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Chapter 1

Introduction

Gravity is one of the oldest and most mysterious of forces. Ancients must
have wondered why everything fell towards the Earth, and probably didn’t even
suspect that lighter objects attracted each other. According to record, only in
the time of Galileo were experiments undertaken to describe the basic properties.

Galileo made a number of important, fundamental contributions. He mea-
sured the magnitude of the acceleration of gravity using balls on ramps, and
showed that two objects of differing mass and composition fell with the same
acceleration. This was a very important experiment, and is just as important
today, where it has been repeated to considerably higher accuracy. The gravi-
tational acceleration of a massive object, therefore, doesn’t depend on the mass
of the object nor on its composition. This is the principle of equivalence,
which turns out to be one of the primary motivations for the development of
general relativity.

1.1 Newtonian Gravity

In seventeenth century England, Isaac Newton, one of the all-time great scientific
geniuses, developed calculus and with it a theory of gravitation that today is
still the most useful for practical purposes. He posited the existence of a force
between any two bodies given by

F = −mMG

r2

r (1.1)

This equation is fairly easy to understand. G, of course, is Newton’s con-
stant, which binds together the physical measurements into a force. It has a
value of 6.672x10−11kg−m3/s2, a value that depends on the units chosen, and
which is known with certainty only to about four digits. This makes it the least
accurately known of all the fundamental constants of nature, primarily because
the force is so weak. Stronger forces are easier to measure with our relatively
large, clumsy apparati. The masses of the individual bodies attracting each

1



2 CHAPTER 1. INTRODUCTION

other, m and M , are multiplied together because, apparently, the gravitational
force doesn’t saturate. Saturation means that the force law is weakened with
the addition of more and more particles. This makes sense from our everyday
experience: a bully on a playground may be able to exert a force F on one stu-
dent, and force F on another student, but add a third student and it becomes
difficult for the bully, who has only two arms, to simultaneously exert a force on
that student, also. In the case of gravity, it appears that no matter how many
separate bodies are involved, a given mass can exert an undiminished force on
every single one of the rest of the bodies.

To see that m and M should be multiplied, imagine that there is a funda-
mentally smallest particle with mass m0, and that m is composed of n such
particles, while M is composed of N particles. Since the gravity field doesn’t
saturate, each of the n particles will attract every one of the N particles with
the same force. Let f be the force between one fundamental particle in the glob
m and one fundamental particle in the glob M . Then the total force between
m and M would be given by

Ftot = nNf = nm0Nm0
f

m2
0

= mM
f

m2
0

(1.2)

Each of the fundamental particles has the same mass, mo, so it can be imme-
diately seen that the total force between two objects must be proportional to
mM .

The dependence on the distance between two particles can be understood in
a similar way. Evidently, the force between two bodies is transmitted by some
unseen particle, often called a graviton. The graviton must impart momentum to
the object it encounters, telling it where and how to move. Imagine a continuous
stream of gravitons radiating out from one body and striking another body. The
force ought to be proportional to the number of gravitons actually intercepted,
which in turn would be proportional to the intensity of gravitons. If, in a given
instant, N gravitons are sent out in all directions, then after a suitable period of
time N gravitons will cross a sphere at radius r. The graviton intensity at this
distance would then be N/4πr2. So the dependence on r can be understood as
a consequence of elementary geometry.

Finally, the quantity r̂, which points from the source towards the body of
interest, is a consequence of the vector nature of the force. Whatever mediates
this force travels directly towards the affected body, causing a straight-forward
transfer of momentum along a geometrically shortest line between the two bod-
ies.

In Newtonian theory, a scalar potential field Φpermeates all space, creating
hills and valleys in an additional, fictitious dimension. For every point xa in
space, Φ(xa) has a value, and the negative gradient gives a vector perpendicular
to the level curves of the potential, and pointing in the direction of greatest
decrease of Φ. This vector also gives the acceleration of other massive objects
at that point. Here, xa represents a vector, with x1 = x − component, x2 =
y − component, and x3 = z − component. The potential satisfies the Poisson
equation,
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∇2Φ = 4πGρ (1.3)

For our later work, it’s important to briefly review the method of calculating
planetary orbits using Newton’s theory. And, to make the connection with
General Relativity, we use the Lagrangian method. In this method, L = T −V ,
where T is the kinetic en ergy and V is the potential energy. The potential
energy V is related to the potential Φ by a factor of m: V = mΦ Minimizing
the difference between kinetic energy and potential energy gives the differential
equation of the orbit. The Lagrangian for gravity is therefore

L = T − V =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
mr2 sin2 θφ̇2 +

mMG

r
(1.4)

where a dot signifies a derivative with respect to time. Lagrange’s equation is

d

dt

∂L

∂va
=

∂L

∂xa
(1.5)

where xa (a=1,2,3) represents the coordinate variables and va represents the
velocity associated with xa. Carrying out this procedure results in the familiar
m~a = ~F formulae, one equation for each coordinate.

Newton’s law of gravity was powerful, and enabled the calculation of plan-
etary orbits to incredible accuracy. Still, there were several small discrepancies
that astronomers began to notice in the late nineteenth century. Notably, the
perihelion shift of Mercury, even after the perturbing influences of Jupiter and
other planets were taken into account, was still 43 seconds of arc per century
greater than Newton’s law predicted.

It was this tiny discrepancy, in part, that motivated Einstein to seek another
theory of gravitation. In addition, Newton’s law of gravity did not satisfy the
laws of special relativity, while Maxwell’s theory was in fact invariant in that
theory. Finally, Newton’s law required a body to react immediately to another
body, even when separated by a vast distance. This action-at-a-distance didn’t
seem to make any sense, since it implied the instant transfer of information.

1.2 Einsteinian Gravity

The story behind general relativity starts with the Theorem of Pythagoras:

∆s2 = ∆x2 +∆y2 (1.6)

This equation provides a means of calculating distances between two points in
a plane given a set of cartesian coordinates. It can be easily generalized to a
third spatial dimension. Later, Einstein, Minkowski, and others combined time
and space in the Minkowski metric,

∆s2 = −c2∆t2 +∆x2 +∆y2 +∆z2 (1.7)
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The minus signs in the metric are a matter of personal taste. About half the
time, this metric appears with the signs -,+,+,+ associated with the four terms,
as given above, and the other half of the time with

∆s2 = c2∆t2 −∆x2 −∆y2 −∆2z

Since particle physicists usually prefer +,-,-,-, this second definition will be
used in this book. With the introduction of time into the measurement of
the interval between points, and especially with sign opposite that of spatial
distance, it might be expected that bizarre new predictions would arise—time
dilation, length contraction, and so forth. This is indeed the case, and the effects
are real and have been verified millions of times in particle accelerators.

Einstein, building on the genius of Gauss and Riemann, went a step further,
postulating that spacetime was curved, and that the curvature of spacetime
determined the paths of material particles, which travel along geodesics of the
spacetime. Geodesics are extremal curves, curves of either minimal or maximal
length. In Cartesian space, they are straight lines of minimal length. In space-
time, the geodesics actually have maximal length due to the indefinite metric.
’Indefinite’ merely means the metric has both plus and minus signs on the diag-
onal. In general relativity, matter changes the shape of spacetime, which reflects
in the measurement of lengths or intervals. For a general curved spacetime, the
Theorem of Pythagoras takes the form

ds2 = f(t, ~r)dt2 − h(t, ~r)dx2 − k(t, ~r)dy2 − l(t, ~r)dz2 (1.8)

So in curved spacetime, functions appear in front of the various terms. Cross
terms are, of course, also possible, such as dxdy. Using this infinitesimal form
of the Theorem of Pythagoras, called the metric, all the results of general
relativity can be calculated.

Curved spaces are in fact very common and are encountered even in elemen-
tary calculus. For example, everyone has learned to calculate the length of a
curve in a plane. If f(x, y) = 1

2x
2, the length of the segment from x=0 to x=1

can be calculated with a line integral. First the curve must be parametrized,
using

~s =

(

x,
1

2
x2
)

The first slot is the x-component, of course, and the second the y-component,
with the basis vectors x̂ and ŷ suppressed. The differential of ~s is

d~s = (1, x) dx

with a magnitude of

ds =
(

1 + x2
)1/2

dx

This is essentially a metric for a one-dimensional curved space. The integral
from x=0 to x=1 can now be calculated with

Length =

∫

ds =

∫ 1

0
(1 + x2)1/2dx = 1.15 > 1 (1.9)
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In the last equation, routine integration by trig substitution and by parts leads
to the answer. So in curved space, the simple coordinate displacements no longer
give the correct distance: the function in front of the corresponding displacement
must be figured in, as well. The above metric could be generalized to a metric
on a paraboloid given by

z =
1

2

(

x2 + y2
)

The parametrization is

~s =

(

x, y,
1

2

(

x2 + y2
)

)

where the unit vectors in the x,y, and z directions are understood. The differ-
ential of this parametrization is

d~s = (dx, dy, xdx+ ydy)

The metric is then given by the dot product of the differential with itself:

ds2 = d~s · d~s = dx2 + dy2 + (xdx+ ydy)2

This can be arranged into a symmetric matrix, while suppressing the dx’s and
dy’s:

gab =

(

1 + x2 xy
xy 1 + y2

)

(1.10)

gab is the matrix of the components of the metric tensor. It is important
to realize that the differential forms, dx and dy, are still there–just suppressed for
convenience, because everyone is supposed to understand they’re still kicking
around. They’re important, from a conceptual viewpoint, when it comes to
taking derivatives.

