the dielectric constant is combined with ε0, the permittivity
of free space, to define the something called the permittivity ε in a substance:

ε = Kε0 (3.7)

When electric field calculations are carried out solely in a region having per-
mittivity ε, then using this ε instead of ε0 will take care of the dielectric effect.
When there are several regions, each with a different dielectric material, there
will be discontinuities in the electric field at the boundaries, though the poten-
tial, due to the arbitrary constant, can still be taken as continuous.

3.3 Examples

Example 1: A parallel-plate capacitor, with everything on it
A parallel-plate capacitor is connected to a 6-volt battery. If A = 0.03 m2, and
the separation is d = 2 mm. (A) Find the capacitance. (B) How much charge is
on the plates? (C) Find the surface charge density on each plate. (D) Find the
electric field between the plates. (E) After disconnecting the battery, a dielectric
with K=3 is inserted in the gap, completely filling it. Find the voltage drop
and the electric field between the plates. (F) Reconnect the battery, keeping
the dielectric material in between. Find the voltage drop between the plates,
and the electric field. (G) Find the new capacitance, and from that, the total
stored charge. (H) Find the charge density on the plates, and the electric field
between the plates by using the permittivity, (I) Find the energy stored on the
plates without the dielectric (J) Find the energy stored in the capacitor when
connected to the battery with dielectric inserted. (K) Suppose the battery was
disconnected before the dielectric was put it. How much work was done on the
dielectric material?

Solution: Straightforward application of the definitions yields all the answers.
(A)

C =
ε0A
d

=
ε0 × .03
2× 10−3 = 15ε0 farads

Note that since ε0 = 8.84× 10−12, this works out to C = 133× 10−12 Farads,
or 133 picofarads.
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(B)

C = Q/∆V → Q = C∆V = 133× 10−12 ∗ 6 = 7.96× 10−10coulombs.

Given the charge on a proton or electron, this is really quite a few charges,
equivalent to about five billion excess electrons on the negative plate.
(C)

σ = Q/A = 90ε/0.03 = 3000ε0 C/m2

(D) From Gauss’s law, E = σ/ε0 = 3000 N/C (E)

∆Vnew =
∆Vold

K
=

6
3

= 2 V.

(F) This is a no-brainer. The voltage drop across the capacitor must equal the
gain across the battery, or 6 volts, as before. The electric field will again be
E = V/d = 3000 V This seems strange, since there is now a dielectric inserted,
but follows from the fact that electric fields are conservative, so that around
any loop the gains and drops in potential must equal zero. What is different,
however, is the amount of charge carried on the plates, as will be seen. (G)

Cnew =
εA
d

=
Kε0A

d
= 3Cold = 45ε0 → Q = Cnew∆V = 270ε0 C

Notice that the total charge is larger, while the voltage drop is the same. (H)

σ = Q/A = 9000ε0 C/m2 → E =
σ
ε

=
σ

3ε0
= 3000 N/C

So the same answer is obtained as before, using a different method.
(I)

U =
1
2
C∆V 2 =

1
2
× 133 pF × 62 = 4, 788 pJ

(J) With the dielectric inserted, we must use the new capacitance, which is three
times the old. Since the capacitor is still connected to the battery, the voltage
drop is still 6 volts. Hence the energy stored is 14,364 pJ, where pJ stands for
picojoules.
(K) First, we find the new energy. The voltage is reduced by the factor 1/K,
while the capacitance is increased by a factor of K. The energy thus is changed
by a factor of K × 1/K2 = 1/K. Since K=3, 2/3 of the electric energy of the
capacitor has gone into putting torque on the dielectric material.

Example 2. Collections of Capacitors in a circuit
A 1 microfarad and 2 microfarad capacitor are in parallel, and together in series
with another 2 microfarad capacitor and a 10 V. battery. Find the charge and
voltage drop for each capacitor. (See the figures at the bottom of the solution.
You may need to enlarge your view to make them clearer.)

Solution: This is a rather long problem which, however, consists of numerous
easy steps. The method consists of creating a series of reductions, combining
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capacitors until only a single capacitor is left in a loop with the battery. The
voltage drop across the equivalent capacitor is then the same as the gain of the
battery, and it’s easy to find the charge, using C = Q/∆V . Subsequently, work
backwards through the intermediate diagrams. There are five factoids that are
essential:
1. C = Q/∆V
2. Ceq = C1 + C2 for capacitors in parallel
3. 1/Ceq = 1/C1 + 1/C2 for capacitors in series
4. The charge for capacitors in series is always the same (regardless of the ca-
pacitances)
5. The voltage drop across parallel capacitors is always the same.

To solve this capacitor circuit, first combine to two parallel capacitors:

Ceq = C1 + C2 = 1 + 2 = 3 µF

Now the equivalent 3-microfarad and the 2 microfarad capacitor are in series,
in a loop with a ten-volt battery. Combine:

1/Ceq = 1/C1 + 1/C2 =
1
2

+
1
3

=
5
6
→ Ceq =

6
5

µF

At this point, there is a single equivalent 6/5 microfarad capacitor in a circuit
with a ten-volt battery. Find the charge:

C =
Q

∆V
→ Q = C∆V =

6
5
× 10 = 12 µC

This charge is the same as the charge on each of the two capacitors in the
previous diagram, so the single 2-microfarad capacitor has a 12 microcoulomb
charge, as does the combined 3- microfarad capacitor. We need the voltage drop
across the single 2-microfarad capacitor:

C =
Q

∆V
→ ∆V =

Q
C

=
12 µC
2 µF

= 6 volts

This means that there is a four volt drop across the equivalent 3-microfarad
capacitor, hence a 4- volt drop over each of the capacitors in parallel. Finding
the charges on the parallel 1-microfarad and 2-microfarad capacitors is easy:

C =
Q

∆V
→ Q = C∆V = 1× 4 = 4 µC

C =
Q

∆V
→ Q = C∆V = 2× 4 = 8 µC
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Example 3: Capacitance of a spherical capacitor Find the capacitance of

two spherical shells, of radius r0 and r, with r > r0.

Solution: This is straight-forward, using the definitions. We have

C =
Q

∆V
=

Q
kQ
r0
− kQ

r

=
r0r

k(r − r0)

Example 4. An RC circuit
A 4 ohm resistor is in series with a 5 microfarad capacitor, which has been
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charged with a 10 volt battery. The battery is removed, and a simple circuit
with the resistor and capacitor remains. (A) How long does it take for the charge
to drop to half its original value? (B) What is the current at that time? (C)
The voltage drop across the resistor? (D) The power dissipated by the resistor?

Solution: This is straightforward, involving a lot of plug-n-chug.
(A)

Q = Q0e−t/RC → 1
2
Q0 = Q0e−t/RC → t = −RCln(1/2) → t = 1.38× 10−5 s

(B)

I =
dQ
dt

= − Q0

RC
e−t/RC

The original charge, Q0, is given by C = Q/∆V → Q = C∆V = 50 microcoulombs.
Then:

I0 = − Q0

RC
= −2.5 A → I = −2.5e−1.38×10−5/2×10−5

= 1.25A.