It turns out that metrics such as the one given above can always be di-
agonalized, at least in the neighborhood of a point. The process is to find
the eigenvalues and eigenvectors, and use the eigenvectors as a new basis for
all vectors and vector operators in the space. The eigenvectors must be chosen
carefully, however, since they are only determined up to an overall factor (which
in general is not constant). Ideally, the coordinate transformations can be in-
tegrated exactly, but again, this is not always possible. In General Relativity,
a coordinate transformation is immaterial–the physics, in principle, is always
the same regardless of the coordinates, and this is as it should be from an ideal
point of view. From a practical standpoint, however, perturbation theory must
typically be used to squeeze results out of the equations, and it has not been
shown that perturbations in one set of coordinates always give the same an-
swers as perturbations in other coordinates. For the moment and foreseeable
future, this has to be taken on faith, and is probably true where spacetime is
only slightly curved.

To find the metric, the analog of Poisson’s equation is needed. The Einstein
equivalent is

Rab −
1

2
Rgab = κTab (1.11)
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This equation won’t make complete sense until the end of the second chapter,
which covers Tensor Analysis. For now, each term may be thought of as a 4x4
matrix containing 16 functions. Rab may be thought of as the average curvature
of spacetime, while R is the average of the average curvature.. It may seem
strange that an average involves sixteen different quantities, but this is because
there are so many different directions to go in four dimensions. Tab is a set of
sixteen functions that represents the energy and matter present in the spacetime.
Even if the spacetime is empty of matter, there can still be a curvature, since
just the average curvature is zero, not the curvature itself. In words, Einstein’s
Equation reads

AverageCurvature = Stuff

The curvatures are all functions of the metric and its derivatives, so with this
field equation it’s possible to find the metric for a given distribution of matter.

To calculate orbital trajectories in General Relativity, there is no need to
invoke potentials or kinetic energies, as these are always built into the met-
ric. Unlike Newton’s theory, however, it isn’t very straightforward or easy to
write down the equations for the gravity field of two or three or more sources.
In Newton’s theory, because of the linearity of the Poisson equation, fields of
different particles can be found individually and then added after the fact. Be-
cause Einstein’s equations are nonlinear in the metric, it isn’t possible to find
the metric for each body separately and then add them together. So in Newton’s
theory, the three-body problem cannot be exactly integrated, but in Einstein’s
theory, even the two body problem is highly complex. Orbital mechanics in GR
involves one relatively large body, like a star, and one negligible body, like a
planet. Instead of minimizing a Lagrangian, L, the orbits are found by finding
the extremal length curves in the spacetime, i.e. the geodesics. The metric
outside a typical spherical body (which ideally would be a black hole) is given
by the Schwarzschild solution:

ds2 =

(

1− 2MG

r

)

c2dt2 −
(

1− 2MG

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

(1.12)

Note that dividing through by dλ2, where λ is a parameter with dimensions of
time, gives an expression similar to the Lagrangian in Newtonian Gravity.

d

dλ

∂ds/dλ

∂ua
=
∂ds/dλ

∂xa
(1.13)

This is similar to the Lagrangian method, except that a maximal length
curve is found instead of a minimum in L = T − V . The variable λ is a
parameter which, after the variation is taken, may be associated with proper
time of the particle, while ua = dxa/dλ, and may be taken as a four-velocity.
This expression is unwieldy, and it can be proved that

d

dλ

∂(ds/dλ)2

∂ua
=
∂(ds/dλ)2

∂xa
(1.14)
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yields the same geodesics, while making the computations easier.
Now, one of the problems that Einstein’s theory addressed was that of action-

at-a-distance. Unlike Newton’s theory, Einstein’s general relativity is a local
theory. The localcurvature of spacetime causes material particles to change
course. There is no longer any question about how a force is transmitted through
vast distances instantaneously.

Unfortunately, it is almost universally unrecognized that there is another
problem, which is: how does matter over there create curvature over here? In
a sense, then, the problem has merely been shifted back one step. And a final
question: if gravity is transmitted by gravitons, and in particular an exchange
of gravitons, how do the gravitons create curvature?

Despite these and many other unanswered questions, Einstein’s Theory of
General Relativity is the most beautiful and accurate of all physical theories.
Something must be right about it.

1.3 Exercises

1. Find the metric on the upper nappe of a cone given by z =
√

x2 + y2.
2. Find the eigenvalues and eigenfunctions of the metric of the paraboloid.

Placing the eigenvalues on the diagonal would represent the same metric in new
coordinates defined by the eigenfunctions.

3. Set up the geodesic equations for polar coordinates, where the metric is

ds2 = dr2 + r2dθ2

. Show that rays through the origin are geodesics.
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Chapter 2

Tensor Analysis

Einstein’s theory of gravitation is based on the fundamentals of tensor analysis
and differential geometry. The emphasis on geometry is what sets GR apart
from quantum mechanics.

2.1 Scalars, Vectors, and Covectors

A scalar, of course, is a number, an element of the real line. A scalar field,
also known as a real-valued function, is a mapping that takes each element of
a given domain, for example the coordinates of a point in spacetime, and returns
a real number. The potential field Φ of Newtonian gravity is an example of a
scalar field. A scalar field is the simplest example of a tensor field, and is said
to have rank (0,0). The meaning of rank will be made clear shortly. A vector,
in elementary physics and math, is usually defined as a directed line segment.
It consists of an ordered triple of scalars, called the components of the basis
vectors, which in Cartesian space are usually taken to be x̂, ŷ, and ẑ. A vector
field is a mapping that takes each element of a domain, such as the coordinates
of a point in spacetime, and returns a vector.

A vector in another example of a tensor, said to have rank (1,0). Vector
fields are characterized by three scalar fields, called the components. The three
scalar fields are coefficients of a basis of vectors that span all vectors in a space.

The usual notation is too clumsy for the purposes of general relativity. In-
stead, a system of indices is used. A typical vector might be represented by

V = V 1
x+ V 2
y+ V 3
z =
3
∑

1

V aea

Here the V a are the components of the vector, with a running from 1 to 3,
whereas the ea are the basis vectors. In space-time, a fourth component defined,
the time component, and will be assigned an index of 0. In Cartesian space you
have e1 = x̂, etc., while V 1= x-component, etc. Notice that the same index–a–
appears upstairs and downstairs. It’s called a dummy index because it doesn’t

9
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matter if it’s an ’a’ or a ’b’ or any other letter, it’s simply a placeholder for
purposes of summation. This kind of summation occurs so often that Einstein
invented a convention, now called the Einstein Summation Convention, whereby
if a letter repeats itself upstairs and downstairs in a single expression, then
summation over that index is understood. For example,

3
∑

a=1

V aea → V aea

In elementary physics where almost everything is done in a cartesian coor-
dinate system, the ea don’t have a very large role, and often are completely
ignored. In a general curvilinear coordinate system, of course, this cannot be
the case, because there the basis vectors are functions of the coordinates. This
is especially important when taking derivatives, as will be seen. That said, the
ea, while not ignored, are usually dropped, with the vector V being represented
by simply the components, V a, with the ea understood. Algebraically, there are
several useful operations.

1. Addition and subtraction: this is performed component wise, in the
obvious fashion. Example:

V aea +W aea = (V 0 +W 0)e0 + (V 1 +W 1)e1 + (V 2 +W 2)e2 + (V 3 +W 3)e3

2. Scalar multiplication. To multiply a vector by a real number, simply multiply
each of the components by that number:

αV aea = αV 0e0 + αV 1e1 + αV 2e2 + αV 3e3

Obviously, vectors can be multiplied by scalar-valued functions, also. In mod-
ern differential geometry, the basis vectors are no longer thought of as passive,
unit-sized chunks pointing in a certain direction. Instead, they are consid-
ered differential operators– directional derivative operators, to be exact. These
derivative operators have special properties under coordinate transformations
that come from what is actually just an application of the chain rule. Given
coordinates t, x, y, z a vector V can be written as:

V = V a
∂

∂xa
= V 0 ∂

∂t
+ V 1 ∂

∂x
+ V 2 ∂

∂y
+ V 3 ∂

∂z

where the ea are now given by ∂/∂xa. To see the connection with the concept
of direction derivative operators, recall that the directional derivative of f in
the direction ~V , DV f , is given by

DV f = ~V · ∇f = V x
∂f

∂x
+ V y

∂f

∂y
+ V z

∂f

∂z

Again, for most purposes the basis vectors are suppressed, so the vector can be
presented simply by V a, the matrix of components.
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Now consider a vector V in the coordinates xa = x0, x1, x2, x3. How do we
obtain the corresponding vector in the coordinates ua? In this section, ua rep-
resent coordinates, not a four-velocity. The answer is given by the basis theorem.

Basis Theorem. Let V be a vector in xa coordinates. Then in ua coordi-
nates, V will be given by V = (Vua) ∂

∂ua

Example. (A)Transform the partial derivative operators ∂/∂x and ∂/∂y from
Cartesian coordinates to polar coordinates using the basis theorem. (B) Find
the Laplacian in polar coordinates using the results of part (A).
Solution: In this case our ua coordinates are given by u1 = r and u2 = φ, while
x1 = x and x2 = y. We apply the basis theorem for ∂/∂x in the xa coordinates
to the two coordinate transformation equations:

r =
√

x2 + y2

φ = arctan(y/x)

∂

∂x
=
∂r

∂x

∂

∂r
+
∂φ

∂x

∂

∂φ
=
x

r

∂

∂r
+
−y
r2

∂

∂φ
= cosφ

∂

∂r
− sinφ

r

∂

∂φ

Similarly,

∂

∂y
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ

With these, the 2-dimensional Laplacian in polar coordinates can be found.

∂2

∂x2 + ∂2

∂y2 =
(

cosφ ∂
∂r −

sinφ
r

∂
∂φ

)(

cosφ ∂
∂r −

sinφ
r

∂
∂φ

)

+

+
(

sinφ ∂
∂r +

cosφ
r

∂
∂φ

)(

sinφ ∂
∂r +

cosφ
r

∂
∂φ

)

= ∂2

∂r2 + 1
r
∂
∂r +

1
r2

∂2

∂φ2

Let’s write down the basis theorem result in terms of vector components only,
suppressing the differential basis operators. Let V̄ a represent the components
expressed in the coordinate system {ua}

V̄ a =
∂ua

∂xb
V b (2.1)

All vectors, called contravariant vectors, transform in this way.

Example. An observer measures the energy-momentum four-vector of a par-
ticle to have Cartesian coordinates V a = (E/c, pc, 0, 0). What components are
measured by an observer traveling at v in the positive x-direction with respect
to the first observer?

Solution: This is simply a matter of applying the Lorentz transformations:

x̄ = γ (x− vt)
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x̄o = t̄ = γ
(

t− vx/c2
)

ȳ = y

z̄ = z

Plugging into the formula, get

V̄ 0 = Ē =
∂x̄0

∂t
V t +

∂x̄0

∂x
V x = γ

E

c
− v

c
γp

V̄ 1 = p̄c =
∂x̄1

∂t
V 0 +

∂x̄1

∂x
V x = −γE v

c
− γpc

It might be thought that vectors will be sufficient for any physics we might
have to do, but in fact there is a very similar object called a covector, also called
a covariant vector. There are a variety of definitions, depending on taste, and
all of them are equivalent. To motivate the existence of these objects, consider
the differential of a real-valued function f. In a given coordinate basis, this is
given by

df =
∂f

∂xa
dxa

Now suppose we want to change to the coordinates ua. We can do so by
using the chain rule:

df =
∂f

∂xa
dxa =

∂f

∂xa
∂xa

∂ub
dub

Evidently, we also have the direct calculation

df =
∂f

∂ub
dub

These two expansions must be equal. Comparing each side, we see that

∂f

∂ub
=

∂f

∂xa
∂xa

∂ub

It’s easy to see that the tranformation rule is similar but distinct from the trans-
formation rule for vectors. Notice that the transformation factor appears to be
upside down compared to the factor in equation for transformation of vectors.
This is the hallmark of a covector. Furthermore, the index representing the
components of these objects is downstairs, rather than upstairs. The compo-
nents of a covector, W̄a, in the basis x̄a are related to the components Wa in
the basis xa via

W̄a =Wb
∂xb

∂x̄a
(2.2)

All covectors, also called covariant vectors, satisfy a relationship of this
kind under coordinate transformations. So while vectors are associated with
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derivatives, covectors, also called 1-forms, are associated with differentials. A
given covector W can be written

W =Wae
a =W0e

0 +W1e
1 +W2e

2 +W3e
3 =Wadx

a

As will be seen in the next section, covariant vectors can be thought of as
linear operators that map vectors to real numbers. Vectors are said to be tensors
of rank (1,0), while covectors are tensors having rank (0,1). It turns out that
higher rank tensors can be defined, as discussed in the next section.

2.2 Tensors

By taking what are called exterior products of vectors and covectors, it is pos-
sible to build up a whole collection of more complicated objects. These objects,
together with the scalars, vectors, and covectors, are called Tensors.

2.2.1 Exterior Products

Definition. Let A and B be either covectors or vectors, each having n compo-
nents. The exterior product of A and B, denoted A

⊗

Bconsists of multiplying
all elements of Awith elements of B in the usual polynomial fashion, maintain-
ing order of the basis vectors. In terms of components, we have

A
⊗

B = AaBbeaeb (2.3)

Here a double sum is, of course, implied by the Einstein summation conven-
tion.
Example. A classic example is the formation of dyadics by multiplying two
Cartesian vectors. With ~A = î+ 2ĵ + 3k̂ and ~B = 2̂i− ĵ + k̂ we have

C = ~A
⊗

~B = (̂i+ 2ĵ + 3k̂)(2̂i− ĵ + k̂) =

= 2̂îi− îĵ + îk̂ + 4ĵ î− 2ĵĵ + 2ĵk̂ + 6k̂î− 3k̂ĵ + 3k̂k̂

The first number in the pair indicates the row number, while the second
denotes the column number. Notice that C can be represented in terms of its
components as a matrix:

Cab =





2 1 1
4 −2 2
6 −3 3



 (2.4)

It should be clear, however, that Cab is not a matrix: the presence of the
basis vectors, ii, ij, ik, etc. introduces geometric content that is absent from a
simple matrix, which is purely a collection of scalars.

In modern differential geometry we dispense with the î, ĵ, k̂ in favor of the
partial derivative and differential operators. Nonetheless, most of the time in
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the course of calculations we deal with the components only, almost as if the
tensors were matrices. Special rules apply in certain situations, for example
when taking derivatives.

2.2.2 Tensorial Rank

The object C in the above example is called a tensor of rank (2,0). Scalar fields
are tensors of rank (0,0), vector fields have rank (1,0), while covector fields have
rank (0,1). In general, the rank can be found by simply counting upstairs and
downstairs indices in the components. Indices that are summed over in the com-
ponents are not counted. A geometric object with n upstairs, or contravariant,
indices and m downstairs, or covariant, indices in the matrix of its compo-
nents is said to have rank (n,m)—n times contravariant, and m times covariant.
Example. Find the rank of each of the following tensors: (A) F ab (B) F abb
(C)Qabcde
Solution: (A) one upstairs and one downstairs index, so the rank is (1,1) (B)
One upstairs index, and then an up and down which are summed over each
other, which removes their tensorial character. Hence the rank is (1,0) (C)
Three upstairs and two downstairs indices is a tensor of rank(3,2).

2.2.3 Contraction

Once we have formed a number of basic tensors, we can multiply them together
with the exterior (tensor) product and create numerous other tensors of higher
rank. There is another process, called a contraction or inner product, that
produces tensors of lower rank. It consists of summing over a given pair of
indices, one of them a covariant index, the other a contravariant index. The
operation is similar to that of the trace of a matrix.

Example. Find the inner product of V a and Wb, given that V a = (1, 2, 3, 4)
and Wb = (−1, 3, 0,−5).
Solution: V aWa = V 0W0+V

1W1+V
2W2+V

3W3 = 1·−1+2·3+3·0+4·−5 =
−15

The metric, discussed previously and in more detail below, also plays a role in
finding the inner product of two vectors. It can’t be interpreted in the same way
as in Cartesian coordinates, because the metric is indefinite–the time-time com-
ponent is negative, while the others are positive, as in a normal Cartesian space.
Example. Find the inner product of the following two vectors in Minkowski
space (let c=1). V a = (1, 2, 3, 4) and Sb = (4, 3, 2, 1)
Solution: gabV aSb = −1 · 1 · 4 + 1 · 2 · 3 + 1 · 3 · 2 + 1 · 4 · 1 = 12 Notice that in
the double sum, since all the off-diagonal terms in the metric are zero, only the
terms with a = b are picked up. It’s important, naturally, to specify the indices
contracted over.
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2.2.4 Tensor Transformation Laws

Tensors all transform according to a rule similar to that for vectors. Essentially,
there must be one covariant transformation factor for each covariant index, and
one contravariant transformation factor for each contravariant index. For exam-
ple, a tensor of rank (1,2), once contravariant, twice covariant, would transform
from the xa coordinates to the ya coordinates according to the following rule:

B̄abc =
∂ya

∂xd
∂xe

∂yb
∂xf

∂yc
Bdef

The above equation involves only the components, however. As will be
customary, the basis vectors ea and basis covectors ea are suppressed.