(C)
∆V = IR = 1.25 · 4 = 5 V.

(D)

P = I2R =
∆V 2

R
= 6.3 watts

Example 5. An RC circuit with battery
Same problem as in the previous example, except now a battery with EMF E is
in the circuit.
Solution: As before, the voltage drops around any closed loop must add up to
zero. This means that

E − IR− Q
C

= 0

Substituting I = dQ/dt and rearranging algebraically:

dQ
dt

=
E
R
− Q

RC
= − 1

RC
(Q− EC)

Dividing by −− EC and ’multiplying’ by dt:

dQ
Q− EC

= − dt
RC

The equation is now separated. Integrating gives:

ln(Q− EC) = − t
RC

+ const → Q = EC + Le−t/RC
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Applying the condition that, at t=0, the capacitor is uncharge (Q=0) results in
L = −EC. The result is

Q = EC
(

1− e−t/RC
)

(3.8)

As time progresses, the capacitor approaches full charge, at which time current
ceases, as can be determined by taking the derivative of the above equation.

Example 6. Parallel branches in an RC circuit Suppose a battery with
resistor R1 is in parallel with a capacitor and another resistor, R3, and that ini-
tially a switch is open, so that there is no current in any circuit and the charge
in the capacitor is zero. Derive expressions for the currents in each of the three
branches, once the switch is thrown.

Solution: There are three branches, each carrying a current. Using Kirchoff’s
laws, we can generate three differential equations for the three unknown cur-
rents, which with algebraic manipulation can be massaged into a differential
equation in terms of only one current. At either node, the currents give the
equation
Eqn. A

I1 = I2 + I3 →
dQ1

dt
=

dQ2

dt
+

dQ3

dt
The grand loop around the outside gives
Eqn.B

E −R1
dQ1

dt
−R3

dQ3

dt
= 0

Finally, the lower loop gives
Eqn.C

E −R1
dQ1

dt
− Q2

C
= 0

Solve the first equation for dQ3/dt and substitute that into the second equation,
eliminating dQ3/dt:

R1
dQ1

dt
+ R3

(

dQ1

dt
− dQ2

dt

)

= 0

Solve the equation C for R1dQ1/dt and insert that into the last equation. The
two E terms cancel, yielding

−Q2

C
+ R3

(

− Q2

R1C
+

E
R1

− dQ2

dt

)

= 0

The equation is now expressed solely in terms of Q2. Rearrange:

dQ2

Q2 − ECR3
R1+R3

= − 1
C

(

R1 + R3

R1R3

)

dt

Integrate:
∣

∣

∣

∣

Q2 −
ECR3

R1 + R3

∣

∣

∣

∣

= − 1
C

(

R1 + R3

R1R3

)

t + const
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Q2 =
ECR3

R1 + R3
+ γ exp

(

− 1
C

(

R1 + R3

R1R3

)

t
)

The constant of integration γ can now be determined by the intial condition,
Q2(0) = 0.

Q2(0) = 0 =
ECR3

R1 + R3
+ γ → γ = − ECR3

R1 + R3

Assembling:

Q2 = EC
R3

R1 + R3

(

1− e−
t
C

(

R1+R3
R1R3

)
)

The currents can easily be found by back substitution.
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Chapter 4

Currents and Resistors

4.1 Current, Resistivity, and Drift Velocity

Current is defined as the time-rate of flow of charge, denoted by I, with units
in coulombs per second, aka amperes. In terms of derivatives,

I =
dQ
dt

(4.1)

If the flow is steady, it’s obviously sufficient to divide the amount of charge
passing in a certain time by that time, or I = ∆Q/∆t. Current is carried by
negative charge carriers, called electrons. In general, however, we talk about
positive current, which effectively goes the other way. This is because back
when the concepts were invented, the electron was unknown. However, negative
current in one direction is equivalent to positive in the other, so there is no
particular problem with this definition.

The current density is defined as follows:

J =
dI
dA

(4.2)

Again, in most simple instances it is sufficient simply to divide the current by
the cross-sectional area of the current-carrying conductor. It is also possible to
define a drift velocity, vd:

J = nqvd (4.3)

In the above equation, n is the number density of charge carriers (typically
electrons), and q is the charge on each charge carrier. The number density is
related to the physical density and molar density of the substance, and to the
number of charge carriers per atom. These charge carriers, also called valence
electrons, are free to move from on nuclei to another in response to electric
fields. The drift velocity is typically no more than centimeters per second or
even less. Despite this, electric appliances turn on essentially immediately, since
the signal quickly propagates from electron to electron, at nearly the speed of

29
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light, when a potential is brought on line. It’s a little bit like ’Newton’s Cradle’,
where balls on strings are lined up touching each other, where striking the ball
on one end will immediately result in a ball jumping off the opposite end.

The resistance R of a substance depends on its length, its cross-sectional
area, and on what type of substance it is. The longer the wire made of a given
substance, the larger the resistance, while the larger the cross-sectional area,
the smaller the resistance. The equation is

R =
ρeL
A

(4.4)

4.2 Electric Circuits and Kirchoff’s laws

Solving circuits with various combinations of resistors is a basic and important
problem. Several facts are needed:

1. The sum of voltage gains and losses around any closed loop is always zero.
2. The sum of currents going into or out of a certain location is always zero
(counting incoming current as positive and outgoing as negative).
3. For series resistors,

Req = R1 + R2

4. For parallel resistors

1
Req

=
1

R1
+

1
R2

The first two facts are also known as Kirchoff’s laws. The third fact, the sin-
gle resistance equivalent to a series of two resistors, follows from the fact that
the current is the same in each resistor. The fourth fact follows from parallel
resistors having the same voltage drop across them.

Solving a circuit usually means finding the currents in the various different
branches. This entails a certain number of linear equations with the same
number of unknowns. The general procedure is:

1. Reduce the complexity of the circuit by first applying facts 3 and 4.
2. For n unknown currents, generate n equations using facts 1 and 2.
3. Solve the system of equations by substitution, Gaussian elimination, or
matrix methods.

Step 2 can be a little tricky, because applying Kirchoff’s laws may result in a
dependent set of equations–where one of the equations can be obtained from the
others, algebraically. This will become apparent when grinding out the answer
results in equations like 0 = 0. If this happens, just go back and generate a new
equation, getting rid of one of the old ones. It’s pretty rare that this kind of
bad luck happens more than once in a given problem.
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4.3 Examples

Example 1: Drift Velocity A wire carries 0.5 amperes of current. If the
cross-sectional area is 0.0003m2 and the number of charge carriers per meter
cubed is 2.25x1025, find the drift velocity.

Solution: This is a matter of plugging in the numbers. Since J = I/A, the
current density is J = 1, 667.67A/m2. Then

J = 1, 667.67 = nevd = 2.25x1025 ∗ 1.6x10−19 ∗ vd → vd =

= 4.63x10−4m/s

Example 2: Resistivity
Suppose a wire is melted down and recast so as to have one-half its original
length. Find the new resistance in terms of the old.