2.2.5 Symmetric and Antisymmetric Tensors

A second-rank tensor Qab is called symmetric if

Qab = Qba (2.5)

This is a slight abuse of notation, since a and b are simply place-keepers, how-
ever the idea is that the off-diagonal elements are swapped with their opposite
numbers, like the transpose of a matrix. A given tensor can be symmetric in
any pair of indices, regardless of the order. In addition, it’s always possible to
create symmetric tensors from an arbitrary tensor:

Sab =
1

2
(Cab + Cba) (2.6)

It can be easily verified that Sab is symmetric. A higher-rank symmetric tensors
can also be constructed:

Uabc =
1

3!
(Pabc + Pabc + Pbac + Pbca + Pcab + Pcba) (2.7)

Again, it can be verified that Uabc is symmetric under interchange of any two
of its indices. Further generalizations are obvious.

Another important type of symmetry is antisymmetry. An antisymmetric
tensor of second rank has the property that

Fab = −Fba (2.8)

It’s evident that the diagonal elements are all zero. Given any tensor Cab, it is
possible to construct and antisymmetric tensor Kab:

Kab =
1

2
(Kab −Kba) (2.9)

Just as in the case of symmetric tensors, it is always possible to create a com-
pletely antisymmetric tensor from a given arbitary tensor. Constructing such a
tensor for a rank (0,3) tensor is left as an exercise.
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2.3 The Metric

A metric is a rule that aids in the measurement of the distance between one
point and another. It also allows the measurement of the lengths of vectors,
which as we’ve seen are related to infinitesimal displacements and derivative
operators. In Minkowski space, the metric is naturally given by

ds2 = c2dt2 − dx2 − dy2 − dz2 (2.10)

The Minkowski metric is often written in its matrix form as

ηab =









c2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(2.11)

The metric provides an inner product, and divides vectors into three classes. If
gabV

aV b > 0, the vector V a is called timelike. If gabV
aV b < 0, the vector V a

is called spacelike. If gabV
aV b = 0, the vector V a is called null. In a timelike

vector the time component is predominate, hence the norm is positive. Mate-
rial particles, in general, are all timelike. A space-like vector has larger space
components, hence the norm is negative. Tachyons are an example of particles
that would travel on curves with spacelike tangent vectors. Finally, the inner
product of zero corresponds to light, gravitons, and other massless particles,
possibly neutrinos.

Example. Find the components of the Minkowski metric in spherical coor-
dinates.

Solution: The easiest but somewhat lengthy way of doing this is to write
down the coordinate transformations and then take differentials, substituting
into the usual Cartesian metric. This is left as an exercise.

The speed of light, c, is often taken to be unity. This corresponds to a coordinate
transformation whereby time is measured in meters, with c as the conversion
factor. The metric gab has an inverse, which can be found by inverting the
matrix of components. This inverse is represented by gab.

In curved spacetime, the metric takes a more general form, where the com-
ponents may be functions of space and time. Given a metric, there is a natural
way to turn vectors into covectors and vice-versa. This is called raising and
lower indices. For example,

V a = gabVb

This gives the so-called the canonical correspondence between vector and cov-
ector components. Evidently, it works the other direction, also:

Wa = gabW
b
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Note that any second rank tensor could be used for this definition, however
using the metric tensor is standard and useful.

2.4 The Covariant Derivative

In order to compare vectors at nearby points, it’s necessary to define a derivative
operator, which is often refered to as a connection. A connection is something
that tells you how a vector changes when you slide it to a nearby point. Once
a connection is defined, then nearby vectors can be compared, and limits and
derivatives can be taken. Conversely, we can define a derivative operator, and
from there come up with a connection.

Fundamental to defining a derivative is the concept of parallel transport of
a vector. If a vector at one point is carried to a nearby point, being always
careful to keep it pointing–as much as possible– parallel to the direction it
was pointing an infinitesimal distance before, how is it changed? In flat space,
nothing happens, but in curved space, the curvature can cause the vector to
point in a different direction compared to the original vector.

Let ∇a represent a derivative operator. There are several desirable proper-
ties of this operator:

(1) Linearity: If A and B are tensors, and α and β are numbers (elements
of the real line), then ∇a (αA+ βB) = α∇aA+ β∇B
(2) Satisfies the Leibnitz rule: ∇aAB = (∇aA)B +A(∇aB)
(3) Acts like a normal gradient operator on scalar fields
(4) Commutes with contraction operations
(5) Torsion free: ∇a∇bf = ∇a∇bf , f a scalar field.

Torsion refers to a symmetry in the connection, as will be seen. These properties
are natural properties, though other conditions could conceivably be chosen. In
principle, there are an infinite number of different derivative operators, but we’ll
pick out one that seems to be special, or right. One possible operator could be
defined by

∇aT b....hij...p = ∂aT
b....h
ij...p (2.12)

This definition, whereby ordinary partial derivatives of the components are
taken, might do in flat space, but is definitely inadequate in curved spacetime.
To see this, consider what happens, via the Leibnitz rule, when this operator is
applied to a vector in curved spacetime:

∇b (V aea) = (∇bV a) ea + V a (∇bea)

Since in general ∇bea is not zero, it can be immediately seen that by the
Leibnitz rule there will always be an additional term. This term involves what
is called the connection, and connection coefficients, which technically, in an
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affine space, could be chosen to be anything whatsoever. The connection coef-
ficients, Γcab, are defined by

∇aeb = Γcabec (2.13)

so the derivative of the basis vectors returns a linear combination of the basis
vectors. Note that the rank has also changed.The covariant derivative of a vector
V a is given by

∇bV a =
∂V a

∂xb
+ ΓabcV

c (2.14)

The covariant derivative of a covector Wa is given by

∇bWa =
∂Va
∂xb
− ΓcabWc (2.15)

This can be derived by using the idea that the covariant derivative of a scalar
field is just the usual ordinary partial derivative, and then looking at a covector
contracted with a vector (which is a tensor of rank zero—a scalar field).

Covariant derivative of a tensor of arbitrary rank is similar to the above,
with a Γ term for each index, for example:

∇aQbcd =
∂Qbcd
∂xa

+ ΓbaeQ
ec
d + ΓcaeQ

be
d − ΓeadQ

bc
e (2.16)

Often, in the literature, partial derivatives of tensors are represented by
commas followed by an index, for example Wb,a, while covariant derivatives are
written with a semi-colon as Wb;a.

While the connection coefficients, Γcab can be chosen to be anything in princi-
ple, arbitrary choices lead to strange and arbitrary answers. It is more natural,
then, to arrive at a definition that uses the metric somehow, since it is already
known that curved spacetimes will affect vectors through the metric tensor.

To this end, we need a principle, and the principle is the following: if two
vectors are parallel transported along a curve, then their inner product (under
the metric) is unchanged. Briefly, parallel transport of a vector V a along a curve
C with tangent vector tb is said to satisfy the equation

tb∇bV a = 0 (2.17)

In other words, the directional derivative along the curve is zero. If the inner
product of two vectors, V a andW b, is to be preserved during parallel transport,
then the following condition must hold:

tc∇c
(

gabV
aW b

)

= tcV aW b∇cgab = 0 (2.18)

where the Leibnitz rule has been applied. This must hold for any curve what-
soever, which implies that

∇cgab = 0 (2.19)
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So the preservation of inner products under parallel transport means the
covariant derivative of the metric tensor equals zero. This is taken to be a
desirable property. In terms of the connection coefficients, this condition is
written

∇agbc =
∂gbc
∂xa

− Γdabgdc − Γdacgbd = 0

Rewriting this expression twice again while commuting the indices a, b, c
results in:

5cgab =
∂gab
∂xc

− Γdcagdb − Γdcbgad = 0

5bgca =
∂gca
∂xb

− Γdbcgda − Γdbagcd = 0

Note that we have written the same equation down three times, merely
rotating the indices. Now adding the first two and subtracting the last, and
doing a little algebra, results in:

Γabc =
1

2
gad (gdc,b + gbd,c − gbc,d) (2.20)

These are called the Christoffel symbols of the second kind, and is
one example of a metric connection. Christoffel symbols of the first kind
can be obtained by simply lowering the upper index with the metric. Other
connections exist, such as gauge connections, which are derived from the theory
of fibre bundles and are extensively used in unified field theories.

Example. (A) Compute the Christoffel symbols for a 2-sphere. (B)Find
the covariant derivative of the gradient of the function f = sin θ.

Solution: (A)The two variables are x2 = θ and x3 = φ, and the metric is
given by

ds2 = R2
(

dθ2 + sin2 θdφ2
)

so that g22 = R2, g23 = g32 = 0, and g33 = R2 sin2 θ. (The numbering of the
coordinates,x2 and x3 is to be consistent with the four-dimensional case, where
x0 = t and x1 = r). The components of the inverse metric are given by

gab =

(

R−2 0
0 R−2 sin−2 θ

)

There are only three non-zero Christoffel symbols. The first is calculated as
follows:

Γ2
33 =

1

2
g2c (g3c,3 + gc3,3 − g33,c)

Remembering that upstairs and downstairs repeated indices are summed
over, the index c can only take the value c = 2, since off-diagonal elements of
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gab are identically zero. This is the case for most simple metrics of physical
interest. Resuming:

Γ2
33 = −1

2
g22

∂g33
∂θ

=
1

2
· 1

R2
· 2R2 sin θ cos θ = − sin θ cos θ

The last non-zero Christoffel symbol can be calculated similarly:

Γ3
23 = Γ3

32 =
1

2
g33

∂g33
∂θ

= cot θ

(B) Essentially, we’re computing ∇a∇bf . The first derivative gives the sim-
ple answer ∂f/∂xb, similar to the gradient in ordinary space. The second deriva-
tive gives

∇a∇bf =
∂2f

∂xa∂xb
− Γcab

∂f

∂xc

The matrix of components is given by
(

− sin θ 0
0 sin2 θ cos θ

)

2.4.1 Geodesics

A geodesic is a generalization of a straight line. Spacetime is curved, however, so
there will be no absolutely straight lines. One property of lines in flat Cartesian
space is the fact that the vector tangent to the line never changes. On a parabola,
of course, it changes constantly, but on a straight line it never does. Hence, the
derivative of a straight line’s tangent vector must be zero. If we take this over
to curved spacetime, we have that the covariant derivative of the tangent vector
field along the curve will be zero. If that tangent vector field is called V a, then
the condition is:

V b∇bV a = 0 (2.21)

Using the fact that the tangent vector field is given by

V a∇a =
dxa

dτ
∇a =

d

dτ
(2.22)

where τ is the proper time–that is, time as experienced by an observer traveling
on the curve, the geodesic equation can be written

∂2xa

dτ2
+ Γabc

dxb

dτ

dxc

dτ
= 0 (2.23)

Note the use of the basis theorem in equation 2.22. Geodesic equations need not
be written in terms of propertime, τ . The sole requirement is that it be written
in terms of a linear function of the distance along the line, s. The parameter τ
corresponds to a normalization, where s must be such that

dxa

ds

dxb

ds
= 1
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Example. Show that the equator and great circles through the poles are
geodesics on the 2-sphere of radius R.

Solution: This is a straightforward calculation using the Christoffel symbols
calculated in the previous example. The geodesic equations are:

d2θ

ds2
− sin θ cos θ

(

dφ

ds

)2

= 0

and
d2φ

ds2
+ 2 cot θ

dθ

ds

dφ

ds
= 0

These can be easily first integrated, but that won’t be necessary. It’s easy to
verify that φ = constant ,θ = s and φ = s, θ = π/2 satisfy both geodesic
equations. All other geodesics, which might be found by full integration of the
equations, correspond to great circles which do not fall on the φ and θ coordinate
lines.

2.5 Curvature

Curved spacetime will cause a parallel-transported vector to change direction
when it goes around a closed loop. This doesn’t happen when the spacetime
is flat. In curved spacetime, it always happens. This is most easily seen when
parallel transporting a vector on a sphere.

Example. Take a vector on a sphere at the equator pointing north. Move
it along a longitudinal line in such a way that it remains tangent to the curve
and pointing north continuously. Upon reaching the North pole, again with-
out changing the orientation of the vector, move it along a longitudinal line 90
degrees away from the original, back to the equator. Then, again parallel trans-
porting the vector, move it back to the origin. You will find that the vector has
been rotated through ninety degrees, even though at each step you were care-
ful not to disturb the basic direction of the vector compared to infinitesimally
nearby positions.

2.5.1 The Curvature Tensor, Rabcd

An expression measuring directly the change a vector goes through while being
parallel transported around a curve can be derived. For convenience, define
coordinates in a rectangle, with the points A, B, C, D at the corners. Under
parallel transport of a vector V a, we have the condition

tb∇bV a = 0→ tb
∂V a

∂xb
= −tbΓabcV c
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We will assume that the vector V a is to be parallel-transported around a small
rectangle, where the first side is parallel to ej and the second side is parallel
to ek. The vector will then return, parallel to the ej coordinate and then
to the ek coordinate. Since the directional derivative is in the direction of
the coordinate basis vectors, the components tb will all be zero except for the
coordinate traveled on, which shall have value one. We will assume the xj

coordinate goes from a to a+ δa, while the xk coordinate runs from b to b+ δb.
In the following, summation over j and k is suspended: these are fixed quantities,
taking on one value only. Using the above equation and computing from A to
B, write

V a(B) = V a(A) +

∫ B

A

∂V a

∂xj
dxj = V a(A) +

∫ a+δa

a

−ΓabjV bdxj (2.24)

Similarly, from B to C gives,

V a(C) = V a(B) +

∫ C

B

∂V a

∂xk
dxk = V a(B) +

∫ b+δb

b

−ΓabkV bdxk (2.25)

From C to D:

V a(D) = V a(C) +

∫ D

C

∂V a

∂xb
dxb = V a(C +

∫ a

a+δa
−ΓabjV bdxj (2.26)

And finally, from D back to A:

V a(A) = V a(D) +

∫ A

D

∂V a

∂xk
dxk = V a(D) +

∫ b

b+δb
−ΓabkV bdxk (2.27)

The net change is given by the difference between the transported vector
and the original vector. In flat space, this will be zero, but in curved spacetime
the Γabc and V

b are functions of the coordinates, and so will have different values
along different parts of the loop. To clarify this point, we define the following
quantity, for example along the curve AB:

ΓabjV
b = P aj (AB) (2.28)

Thus the path along which the quantity takes its values is explicitly written.
Using this notation, adding all four equations yields

δV a = −
∫ a+δa

a

P aj (AB)dxj−
∫ b+δb

b

P ak (BC)dx
k−
∫ a

a+δa
P aj (CD)dxj−

∫ b

b+δb
P ak (DA)dx

k

(2.29)
A little rearrangement results in:
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δV a =

∫ a+δa

a

[

P aj (CD)dxj − P aj (AB)
]

dxj −
∫ b+δb

b

[P ak (BC)− P ak (DA)] dxk

(2.30)
Now, on CD, xk = b + δb while on AB, xk = b. Thus the first integral is a

difference in P aj at two neighboring points on the xk coordinate line. Dividing
and multiplying by δb gives approximately the derivative in the direction of
xk times δb. The other integral term is similar, except it’s approximately a
derivative in the direction of xj times δa. Hence

δV a =

∫ a+δa

a

∂P aj
∂xk

δbdxj −
∫ b+δb

b

∂P ak
∂xj

δadxk (2.31)

Integrating these expressions, considering them to be approximately constant
over the small displacements involved, gives

δV a = δaδb

(

∂P aj
∂xk

− ∂P ak
∂xj

)

(2.32)

Reinserting the expression for the P ’s and using the product rule, followed by
a substitution involving the definition of parallel transport, results in:

δV a = δaδbV b
(

∂Γabj
∂xk

− ∂Γabk
∂xj

+ ΓackΓ
c
jb − ΓacjΓ

c
kb

)

(2.33)

The expression in parentheses in the above equation defines the Riemann cur-
vature tensor:

Rabkj =
∂Γabj
∂xk

− ∂Γabk
∂xj

+ ΓackΓ
c
jb − ΓacjΓ

c
kb (2.34)

The Riemann tensor informs us how spacetime is curved throughout a manifold.
While in principle it has 256 components, the symmetries of the Christoffel
symbols eliminate all but twenty-one of these. Finally, the Bianchi identity,
given by eliminates one more, leaving a maximum total of 20.

The expression obtained for the Riemann tensor can also be obtained by
computing the commutator of two derivatives:

(∇a∇b −∇b∇a)V c = −RcabdV d (2.35)

This is a special case of the Ricci identity, and can be generalized–with numerous
additional terms– for more general tensors.