Solution: The new length, Ln, is such that Ln = 0.5Lo, where Lo is the original
length. The wire is a cylinder, and the old and new cylinders have the same
volume.

Vo = AoLo = AnLn = Vn → An = 2Ao

Plugging these two values into the resistivity equation yields:

Rn =
ρeLn

An
=

ρe
1
2Lo

2Ao
=

1
4

ρeLo

Ao
=

1
4
Ro

Example 3: Resistors in Series and Parallel
Three resistors, 1 ohm, 2 ohm, and 3 ohms, are in parallel. These are in series
with a 4 ohm resistor. Find the equivalent resistance.

Solution:

1
Req

=
1

R1
+

1
R2

+
1

R3
=

1
1

+
1
2

+
1
3

=
11
6
→ Req =

6
11

Ohms.

This is in series with the four Ohm resistor, which can be added, resulting in a
total equivalent resistance of 50

11 Ohms.

Example 4: Three branches and two batteries
(A) Find the currents in the given circuit diagram. (B) What is the power
radiated by the 2 Ohm resistor?

Solution: All current directions are right to left and named after the resistors
they go through. Note that the direction of the current I1 has been deliberately
chosen to be in the wrong direction, to illustrate it doesn’t matter. If you
choose the wrong direction, you will end up with a negative sign in the answer.
Kirchoff’s laws give the following equations:

∑

Ii = 0 → I1 + I2 + I3 = 0
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∑

∆Vi = 0 → −2I2 + 5 + I1 = 0
∑

∆Vi = 0 → −3I3 + I1 + 10 = 0

Solving the first for I2 and plugging into the other two equations, after some
algebra, gives

3I1 + 2I3 = −5

I1 − 3I3 = −10

Solving results in I3 = 25/11 A., I2 = 10/11 A., and I1 = −35/11A.. The
negative sign in I1 means that we chose the direction of current incorrectly.
The magnitude of I1 is correct but the current goes in the opposite direction.



Chapter 5

Magnetic Forces and Fields

5.1 Magnetic Forces

Charged particles respond to a magnetic force given by

~F = q
(

~v × ~B
)

(5.1)

Here, q is the charge, ~v is the velocity of the charged particle, and ~B is called the
magnetic field. It’s easy to see that the magnetic force on a straight segment
of wire carrying current I ought to be:

~F = I
(

~L× ~B
)

(5.2)

while in general, the force on an element of current is given by

d~F = I
(

d~s× ~B
)

(5.3)

The important thing to realize is that magnetic forces can’t make charges go
faster, since the force is always perpendicular to the direction of motion. Mag-
netic forces can only turn charges. There are, however, forces between one
magnet and another that can result in a change in velocity. Magnets attract
bits of metal by inducing slight magnetic fields in them, which then are at-
tracted through the magnetic force of one magnet for another. This kind of
magnetic induction can be easily observed with a permanent magnet and some
paper clips.

The Lorentz Force Law is given by

F = q( ~E + ~v × ~B) (5.4)

This is just a combination of the electrostatic and magnetic force laws. The
equation is particularly useful in the velocity selector problem, which is key in
such devices as the mass spectrometer, which was used to separate different
isotopes of uranium during the second world war.
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5.2 Ampere’s Law

Ampere’s law is given by
∮

~B · d~s = µ0Iinside (5.5)

The equation says that if you integrate around a closed path, the answer you
get is equal to the total current enclosed inside the closed path, times the per-
meability of free space, µ0. This is similar to Gauss’s law, but involves a line
integral, not a surface integral.

Using Ampere’s law, it is possible to calculate magnetic fields for a variety of
simple symmetries. These symmetries correspond to the cases where the mag-
netic field B is constant on the chosen path of integration, d~s. The cases that
can be studied include:

(1) cylindrical symmetry
(2) Plane symmetry
(3) toriodal symmetry

Since in these and similar cases the magnetic field is constant, it is easy to
write down the integral. For example, for cylindrical symmetry, write

oint ~B · d~s = B(2πr) = µ0I

5.3 Examples

Example 1: Magnetic Force on charged particle
A particle traveling 200,000 meters per second in the x-direction enters a mag-
netic field ~B = 0.5ẑ. If it turns in a semi-circle of radius 0.05 meters before
hitting a photographic plate, what is the mass-to-charge ratio?

Solution: Use Newton’s second law, for the circular motion case where a =
v2/r.

m~a = q(~v × ~B) → −mv2

r
= −qvB sin θ = −qvB

m
q

=
rB
v

= 0.05 · 0.5/200, 000 = 1.25× 10−7 kg/coulomb

Example 2: Magnetic Force on a straight wire segment
How much current must travel through a straight wire, oriented in the positive
x-direction, so that the magnetic force due to the field ~B = 5x̂ + 3ŷ will be
sufficient to cancel the force of gravity? The wire has a linear density of 0.02
kg/ meter.

Solution: This is a straightforward application of the law of forces on a current-
carrying conductor.

m~a =
∑

Fi = (0, 0,−mg) + I~L×B = 0
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~L×B =





x̂ ŷ ẑ
L 0 0
5 3 0



 = x̂(0 · 0− 0 · 5) + ŷ(0 · 3−L · 0) + ẑ(L · 3− 0 · 5) = 3Lẑ

Plugging into the first equation and extracting the z-component results in

−mg + 3IL = 0 → −λLg + 3IL = 0 → I =
λg
3

= 0.0653 A.

Example 3: Velocity selector
A particle traveling in the positive y-direction passes through a velocity selector
with fields given by ~E = (0, 5000, 0) and ~B = (0.2, 0, 0). What’s the charge-to-
mass ratio, if it exits the electric field and turns through a semicircle, impacting
a photographic plate 0.06 m. away?

Solution: This problem is solved in two steps. (1) Find the velocity, using the
fact that the particles will only exit the velocity selector if the net force (the
Lorentz force) is zero. (2) Use the magnetic force law from the previous example
to find m/q.

~E + ~v ×B = (0, 0, 5000) +





x̂ ŷ ẑ
0 v 0

0.2 0 0



 = (0, 0, 0)

→ 5000− 0.2v = 0 → v = 25, 000 m/s

Once again, use Newton’s second law for the circular motion case where a =
v2/r. From the first example:

m~a = q(~v × ~B) → m
q

=
rB
v

= 0.03 · 0.2/25, 000 = 2.4× 10−7 kg/coulomb

Example 4: Magnetic Torque
Compute the magnetic torque of ~B = (1, 2, 3) on a set of five rectangular circuits
of wire with corners at (0,0,0), (2,0,0), (0,3,4), (2,3,4). The current of 0.5
amperes proceeds along the line from (0,0,0) to (2,0,0) and on around the loops.