The Riemann tensor has several important symmetries, such as antisymme-
try in the first pair and last pair of indices:

Rabcd = −Rbacd = −Rabdc (2.36)

In addition, Riemann is symmetric when switching the first pair with the second
pair of indices:

Rabcd = Rcdab (2.37)



24 CHAPTER 2. TENSOR ANALYSIS

By permutation of any three indices, the following identity holds, for example:

Rabcd +Racdb +Radbc = 0 (2.38)

Other curvature tensors can be defined. For example, performing one con-
traction results in the Ricci tensor:

Rab = Rcacb (2.39)

Since this is essentially a trace, and from linear algebra we know that the
trace is equal to the sum of eigenvalues of the matrix, the Ricci tensor may be
thought of as giving an average, or mean curvature. Contracting over the final
pair of indices results in the Ricci scalar:

R = gabRab = Raa (2.40)

Another curvature tensor which is useful in the study of conformal space-
times is the Weyl conformal tensor, defined by

Rabcd = Cabcd +
1

2
(gacRbd − gadRbc − gbcRad + gbdRac) +

1

6
(gadgbc − gacgbd)R

(2.41)
Cabcd shares all the symmetries of the Riemann tensor, and in addition has the
property that a contraction over the first and third indices is equal to zero:

Cabad = 0 (2.42)

It is preserved under conformal transformations of the metric: i.e. when

ḡab = Ω2gab (2.43)

then
C̄abcd = Cabcd (2.44)

Conformal spacetimes are an important subfield of general relativity.
One of the more famous and useful identities is the Bianchi identity, which

is given by

∇aRbcde +∇eRbcad +∇dRbcea = 0 (2.45)

This identity is especially useful in obtaining a curvature tensor with zero di-
vergence, known as the Einstein tensor. Contracting the Bianchi identity over
b and e and c and d, and using the symmetries, a tensor can be found that has
zero divergence. That tensor, Gab,called the Einstein Tensor, is

Gab = Rab −
1

2
Rgab (2.46)

Since the stress-energy tensor Tab also has zero divergence, Einstein was led to
believe these two tensors were proportional. This equation and its consequences
shall be the subject of the next chapter.
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Example: Compute the Riemann curvature, Ricci tensor, and Ricci scalar
for the surface of a sphere.

Solution: Using the symmetries of the Riemann tensor, it can be shown that
there is only one independent non-zero component, R2323. There are three other
non-zero components, which are R3232 = −R2332 = R3223 = −R2323. Comput-
ing:

R2323 = g22R
2
323 = g22

(

∂Γ2
33

∂x2
− ∂Γ2

23

∂x3
+ Γc33Γ

2
2c − Γc32Γ

2
3c

)

= R2
(

− cos2 θ + sin2 θ + cot θ sin θ cos θ
)

= R2 sin2 θ

The Ricci tensor has two components on the diagonal, given by

Rac = gbdRabcd =

(

1 0
0 sin2 θ

)

Finally, the Ricci scalar, which is exactly twice the Gauss curvature K, is given
by

R = gacRac = g22R22 + g33R33 =
2

R2

2.6 Exercises

1. Let Ba = (1, 2, 0,−1) and Ca = (−2, 0, 3, 0). Find the following: (A)
2Ba + Ca (B) BaCb (C) ηabB

aBb (D) BaCa −BbCb (E)ηabBaCb (F) Ba

2. State the rank of the following tensors: (A) Cab (B)Db
c (C) AbcdBde

3. Show that in the special case of a tensor Ψ of rank zero, ∇a∇bΨ = ∇b∇aΨ
if and only if Γcab = Γcba.

4. (A) Find the metric corresponding to cylindrical coordinates. (B)Compute
the Christoffel symbols (C) calculate ∇a∇bf , where f = reφ.

5. Construct a totally antisymmetric tensor Uabc from an arbitrary tensor of
rank (0,3), Cabc.

6. (A) Compute the Christoffel symbols for the metric ds2 = dr2 + e2rdφ2.
(B) Compute the components of the Riemann tensor (C) Ricci (D) Ricci scalar.

7. By explicit calculation, prove equation 2.35.

8. Prove equation 2.46.

9. Prove in flat space that ∇a∇bF ab = 0, where F ab is an arbitrary anti-
symmetric tensor.
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10. Use the Ricci identity for second rank tensors (note: you need to put this in
somewhere!) to prove that ∇a∇bF ab = 0 in an arbitary spacetime, where F ab

is an arbitrary antisymmetric tensor.

11. Consider a spacetime which is three-dimensional, with one time dimen-
sion and two space dimensions. Let the space dimensions be those of a cylinder
of fixed radius, R. Now assume the components gtt and gzz are both functions
of z given by gtt = 1 − 1/z and gzz = 1/(1 − 1/z). Compute the Christoffel
symbols for this metric. (B) Compute the Ricci tensor for this metric.



Chapter 3

Special Relativity and
Electromagnetism

3.1 Special Relativity

In order to warm up to the general theory, we’ll take a look at the special theory
from a more advanced viewpoint.

Accelerated Systems in Special Relativity

Contrary to popular belief, accelerated systems can be handled in special rela-
tivity. Essentially, the assumption is that there is a continuum of frames, each
with a separate, constant velocity, with smooth transition from one to the next.
Taken altogether, it is then possible to compute the dynamics of accelerated
objects such as elementary particles and super-spacecraft. It should be empha-
sized, however, that this is still an open area of research.

We start with the elementary fact about four-velocities, ub:

ubub = −c2

Taking the proper time derivative, which is the time experienced by an observer
traveling with the spacecraft, gives

d

dτ

(

ubub
)

= 2
dub

dτ
ub = abub = 0

In the initial rest frame, we have

ub =

(

dt

dτ
,
dx

dτ

)

= (1, 0)

From the previous equation, therefore,

ηbcu
bac = −c2u0a0 + u1a1 = 0→ a0(0) = 0

27
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Hence for an accelerated system we must solve simultaneously the following
equations:

ηbcu
buc = −c2 (3.1)

ηbcu
bac = 0 (3.2)

ηbca
bac = g2 (3.3)

with initial conditions u0 = 1 and a0 = 0, where g is the acceleration of the
system provided by some force, say a rocket thrust, or an electromagnetic field.
Writing these out explicitly gives:

−c2ut2 + ux2 = −c2

−c2utat + uxax = 0

−c2at2 + ax2 = g2

Solve the second equation for ax and plug into the third equation, yielding:

−c2at2 + c4at
2 ut

2

ux2
= g2

Some algebra and the use of the first equation results in:

−c2at2
(

−1 + c2
ut

2

ux2

)

= −c2at2
(

−ux2 + c2ut
2
)

ux2
= c2at

2
(

c2

ux2

)

= g2

Hence

at =
±gux

c2

Plug this back into the third equation,

−c2at2 + ax2 =
−c2g2ux2

c4
+ ax2 = g2

and solve for ax

ax2 = g2
(

1 +
ux2

c2

)

= g2
(

c2 + ux2
)

c2
= g2ut

2

so finally
ax = ±gut

Newton’s law of motion reads

d2x

dt2
= F/m = g

where g is the acceleration created by the physical field, while Einstein’s special
relativity gives a pair of equations,

d2t

dτ2
=
gdx/dτ

c2
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d2x

dτ2
= g

dt

dτ

This pair of differential equations is much more difficult to solve, in general,
than Newton’s equation.

Example: The Relativistic Rocket. We assume it’s a super rocket that can
proceed forever at some constant acceleration without using any fuel, thus with
unchanging total mass. First, we recast the equations in terms of the compo-
nents of the four-velocity:

dut

dτ
=
gux

c2

dux

dτ
= gut

Take the derivative of the second equation, and substitute into it the first:

d2ux

dτ2
= g

dut

dτ
=
g2ux

c2

This can be integrated easily:

ux = A cosh
(g

c
τ
)

+B sinh
(g

c
τ
)

This is the general solution for the x-component of the four-velocity. Initially,
the rocket is at rest, so ux = vγ = 0 = A, so that

ux = B sinh
(g

c
τ
)

This solution can be plugged back into the equation for ut:

dut

dτ
=

g

c2
B sinh

(g

c
τ
)

ut =
B

c
cosh

(g

c
τ
)

+D

Initial conditions on ut give

ut(0) = 1 =
B

c
+D → D = 1− B

c

Hence

ut =
B

c

(

cosh
(g

c
τ
)

− 1
)

+ 1

To determine the constant B, it is necessary to use the initial conditions on
the acceleration. Note that
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ηbca
bac = η00a

02 + η11a
12 = −c2 g

2

c4B
2 sinh2

(

g
c τ
)

+ B2g2

c2 cosh2
(

g
c τ
)

=

= B2g2

c2

(

− sinh2
(

g
c τ
)

+ cosh2
(

g
c τ
))

= B2g2

c2 = g2 → B = ±c
Without loss of generality, we can choose the positive root, which gives a

positive velocity in the x-direction. This only means we’ve chosen the direction
of motion of the rocket to coincide with the positive x-axis. So the four velocity
components are, at last,

ut =
(

cosh
(g

c
τ
)

− 1
)

+ 1

ux = c sinh
(g

c
τ
)

With these two expressions, it is easy to find the coordinates of the super-
rocket as a function of proper time:

t =
c

g
sinh

(g

c
τ
)

+ t0

x =
c2

g
cosh

(g

c
τ
)

+ x0

The integration constants can be taken to be zero. We are now ready to
answer the question concerning a trip to the center of the galaxy at one gee
acceleration without mass loss. The distance is about 30,000 light years. Setting
this equal to the x-coordinate and solving for τ gives an answer of about 10.5
years of subjective time. Plugging this into the time equation tells us how much
time passes back on Earth during this voyage—a little over 30,000 years!

3.2 Relativistic Lagrangian Mechanics

3.3 Electromagnetism in Special Relativity

3.4 Exercises

1. Photon rocket. Assume you have a matter-antimatter rocket in which the
fuel is turned completely into energy and shot out the back end at velocity c.
Derive the relativistic equations for this rocket, and design a mission to Alpha
Centauri, 4.3 light years away, based on your design parameters. (Ignore the
problem of sweeping through the interstellar gas at relativistic velocities, which
should in fact roast all those on board.)

2. Analyze the relativistic harmonic oscillator with equilibrium at x=0, assum-
ing the four- acceleration has magnitude kx.



Chapter 4

Geometry and Matter

Einstein’s work was ultimately built on that of Gauss and Riemann. Gauss
invented many of the basic ideas of the curvature of a surface, and the differen-
tial geometry on that surface. Riemann developed the mathematical theory of
general curved spaces, and even guessed that such spaces ought to have some
fundamental importance for physical theory. Unfortunately, he died of con-
sumption before the age of forty.

Einstein, after his great successes of 1905, embarked on a ten-year quest
to develop a theory of gravity using the mathematics of Riemann. His answer
was the general theory of relativity. The motion of particles in space under
the influence of gravity was due to the local curvature, not from an action at a
distance.

4.1 Einstein’s Equation

Einstein guessed that gravitation was the result of the curvature of spacetime,
rather than the effect of an action at a distance, as in Newtonian gravity theory.
Newton’s theory had been highly successful in predicting the motions of the
planets and the tides, but failed to predict the correct perihelion shift of Mercury.
It was this experimental result that Einstein wanted to calculate. His first
attempt at a theory was to posit

Rab = κTab

and with this he calculated the correct advance in the perihelion of Mercury.
He was dissatisfied with the equation, however, and a couple years later struck
upon

Rab −
1

2
Rgab = κTab (4.1)

This is called Einstein’s Equation. Hilbert derived it from a variational
principle and published it five days before Einstein, but it is likely he got the

31
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idea from Einstein’s lectures and prior published work. The left hand side is
the Einstein tensor, introduced in the last chapter, and the right hand side is
the stress-energy tensor, which describes the matter and its properties, such as
energy density and pressure in various directions. The main reason for adding
the additional term is to guarantee that the divergence of the left hand side,
like the right hand side, vanishes. This is a consequence of the conservation of
energy. Otherwise, the divergence of the Ricci tensor would have to be set equal
to zero, forming an unaesthetic additional constraint. Einstein wasn’t finished,
however. His equation predicted a dynamic, evolving universe. At that time
the only galaxy discovered was the Milky Way, and the others, though found
by astronomers, were thought to be clouds of gas within the our galaxy. The
universe appeared to be static and unchanging. Since his equations were in-
consistent with a static universe, Einstein introduced the cosmological constant
term, which allowed for static solutions. His equation became

Rab −
1

2
Rgab + Λgab = κTab (4.2)

which is called Einstein’s Equation with cosmological constant. Einstein
later called the cosmological constant the greatest blunder of his life, because
by 1930 Hubble had discovered that the universe was indeed expanding. The
blunder, however, wouldn’t quite go away, and much later Guth, Linet, and
others would use such a cosmological constant to drive an early period of expo-
nential inflation. It may be that the cosmological constant will ultimately turn
out to be Einstein’s greatest success.

There was one more variant on Einstein’s equation, which consisted of replac-
ing the factor of in equation 4.1 by 1/4. This made the left hand side trace-free,
which Einstein thought might be advantageous in describing the force that held
the nucleus together–which he believed was the gravitational force. Now, of
course, this idea has been discredited.

4.2 The Stress-Energy Tensor

The right hand side, called variously the stress-tensor, the stress-energy tensor,
or the energy- momentum tensor, is critical in spacetimes where matter is found,
particularly inside stars, which may be modeled as fluids, but also in regions of
field energy of some kind, such as electrostatic fields or relativistic fields, such
as Klein-Gordon or Dirac. Cosmology, also requires a fluid, the points of which
represent galaxies.

There are various ways to construct stress-energy tensors, and of course
it’s critical that it make sense, since otherwise in non-empty space it will be
impossible to get meaningful solutions. Generic matter it is usually assumed to
be a perfect fluid, which means a fluid without viscosity or dissipative effects of
any kind. This tensor is given by

Tab = ρuaub + p(uaub − gab) (4.3)
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This same tensor is used in fluid mechanics. ua is the four-velocity of the fluid,
while ρ is the energy density, and p is the pressure. Note that since the metric
can always be written with a time coordinate parallel to ua, the pressure term
is effectively a spatial metric only.

In fields there is a formalism involving Lagrangians. The Lagrangian density
is varied with respect to the metric, and this is taken to be the stress-energy
tensor. This method is the method of choice for most of those in general rela-
tivity, though there are two other ways of getting that stress energy, one called
the canonical stress-energy (which is not always symmetric), and then a sym-
metrization of that asymmetric stress-energy. This latter stress-energy is used
extensively in quantum field theory, and it isn’t clear which of the two ap-
proaches is truly correct, if either.

The stress energy for a field is given, in general, by:

Tab = −
αM
8π

1√
−g

δ

δgab
√
−g$ (4.4)

The Lagrangian for the field must be such that varying with respect to ψ yields
the physical equation describing the field, such as Maxwell’s equations. It will
then follow that variation with respect to the metric will result in the stress-
energy of the field. The Lagrangian can depend on the metric and ψ and
its derivatives, usually only to first order, though some have investigated La-
grangians which are second order. Note that the constant, αM , depends on the
field in question. In principle, it would be necessary to do an experiment to
determine its exact value, in all but possibly perfect fluid cases. In practice, it
is often hard to be sure what number is appropriate, because it is not usually
possible to measure the gravitational response of a given stress-energy.

4.3 Einstein’s equation in the weak field limit

It’s important to relate Einstein’s equation to Newtonian physics, to make cer-
tain that its predictions will be consistent with Newton’s gravity theory when
fields are weak. In addition, this will allow the identification of the Einstein
constant.

First, particles travel on geodesics:

∂2xa

ds2
+ Γabc

dxb

ds

dxc

ds
= 0 (4.5)

In the limit of small velocities and weak fields, the temporal component of dxb/ds
will dominate over the spatial components. This is clear if units in which c=1
are used, as when x0 = ct. In that case, the ordinary velocities are fractions of
light speed. In addition, dx0/ds ≈ 1. Then

∂2xa

ds2
≈ −Γa00 (4.6)
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We will also neglect the variation in time of the source of the gravity field. This
means Γ0

00 = 0, so that the time component of the above equation means that
s→ x0. Then the above equation becomes

∂2xk

dx02
≈ −Γk00 (4.7)

where k = 1, 2, 3. This equation looks very much like Newton’s second law.
Inserting the definition of the Christoffel symbols yields

Γk00 =
1

2
gkλ

(

2
∂gλ0
∂x0

− ∂g00
∂xλ

)

≈ −1

2
ηkλ

∂g00
∂xλ

(4.8)

The right hand side is actually the ordinary three-gradient g00. Define,
therefore,

g00 = 1 +
2

c2
φ (4.9)

where g00 and φ are functions of the spatial coordinates only. This only corre-
sponds to swapping out the function g00 in favor of φ. In addition, reinsert the
value x0 = ct. The results is

d2xk

dt2
≈ −∇φ (4.10)

Thus in the limit of slow particles and weak fields, g00 acts like the classical
potential. There remains to show that it satisfies a Poisson equation, at least
in the weak field limit. In this limit, the ’00’ components always dominate. So
Einstein’s equation, for the 00 component, reads

R00 = κ

(

T00 −
1

2
g00T

)

≈ 1

2
κT00 =

1

2
κc2ρ (4.11)

Neglecting nonlinear and time-derivative terms in the Ricci tensor, obtain

R00 =
∂Γa00
∂xa

− ∂Γa0a
∂x0

+ Γa00Γ
b
ab − Γac0Γ

c
0a ≈

∂Γk00
∂xk

(4.12)

where k = 1, 2, 3. So

R00 ≈
∂Γk00
∂xk

= −1

2
ηkl

∂2g00
∂xk∂xl

≈ 1

c2
∇2φ (4.13)

Putting this all together, the potential φ satisfies

∇2φ =
1

2
κc2ρ (4.14)

which is Newton’s gravity equation. The constant κ should therefore be identi-
fied as

κ =
8πG

c4
(4.15)

For weak fields, therefore, Einstein’s theory reduces to Newton’s, and the two
theories are consistent. And as will be seen in chapter 6, Einstein’s equations
will return greater accuracy when the gravitational fields are somewhat stronger.
It is still not known whether the theory is correct for extremely strong fields.
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4.4 Lagrangians and Stress-Energies

The Einstein tensor, which gives something that could described as a divergence-
free average of the curvature, is supposedly equal to the material in the space-
time, which is known as the stress-energy. The matter and energy in spacetime
is represented by the stress-energy tensor, also called the energy-momentum
tensor, which is a tensor of second rank just like the Einstein tensor. In most
cases of interest, it gives the equivalent of the average of numerous interactions
of fields at extremely short distances. Despite the fact GR is the best-tested
theory in physics, there remain questions about how to represent matter. In ad-
dition, inserting the matter terms generally makes the equations much harder
to solve. The primary applications are in the areas of stellar structure and
cosmology.