Solution: The method is as follows, in four steps. (1) Find a normal vector
n̂ to the surface, making sure that it is oriented via the right hand rule–right
thumb in the direction of the normal, fingers waggling in the general direction
of positive current. (2) Write down the area vector, An̂. (3) Get the magnetic
moment ~µ = NIAn̂, where the number of loops is N and the current isI. (4)
Find the torque with ~τ = ~µ × ~B. It is evident that this is a rectangle with
sides of lengths 2 and 5. The area is therefore 10. To find a vector normal to
the surface, simply create vectors along two of the sides and compute the cross
product. The unit vectors x̂ and (0, 3/5, 4/5) point along the two sides of the
rectangle.

x̂× (0, 3/5, 4/5) =





x̂ ŷ ẑ
1 0 0
0 0.6 0.8



 = (0,−0.8, 0.6)
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Notice that with the fingers going in the direction of the current, the right
thumb points in the positive z-direction, consistent with the computed normal
vector. If this were not the case, it would be a simple matter of multiplying
each component by -1.

~τ = ~µ× ~B = NIA





x̂ ŷ ẑ
0 −0.8 0.6
1 2 3



 = 25(−0.12, 0.6, 0.8)

Example 5: Ampere’s law for a long straight wire
Use Ampere’s law to find the magnetic field around a long straight wire carrying
current I.

Solution: This is easy. First, draw an imaginary circle around the wire at a
distance r. By symmetry, the magnetic field will be constant along this circle,
and in the same direction as d~s at all points. This means the line integral will
give simply B times the arclength:

∮

~B · d~s = B(2πr) = µoIinside → B =
µoI
2πr

Example 6: Ampere’s law for a coaxial cable
Find the magnetic field at all points for a coaxial cable consisting of a thin, long
wire carrying 5 A. of current on the inside, surrounding by a cylindrical shell of
radius R carrying 3 A. of current in the opposite direction.

Solution: For r < R, the solution is the same as in the previous example,
substituting the value of I. For r¿R:

∮

~B · d~s = B(2πr) = µoIinside = µo(5− 3) → B =
µo

πr

Example 7: Amps law for a solenoid
Find the magnetic field of a long solenoid, where L is the length and N the
number of wraps.

Solution: The imaginary line should be a rectangle with one side going through
the center of the solenoid and the others completing the other three sides. If
the solenoid is long, the contribution to the line integral of these exterior sides
will be negligible compared to the contribution of the side going through the
center, where the field is strongest, and where it is also in the same direction as
the integration, parallel to d~s. Then:

∮

~B · d~s = BL = µoIinside = µoIN

There is an effective multiplication of I by N, since the wire loops around over
and over again, each loop creating more magnetic flux. Finally,

B = µoI
N
L

= µoIn
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Example 8: Biot-Savart calculation for a long current-carrying wire
Find the magnetic field due to a long wire carrying current I.

Solution: The set up is nearly identical to that of a long line of charge. Assume
the wire is infinite in length and lying along the z-axis, with current going in
the positive z- direction. Then, as before:
Step 1:

d ~B =
µo

4π
Id~s× r̂

r2 =
µo

4π
Id~s× ~r

r3

Step 2:
~R = (0, 0, z)

Step 3:
d~s = d~R = (0, 0, dz)

Step 4:
~r = ~p− ~R = (0, y0, 0)− (0, 0, z) = (0, y0,−z)

Step 5:

r = (~r · ~r)1/2 =
(

y0
2 + z2)1/2

Step 6:

d~s× ~r =





x̂ ŷ ẑ
0 0 dz
0 y −z



 = (−ydz, 0, 0)

Assembling these results into the formula from step 1 results in

~B =
µoI
4π

∫ −∞

−∞

(−ydz, 0, 0)

(y2
o + z2)3/2

This can readily be integrated using the substitution z = yo tan θ, resulting in

Bx = − µoI
2πyo

x̂

By symmetry, it’s easy to see that this magnetic field circulates around the wire,
and agrees with the result obtained from Ampere’s law.

Example 9. A circular loop of current
Find the magnetic field at (0, y0, 0) due to a circular wire of radius R, centered
around the origin in the x-z plane and carrying current I.

Solution: Follow the same steps as before.
Step 1:

d ~B =
µo

4π
Id~s× r̂

r2 =
µo

4π
Id~s× ~r

r3

Step 2:
~R = (R cos θ, 0, R sin θ)
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Step 3:
d~s = d~R = (−R sin θdθ, 0, R cos θdθ)

Step 4:

~r = ~p− ~R = (0, y0, 0)− (R cos θ, 0, R sin θ) = (−R cos θ, y0,−R sin θ)

Step 5:

r = (~r · ~r)1/2 =
(

R2 cos2 θ + y2
0 + R2 sin2 θ

)1/2
=

(

R2 + y2
0

)1/2

Step 6:

d~s× ~r =





x̂ ŷ ẑ
−R sin θdθ 0 R cos θdθ
−R cos θ y0 −R sin θ



 = (−y0 cos θ,−R,−y0 sin θ)Rdθ

Step 7:

~B =
µ0I
4π

∫ 2π

0

(−y0 cos θ,−R,−y0 sin θ)Rdθ

(R2 + y2
0)3/2

This integral looks very difficult, but in fact is very easy. First of all, the x-
component boils down to

∫ 2π

0
cos θdθ = sin θ|2π

0 = 0

The z-component works out similarly. Meanwhile, the y-component is just the
integration of a constant! This results in a factor of 2π, so the magnetic field
has only a y-component, which is

By =
−µ0IR2

2 (R2 + y2
0)3/2

Example 10: Magnetic field at the center of several circular current-
carrying wires
Suppose a wire carrying current I comes in along the x-axis from −∞, makes a
semicircle of radius 1 meter in the positive y-domain, proceeds along the x-axis
to x=2, then makes a quarter circle of radius 2 up to the positive y-axis, along
which is proceeds to +∞. Find the magnetic field at the origin. Solution:First
of all, the contributions to the B-field along all the straight-line segments of
wire are zero, because in each case the vectors d~s and r̂ are either parallel or
antiparallel, so that d~s× r̂ = 0. (Recall that the cross product involves a factor
of sin θ, and that in these two cases θ = 0 or π.) So it is sufficient just to
find the contributions due to the two circular segments. These can be found
by inspection of the integral in the previous example. Notice that as y0 goes
to zero, the x-integral and z-integral will both be identically zero, whereas the
y-integral will remain a simple constant integral. This would be given by

By =
µ0I
2R
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where R is the radius of the circle. That y-integral just gave a factor of 2π for
the whole circle, whereas any fraction would likewise give a fraction of 2π. So
for contributions to the B-field at the center of a circle, it is only a matter of (1)
finding the fraction, and multiplying the above equation by that fraction, and
(2) deciding whether the contribution is positive or negative by using the right
hand rule.
Right hand rule for currents If the right thumb points in the direction of
the current, the right fingers waggle in the direction of the generated magnetic
field.
From this, it can be seen that the radius 1 semi-circle makes a negative contribu-
tion, while the radius 2 quarter-circle makes a positive contribution. (Positive-z
is up out of the paper) The answer, therefore, is

B =
−1
2

µ0I
2 · 1

+
1
4

µ0I
2 · 2

= − 3
16

µ0I



40 CHAPTER 5. MAGNETIC FORCES AND FIELDS



Chapter 6

Magnetic Induction

Changing magnetic fields can create electric fields. These electric fields, in
turn, drive currents. This principle is what lies behind power generation in the
modern world.

6.1 Faraday’s Law

It turns out that the magnetic fields don’t even have to change with time: all
that is required is that the magnetic flux through a certain region changes. The
magnetic flux, φM , is defined by

φM =
∫

~B · d ~A (6.1)

The unit of magnetic flux is the Weber. Notice that the definition is identical
to that of electric flux.

Changing flux through a region creates an electric field, which in turn creates
an electric potential. Quantitatively, this is given by Faraday’s Law:

EMF = −dφM

dt
(6.2)

If there are N loops, then each loop will get a boost equal to that calculated in
the above equation, just like having N batteries in series. The electric field can
be calculated from

∮

~E · d~s = −dφM

dt
(6.3)

In these calculations, orientation of the surface is important.
Rule of Thumb: If the right thumb is pointing in the direction of the normal
to the surface, ~A, then the direction of positive current flow is in the direction
of the fingers.
Lenz’s Law In a situation involving a changing magnetic flux, the induced
current moves in such a way so as to create a counter-B-field, which will oppose
any change.
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6.2 Motional EMF

Motion of through a magnetic field can generate potential differences. In some
books there is an attempt to relate this to some kind of changing flux through
an infinitesimal region, but in fact it is really a result of the Lorentz Force Law,

~F = q
(

~E + ~v × ~B
)

When metal is moved through a magnetic field, the conduction electrons will
respond to the magnetic field, creating an electrostatic field, continuing until
the resulting electric force balances exactly the magnetic force. Hence, from the
Lorentz force,

(

~E + ~v × ~B
)

= 0 → − ~E = ~v × ~B

Integrating both sides:

−
∫

~E · d~s =
∫

~v × ~B · d~s

At this point, notice that the left hand side of the above equation is by definition
the potential difference between two points. Thus:

∆V =
∫

~v × ~B · d~s (6.4)

6.3 Self-Inductance

6.3.1 Inductors

Inductors are coils of wire, as in solenoids, or any other geometry that creates
a signficant magnetic field as current goes through it. Note that since magnetic
fields are always created by flowing current, every circuit has some inductance
effects. The voltage drop across an inductor is given by

∆V = −L
dI
dt

(6.5)

L is called the inductance, and is defined by

L =
NφB

I
(6.6)

where N is the number of loops in the inductor, I is the current, and φB the
magnetic flux. The SI unit of inductance is the Henry. Inductors are also some-
times called ’chokes’ because they choke off current. The developing magnetic
flux, by Lenz’s law, creates an induced counter-magnetic field that opposed the
change in flux. This can be easily seen in the next example.
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6.3.2 Energy in an Inductor

The energy in an inductor is easy to calculate.

∆Vind = L
di
dt
→ P = i∆V = L

idi
dt

where P is the power. Note that P = dUL/dt, so

UL =
∫

Lidi =
1
2
Li2 (6.7)

6.4 RL, LC, and RLC circuits

6.4.1 RL Circuits

Suppose an inductor, resistor, and battery are in series in a closed circuit, with
an open switch. At t=0 the switch is closed, so current can begin to flow. Using
Kirchoff’s laws and elementary differential equations, we can find the behavior
of the circuit at any time. First, apply Kirchoff’s law to the circuit. This results
in

E − IR− L
dI
dt

= 0

This can be massaged into an easily separable form, as follows. First, get dI/dt
on one side, then factor out a −R/L.

dI
dt

=
1
L

(E − IR) = −R
L

(

I − E
R

)

Dividing through by I − E/R and ’multiplying’ by dt gives the separated equa-
tion:

dI
I − E/R

= −R
L

dt

This first-order equation can be easily integrated:

ln(I − E/R) = −R
L

t + const → I =
E
R

+ be−t/τ

where b is a constant depending on initial conditions and τ = L/R is called the
time constant. At t=0 we have

I(0) = 0 =
E
R

+ b → b = −E
R

So finally,

I(t) =
E
R

(

1− e−t/τ
)

From this equation it can be seen that as time progresses, the choke relaxes
with characteristic time τ , until after a very long time the current corresponds
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to that produced by a lone resistor in the circuit. This is because, eventually, a
steady current is reached, at which time the voltage drop across the inductor is
zero.

It is also possible to solve the case where this same circuit has the battery
suddenly cut out of the loop. At first glance, it appears nothing much would
happen, but in fact the magnetic field in the solenoid would start to drop, and
this would create a changing voltage drop across the inductor. Using the same
analysis as before will result in an exponentially decaying current:

I(t) = I0e−t/τ (6.8)

where again τ = L/R.

6.4.2 LC Circuits

Capacitors and inductors, of course, can be put in the same circuit together. An
interesting oscillator consists of a fully charged capacitor put in a loop across
an inductor. The capacitor then alternately discharges and charges, while the
magnetic field alternately grows and decays. Kirchoff’s law gives

−Q
C
− dI

dt
= 0 → d2Q

dt2
+

1
LC

Q = 0

This is, of course, the harmonic oscillator equation. The solution is

Q = Q0 cos(ωt + δ)

where ω2 = 1/LC. In the event where at t=0 the capacitor has its maximum
charge, it is evident that δ = 0 and that the charge on the capacitor goes
through harmonic oscillations forever. Naturally, this is an idealization, and
there are always resistive effects that will bleed off the energy. In addition, such
electromagnetic oscillations result in the production of electromagnetic waves—
light.

6.4.3 RLC circuits

The RLC circuit is more realistic than the LC circuit, because in practice there
is almost always some resistance in a circuit. For a battery, inductor, capacitor,
and resistor in series, Kirchoff’s law gives

E − L
dI
dt
− Q

C
− IR = 0

Using I = dQ/dt and substituting, arrive at the following differential equation
(after a little algebra)

L
d2Q
dt2

+ R
dQ
dt

+
1
C

Q = E

This equation is easy to solve, being an inhomogeneous ordinary differential
equation. The solution is the sum of a particular solution, Qp, and a general
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solution to the corresponding homogeneous equation. Homogeneous just means
the right hand side is zero, rather than some constant or function of time. For
the particular solution, we guess, with the only criteria being that when we plug
the guess into the left hand side, we get the right hand side (in this case the
constant E . Obviously,

Qp = EC

Plugging this in, indeed, satisfies the equation. Now we need the general ho-
mogeneous solution. This can be obtained by the standard trick of finding the
roots of the ”characteristic equation”. Essentially, this is simply a matter of
plugging Q = emt into the equation

L
d2Q
dt2

+ R
dQ
dt

+
1
C

Q = 0

and then canceling out the exponentials after taking the derivatives. Recall that
the derivative of the exponential is always the exponential back again, times any
chain rule factor. We have

Lm2 + Rm +
1
C

= 0

This can be solved for m using the quadratic formula:

m =
−R±

√

R2 − 4 · L · (1/C)
2L

= − R
2L

±
√

R2

4L2 −
1

LC

This equation has three possible results, depending on whether the quantity
under the radical is zero, positive, or negative.

Case 1: R2

4L2 − 1
LC = 0 This is called the critically damped case. Here, there is

a double root, m=-R/2L, so the homogeneous solution is

Qh = αe−Rt/2L

The complete solution is

Q = Qp + Qh = EC + αe−Rt/2L

α, of course, is a constant, determined by the initial conditions.

Case 2: R2

4L2 − 1
LC > 0

In this case, there will be two distinct solutions, both of the exponentials having
negative powers. The solution is

Q = Qp + Qh = E + e−Rt/2L (

αeγt + βe−γt)

where

γ =

√

R2

4L2 −
1

LC
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Case 3: Underdamped R2

4L2 − 1
LC < 0

In this case, we have a negative under the radical, which means the solutions
involve imaginary numbers. The solution is therefore

Q = Qp + Qh = E + e−Rt/2L (

αeiωt + βe−iωt)

where

ω =

√

1
LC

− R2

4L2

Now, it turns out that it can be shown–with power series expansions–that

eiθ = cos θ + i sin θ

Using this fact, it is possible to rewrite the expressions with imaginary numbers
in terms of real numbers. Notice that we can make the constants α and β
anything we want in order to eliminate all traces of imaginary numbers, which
are considered unphysical. Obtain:

Q = Qp + Qh = E + e−Rt/2L (a cosωt + b sin ωt)

Here, it can be seen that ω is the angular frequency of the oscillation, modified
from what it was in the LC circuit by the resistance, R. Often, ω will be written
as

ω =

√

ω2
0 −

R2

4L2

to emphasize its relationship to the LC circuit.

6.5 Mutual Inductance

Mutual inductance refers to pairs of loops that affect each other through
inductance. The idea is really the same as in self-inductance, but a little con-
fusing, because there are always two parties involved, and each has a constant
associated with it similar to the constant L, usually denoted M , with subscripts.
However, it can be proven that for the two loops, loop 1 and loop 2, the mutual
inductance of loop 1 is the same as the mutual inductance of loop 2, which is
usually expressed as M12 = M21. Mutual inductance is important in the theory
of transformers, which allow transmission of power at very high voltage but low
frequency, followed by conversion to smaller voltages at the far end of the line
for household applications. This saves in energy losses, since transmission at
high voltage is much more efficient. We have

E∞ = −M
dI2

dt
(6.9)

and
E∈ = −M

dI1

dt
(6.10)
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The induced EMF in loop 1, say, is due to the contributions from loop 2 and
self-contributions, from its own current.

E∞ = E11 + E12 = −L1
dI1

dt
−M

dI2

dt
(6.11)

6.6 Examples

Example 1: Mega-Example
Suppose a circle of wire in the x-y plane of radius 2 m contains a changing
magnetic field given by ~B = 3e−2tẑ. (A) Find the induced EMF in the coil after
two seconds. (B) Find the electric field for r < 2. (C) Find the electric field for
r > 2. (D) If the resistance of the wire loop is 5 ohms, find the current. (E)
Find the direction of the current. (F) If the single loop of wire is replaced by
five tight loops of the same radius, find the EMF. (G) In this instance, find the
current.

Solution: These are all straightforward applications of the Faraday and Lenz
laws, along with Ohm’s law.
(A) Faraday’s Law does the trick. First, calculate the magnetic flux:

φM =
∫

~B · d ~A = ~B ·
∫

d ~A = 3e−2tẑ · (π22)ẑ = 12πe−2t

E = −dφM

dt
= 24πe−2t

(B) Here, just as with Gauss’s Law and Ampere’s Law, only the flux within a
certain radius counts–everything outside of that doesn’t contribute.

∮

~E · d~s = E(2πr) = −dφM

dt
= 6πr2e−2t → E = 3re−2t

(C) Outside:

E(2πr) = 3π22e−2t → E = 6
e−2t

r
(D)

I = E/R

(E) The direction of the current can be found in two ways: either by Lenz’s law
or by careful arithmetic. Lenz’s law says that the induced current creates a mag-
netic field that attempts to counteract the change in magnetic flux. Therefore
the current flows in the standard counterclockwise direction (x-axis to y-axis
and on around) since this, by the right hand rule, will create a B-field going up
through the loop. This up-going field will fight the decrease in flux.

Careful math will also give the same answer. By the rule-of-right-thumb,
stick the thumb in the direction of the area vector, ~A. The fingers then give
the direction of positive current for the loop. Mathematically, part A gave a
positive answer for E , hence division by R gives a positive answer–which means
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the current flows in the positive direction, as determined by the right-hand-rule.
This is the same answer as before.
(F) N loops will give N times the EMF. However, if too many loops are added,
the induced magnetic field will start to perturb the applied external field, re-
ducing it significantly, and choking off further EMF enhancement.
(G) The current isn’t changed, since the resistance also increases by a factor of
N .

Example 2: Airplanes and motional EMF
Suppose an airplane with wingspan of 10 meters, tip-to-tip, is flying east at 300
m/s. If the Earth’s magnetic field is given at this latitude by (0, 2,−3)×10−4T.,
what is the induced voltage across the wings?

Solution: The airplane is traveling east, which will be taken as the x-direction.
North is then the y-direction, and straight up the z-direction. The wings are
oriented south-north, which is in the y-direction. The solution, therefore, may
be had by first computing the cross product, then integrating across the wings.

~v × ~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
300 0 0
0 2 −3

∣

∣

∣

∣

∣

∣

× 10−4 = (0, 0.09, 0.06)

Also, it is clear that d~s = (0, dy, 0). (This comes from the parametrization
(0,y,0).)

∆V =
∫ 1

0
0(−, 0.09, 0.06) · (0, dy, 0) =

∫ 1

0
00.09dy = 0.9volts

Example 3: Faraday’s Disk
A metal disk of radius R is spun on its axis at ω radians per second. A magnetic
field ~B is oriented perpendicular to the disk. Find the induced ∆V between the
center and the edge of the disk.

Solution: Orient the axes so that the z-axis goes through the center of the
disk, and the disk is in the x-y plane. Focus on a typical element of the disk on
the y-axis. Then on the y-axis,

~v = (0,−yω, 0)

and
~B = (0, 0, B)

The cross product is easy:

~v × ~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
−yω 0 0

0 0 B

∣

∣

∣

∣

∣

∣

= (0, ωBy, 0)

Integrate this from y=0 to y=R:
∫

~v × ~B · d~s =
∫ R

0
ωBydy =

1
2
ωBy2

∣

∣

∣

∣

R

0
=

1
2
ωBR2
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Example 5: An RL circuit
A 5 henry inductor is in a circuit with a 20 ohm resistor and 10 volt battery.
(A) If the switch is closed at t=0 s., how long does it take for the current to
reach half its maximum value? (B) what is the voltage drop across the inductor
at that time?

Solution: This is a matter of plugging into equation. The maximum current
will occur in the limit as t → infnty, and be equal to E/R Let I = 0.5E/R and
solve for time:

1
2
E
R

=
E
R

(

1− e−t/τ
)

Note that τ = L/R = 5/20 = 0.25 s. With a little algebra,

e−t/0.25 =
1
2
→ −4t = ln(0.5) → t = 0.173 s

To solve the second part, either we have to find the derivative of the expression
for the current and put that into the definition of the voltage drop across the
inductor, or we can solve the easier problem of finding the drop across the
resistor, then using Kirchoff’s circuit law to get the drop across the inductor.
We choose this latter method. First, find the current at that time:

I =
1
2
E/R = 0.25 V.

Next, the voltage drop across the resistor at this time:

∆Vresistor = IR = 0.25× 20 = 5 V.

Finally,Kirchoff’s law gives

E − IR− L
dI
dt

= 0 → L
dI
dt

= E − IR = 10− 5 = 5 V.

Of course, the answer makes perfect sense.

Example 5: Inductance of a Solenoid Find the inductance L of a
solenoid with n wraps per unit length.

Solution: This is just a matter of assembling the pieces of the definition. From
Ampere’s law, the magnetic flux through the center of a solenoid is given by

φB = BA = µ0nIA

where A is the cross-sectional area. Inserting this into the definition and can-
celing the current gives the answer:

L =
NφB

I
= Nµ0nA =

N2µ0A
L
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Chapter 7

Electromagnetic Waves

7.1 The Wave Nature of Light

Light, in the large, can is created by accelerating charges, and can be imagined
as something like taking a bed sheet and jerking it up and down, which causes
ripples to propagate away as if independent of the sheet. The wave solutions
come from Maxwell’s Equations, which are the full expression of electromag-
netism, together with the Lorentz Force Law containing all the information
necessary to the solution of all classical electromagnetism problems.

7.2 Maxwell’s Equations

We are now in a position to write down all of Maxwell’s equations for electro-
magnetic fields in free space. These are:

∮

~E · d ~A = 4πkQinside (7.1)

∮

~B · d ~A = 0 (7.2)

∮

~E · d~s = −dφM

dt
(7.3)

∮

~B · d~s = µ0Iinside + ε0µ0
dφE

dt
(7.4)

Three things to notice:
1. Ampere’s law now has an electric flux term. The previous version was only
good in the absence of changing magnetic fields, when the currents were steady.
The new form makes it more similar to Faraday’s law.
2. A new magnetic law, given by the second equation in the group, similar
to Gauss’s law, but with zero on the right hand side. This difference is a
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consequence of the fact that there are apparently no isolated magnetic charges–
no north pole without a south pole. Unlike the electric field, which can have
either positive or negative charges, there are no ’monopoles’ of charge.
3. Other than remark 2, the two fields can be very nearly switched with little
effect. Magnetic fields are similar to electric fields.

Finally, there is the Lorentz Force Law,

F = q
(

~E + ~v × ~B
)

(7.5)

These five equations are at the heart of electrodynamics.

7.3 Electromagnetic Waves

It can be shown fairly easily, by converting the integral equations into differential
equations, that B and E satisfy wave equations. This suggests that light has
wave nature, which in fact is well known. They can be shown to satisfy

~E = Emax sin(ωt− kx)û (7.6)

~B = Bmax sin(ωt− kx)v̂ (7.7)

where û and v̂ are unit vectors that are perpendicular to each other. In the
course of deriving these properties, two interesting discoveries can be made.
First,

E = Bc (7.8)

and second
c =

1
√

ε0µ0
(7.9)

where c is the speed of light.
The Poynting Vector is given by

~S =
1
µ0

~E × ~B (7.10)

This vector always points in the direction of propagation of the electromagnetic
wave, while its magnitude is equal to the energy flux of the wave.

7.4 Examples

Example 1: Magnetic field created by a discharging capacitor Find the
induced magnetic field formed between the plates of a discharging parallel-plate
capacitor with circular plates. Ignore edge effects.

Solution There is no current between the plates, so Iinside = 0. The charge on
a discharging capacitor is given by

Q = Q0e−t/RC
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The electric field between the two plates is

E =
σ
ε0

=
Q/A
ε0

=
Q0e−t/RC

ε0πa2

where a is the radius of the capacitor. The electric flux is just the total area
contained inside the line integral, πr2, where r is the radius at that point, times
E. Ampere’s law then gives

∮

~B · d~s = B(2πr) = ε0µ0
dφE

dt
= −µ0Q0

RC
e−t/RC

(

πr2

πa2

)

Now, imagine a plane parallel to the two capacitor plates and going straight
through the middle. At a point on this plane where r > a, the magnetic field
would be

B =
1

2πr
ε0µ0

dφE

dt
= − 1

2πr
µ0Q0

RC
e−t/RC

(

πa2

πa2

)

= − 1
2πr

µ0Q0

RC
e−t/RC

whereas for 0 < r < a the calculation yields

B =
1

2πr
ε0µ0

dφE

dt
= − 1

2πr
µ0Q0

RC
e−t/RC

(

πr2

πa2

)

= −µ0Q0

RC
e−t/RC

( r
2πa2

)

Example 2: A Plane Electromagnetic Wave
Find the equations for the magnetic and electric fields of a co-sinusoidal elec-
tromagnetic wave that is propagating in the x-direction, and which has, when
x=0, t=0 takes its maximum electric field amplitude of 200 N/C in the positive
y-direction, and an angular wave number of 10π radians/meter.

Solution: This is a matter of assembling several facts. First get angular fre-
quency from the angular wave number.

k = 10π = 2π/λ → λ = 1/5

c = fλ → f = c/λ → ω = 2πc/λ = 3π × 109 Hz

Next, get the amplitude of the B field with

E = Bc → B = E/c = 6.67× 10−7 Tesla

Finally, the directions of the fields are needed. The electric field ~E is already
determined because we are told it is initially in the ŷ direction. The ~B field must
be in a direction such that the Poynting vector, ~E× ~B/µ0, points in the positive
x-direction, the direction of propagation. This can be done algebraically with
three components of an unknown unit vector representing the direction of the
B-field, however it’s easier using the right-hand-rule. Point the fingers in the
y-direction of the electric field and curl in such a direction so that the thumb
points in the positive x-direction, the direction of propagation. At t=0, x=0, it
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is found that the B-field must point in the positive z-direction. The E-field and
B-fields can now be written down.

~E = Emax cos (ωt− kx) û = 220 cos
(

3π × 109t− 10πx
)

ŷ

~B = Bmax cos (ωt− kx) v̂ = 6.67× 10−7 cos
(

3π × 109t− 10πx
)

ẑ

Example 3: Direction of Propagation
Suppose a light wave has electric field given by ~E = (3, 4, 0) and magnetic field
given by ~B = (0, 0, 5/c) at a certain instant of time. (A) Find the direction of
propagation of the wave (B) Find the intensity of the wave.

Example 4: Energy Densities
Calculate the average electric and magnetic field densities 5 meters from a
monochromatic light source emitting 300 watts of power.

Solution: This problem is complex and considered difficult only because there
are so many definitions involved, and all of them have very similar terms. The
electric energy density is given by

uE =
1
2
ε0E2

When inserting the typical co-sinusoidal expression for ~E, a square in cosine
results, which on averaging gives a factor of 1/2. So

uEave =
1
4
ε0E2

max

Example 5: Solar Sails
A solar sail is in free space, at rest relative the sun, at the radius of the Earth’s or-
bit. (A) If the area of the sail is one thousand square meters, and the total mass,
including payload, is 10,000 kg, find the acceleration of the sail, assuming it’s
going radially outward. (B) Find the terminal velocity (the velocity at infinity).
Note: the solar intensity is about 1, 400 watts/m2attheradiusofEarth′sorbit.

Solution: There are a variety of ways to derive the pressure of light on a
surface. The easiest is probably to use the result from relativity that E=pc,
where p is the momentum. Rearranging and taking the derivative with respect
to time yields

F =
dp
dt

=
dE/dt

c
=

P
c

=
IAs

c
where P is the power, I is the intensity, and As is the area of the sail . This
corresponds to the case where the light is absorbed: if it is perfectly reflecting,
there is double the kick: one kick when the photon hits, and a second when
it pushes off and goes back the way it came. So in the perfectly reflecting
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case, the above equation gets a factor of 2. Actual solar sails will have varying
multiplicative factors between 1 and 2. Now, since the sail will be changing
position, it is necessary to have an expression for the intensity as a function
of r, the radial distance from the center of the sun. This isn’t hard to come
up with, if we recognize that the total energy per second crossing any sphere
centered on the sun is always the same–just spread out over a larger area. This
means that

P = IA = I
(

4πr2) = I0
(

4πr2
0

)

→ I = I0
r2
0

r2

The last expression is the one we need–notice that the intensity falls off like
1/r2 just like the force of gravity. I0 is just the intensity at a given location, r0,
which in this case is the radius of the Earth’s orbit around the sun. Newton’s
second law can now be written down:

ma =
I0As

c
r2
0

r2 −
mMG

r2

This all boils down to

d2r
dt2

=
(

I0Asr2
0

mc
−MG

)

1
r2

Example 6: Polarization
Unpolarized light traveling parallel to the y-axis is incident on a filter with
optical axis in the z- direction. Transmitted light continues on, encountering
another filter with axis tilted thirty degrees with respect to the positive z-axis,
and then a final filter which is tilted 90 degrees with respect to the z-axis. What
is the intensity of the light after passing through the last filter?

Solution: The first filter cuts the intensity in half. The second filter will tack
a cos2 30 onto this, and the final filter will contribute a factor of cos2 60. Notice
that the angle needed is the one with respect to the previous polarizer.

I =
I0

2
cos2 30 cos2 60 =

3
32

I0
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Chapter 8

AC circuits

Alternating current changes direction constantly, due to the method of gen-
eration, which comes from spinning loops of wire in fixed magnetic fields, for
example. If ω is the angular frequency, then

i = i0 sin ωt (8.1)

The amplitude i0 is called the peak value of the current. Other familiar quan-
tities, such as the potential difference across some element of the circuit, also
have peak values, and in general these don’t occur at the same time, and are
said to be out of phase.

A resistor in an AC circuit behaves in the obvious way. The instantaneous
potential difference across the resistor is given by

vR = i0R sin(ωt) (8.2)

The peak value is, of course, v0R = i0R. The power dissipated by the resistor is

p = i2R = i20R sin2(ωt) (8.3)

This expression can be averaged with the mean value theorem for integrals.
Since the functional dependence is in the current, i, this is equivalent to aver-
aging i2, which results in

I =
√

i2ave =
i0√
2

(8.4)

I is called the root mean square (rms) current. Upper case letters, in
general, will be used for rms values. It can then be easily shown that the rms
values of V and P are given by

V =
v0√
2

(8.5)

VR = IR (8.6)

P = I2R (8.7)
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With the current still given by a sinusoid, it is possible to write down an equation
describing the response of an inductor.

vL = L
di
dt

= v0L cos(ωt) = v0L sin
(

ωt +
π
2

)

(8.8)

This means the potential drop across the inductor leads the current by π/2. A
similar situation occurs with a capacitor in an AC circuit.

q =
∫

i0 sin(ωt) = − i0
ω

cos(ωt) = − i0
ω

sin
(

ωt− π
2

)

Using the definition of capacitance, this equation becomes

v0C = − i0
ωC

sin
(

ωt− π
2

)

(8.9)

which shows that the potential drop across a capacitor lags the current by π/2.
Example 1: A series circuit Suppose an AC circuit has a 20 millihenry

inductor in series with a 60 microfarad capacitor and a 30 ohm resistor. If the
frequency is 60 Hz and the peak voltage is 100 V., find the impedance of the
circuit and the phase angle.

Solution: This is a straight-forward calculation. First, calculate the angular
frequency, then the inductive reactance and capacitive reactance.

ω = 2πf = 200π = 628.3 rad/sec

XL = ωL = 628.3× 20× 10−3 = 12.57 ohms

XC = 1/ωC = 26.53 ohms

The impedance is given by

Z =
(

R2 + (XL −XC)2
)1/2

=
(

302 + (12.57− 26.53)2
)1/2

= 33.09 ohms

The phase angle is given by

tan φ =
XL −XC

R
=

12.57− 26.53
30

= −0.4563 → φ = 24.5 deg

A condition called RLC resonance occurs when XL = XC . Then

XL = ωL = XC =
1

ωC

This equality will occur for a particular value of the angular frequency, ωp which
by inspection can be seen to be ωp = 1/

√
LC. The current is then in phase with

the voltage, and takes its maximum value, which is V = I/R. Transformers
A transformer transforms power from one frequency to another, using magnetic
induction. It consists of a primary and secondary coil each wrapped around the
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same iron coil, one inside the other. The primary coil is connected to an AC
source. If the voltages are V1 and V2, and the corresponding wraps are N1 and
N2, then the relationship between wraps and voltages is given by

V2

V1
=

N2

N1
(8.10)

Power transfer is nearly perfectly efficient, so that P1 = P2. This implies that

I1V1 = I2V2 →
I1

I2
=

V2

V1
(8.11)

which gives a relationship between the voltages and the currents.
Example 2: An ideal transformer has 300 turns in the primary coil and 100
in the secondary coil. Suppose that the primary coil has an rms current of 1.5
A. when the rms potential difference is 60 V. Find the rms potential difference
and rms current in the secondary coil.

Solution: This is straightforward. Using the transformer equation, the voltage
in the secondary can be calculated:

V2

V1
=

N2

N1
=

100
300

→ V2 =
1
3
60 = 20 V.

The current can be calculated from the relationship between currents and volt-
ages.

I1

I2
=

V2

V1
=

20
60

=
1
3
→ I2 = 3I1 = 4.5A.

Example 3: RLC Resonance

Suppose an RLC circuit has a resonance frequency of 500 Hz. If XL = 50 ohms
and XC = 10 ohms at a certain frequency ω, find L and C.

Solution:
1

ωC
= XC = 10 ωL = XL = 50 → L

C
= 500

Meanwhile, the resonance frequency is such that

10002 =
1

LC
→ 500 · 10002 =

1
C2 → C = 4.47× 10−5 Farads

Putting that back into the first equation gives L = 0.0224 H.