4.4.1 Lagrangian Formulations

In some sense, anything placed opposite the Einstein Tensor can be regarded
as the stress-energy of something. In fact, any metric can be written down, the
Christoffel symbols and curvature terms calculated, and then inserted into the
Einstein tensor. Whatever results–not likely to be zero, in general–can then be
declared the stress-energy of the spacetime.

This is obviously not very satisfying from a physical or philosophical view.
Still, some very interesting spacetimes have been discovered in this way. Most
of the time, however, the result is impossible to interpret physically.

The stress-energy, therefore, is best derived from some general principles
that make sense and connect with classical notions of pressure and density. And,
when dealing with fields, it is best to obtain the stress-energy from a variational
principle. Nature appears to have a preference for extremes–minimums and
maximums–and a procedure that returns an extremum is considered more likely
to be correct.

As it turns out, there are two different Lagrangian-based stress-energies, and
they don’t always agree with each other. The first is called the canonical stress
energy. Using the Lagrangian for a field, an expression is constructed with
explicit zero divergence. The Lagrangian is assumed, in most cases, to depend
only on the field φ and its gradient, ∇aφ, though in fact there is no reason it
cannot depend on higher-order derivatives. Among relativists, the method of
choice is to find the Lagrangian density that results in the field equation for
φ when varied with respect to φ, and then gives the stress-energy when varied
with respect to the metric, gab. "Taking variations" is very similar to taking
derivatives and using the chain rule. The starting point is the variation of an
integral over paths in function space for which we seek a stationary (maximal
or minimal) solution:

δ

∫

$ (φ,∇aφ)
√
−gd4x = 0 (4.16)
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Moving the δ inside the integral and using the chain rule results in:

∫ (

∂$

∂φ
δφ+

∂$

∂∇aφ
δ∇aφ

)√
−gd4x = 0 (4.17)

The variation operator δ is assumed to commute with the partial derivative
operator, so that

∂$

∂∇aφ
δ∇aφ =

∂$

∂∇aφ
∇aδφ = ∇a

(

∂$

∂∇aφ
δφ

)

−
(

∇a
∂$

∂∇aφ

)

δφ (4.18)

The far right-hand term comes from an integration by parts, and results in a
surface term of the form

∫

∇a
(

∂$

∂∇aφ
δφ

)√
−gd4x (4.19)

This perfect divergence allows the use of Gauss’s general theorem which
relates volume integrals to surface integrals. In this case, the volume integral
is over all space, so the surface integral would be carried out over a sphere of
infinite radius. At infinity, the field may be assumed to have gone to zero, and
hence this term will not contribute to the integral. The remaining two terms
will not in general be zero, and for the integral to be zero it follows that what’s
underneath the integral sign must be zero, namely:

∂$

∂φ
−5a

∂$

∂ 5a φ
= 0 (4.20)

This is the formula satisfied by extremal functions in the function space.
The analogies with one- variable calculus and maxima and minima are clear. It
should also be clear that not all equations have Lagrangians; the equations that
do have them are special.

For fields having Lagrangians depending on the second derivative of the field
φ, an additional term is required:

−5a 5b
∂$

∂ 5a 5bΨ
+5a

∂$

∂ 5a Ψ
− ∂$

∂Ψ
= 0 (4.21)

Note the pattern in the terms, and the alternation of signs, which is a general
result. Proving this relationship is left as an exercise.

After finding a Lagrangian for a given function, it is possible to find the stress
energy. The stress-energy is found either by following the canonical procedure,
or by taking the variation with respect to the metric. In principle, experiments
or observations should decide which of these methods is best. Unfortunately, the
gravitational effects are generally very small, so that it isn’t possible to decide
which formulation holds in reality, if either one does.

The canonical stress-energy is developed by construction. We will assume
that the Lagrangian is a function of ψ and its first derivatives only (the second
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derivative case can also be calculated and is straightforward, though it is consid-
erably more involved). Let a coordinate transformation be given, x′a = xa+sa,
where sa is an infinitesimal coordinate- independent displacement, and let $ be
a Lagrangian which depends also on the second derivatives of the field. Then

δ$ = $ (x′)− $ (x) = sa∂a$ =
∂$

∂Ψ
δΨ+

∂$

∂(∂aΨ)
δ∂aΨ (4.22)

In addition, evidently, the following relationships hold:

δΨ = Ψ(x′)−Ψ(x) = sa∂aΨ (4.23)

δ∂aΨ = ∂aΨ(x′)− ∂aΨ(x) = sb∂b(∂aΨ) (4.24)

The expression for ∂$ /∂Ψcan be eliminated from equation 4.22 by using
equation 4.20.

Using equations 4.20, and equations 4.23 through ??, and remembering that
repeated upstairs and downstairs indices are dummy indices, equation 4.22 can
be rearranged in such a way as to produce an expression with explicitly zero
divergence. This, then, is the desired expression for the canonical stress-energy:

T ab =
∂$

∂(∂aΨ)
∂bΨ− gab$ (4.25)

In general, this expression may not even be symmetric in its indices. There
are procedures for making it so, by adding in divergence-free terms.

To find the stress-energy via variation of the metric is straightforward and
always yields a symmetric tensor. From an aesthetic point of view, this is highly
preferable, and until there is definitive experimental evidence to the contrary,
is the method of choice. Recall the following variation:

δ
√
−g = −gab

√
−gδgab (4.26)

Then the stress energy can be defined as

Tab =
α√
−g

δ

δgab
√
−g$ (4.27)

The parameter α must be chosen for each different case. Generally, the
choice is made so that the Hamiltonian takes on the intuitively correct form,
consistent with energies in classical physics. Obviously, without experimental
evidence, it isn’t clear what choice should be made. No one knows, for example,
how strongly electromagnetic fields gravitate.

4.5 The Klein-Gordon Equation

The first relativistic quantum field equation was derived by Schrodinger, and
later also obtained by Kaluza and Klein:
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∇a∇aψ +
m2c2

h̄2
ψ = 0 (4.28)

The Lagrangian for this equation is given by

$ =
1

2
∇aψ∇aψ −

1

2

m2c2

h̄2
ψ2 (4.29)

In this simple case the two stress-energies are identical except for a numerical
constant. Obtain:

Tab = ∇aψ∇bψ − gab
(

1

2
∇aψ∇aψ +

1

2

m2c2

h̄2
ψ2

)

(4.30)

Let’s try this another way, using the Hamiltonian, which is an energy. The
Hamiltonian for a field ψ is given by

H =

∫

ψ,t
∂$

∂ψ,t
d3x− L =

∫ (

ψ,t
$

∂ψ,t
− $

)

d3x (4.31)

The integrand is obviously an energy density, and hence could be taken as the
definition of the energy density in the stress-energy tensor. By analogy with
classical mechanics, this expression should return a kinetic energy term, which
is one-half the momentum squared divided by the mass, along with effective
potential energy terms. The field momentum, π is defined by

π =
∂$

∂ψ,t
(4.32)

Now, the overall normalization of a given Lagrangian is arbitrary, as far as
generating the correct field equation. It is generally chosen, however, so that
the Hamiltonian will have a leading term equal to 1

2π
2. This is still a rather

arbitrary criterion, because ultimately, the correct choice will be that which
gives the correct gravity field, which ultimately can only be determined by
experiment. In the case of the Klein-Gordon equation,

H = π
∂ψ

∂t
− LKG =

(

∞
∈α
− ∞
4α

)

}′′ ∂ψ
∂t

∈
+ α∇ψ · ∇ψ + α

m∈c∈

〈̄∈
ψ∈(4.33)

By inspection, α = 1
2 gives the correct energy density, hence the correct value

of α by convention.

4.6 The Faraday Tensor

The stress-energy of electromagnetic fields is already known, in principle. One
way or another, it should contain within it the squares of the electric and mag-
netic fields. There is in fact only one natural invariant that can be created out
of the Faraday tensor, Fab:

$ = FabF
ab (4.34)
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where
Fab = ∇aAb −∇bAa (4.35)

First, let’s verify that this Lagrangian gives the correct equations when varied
with respect to Ac.

Calculating the stress energy is straightforward:

Tab = FacFb
c − 1

4
gabFcdF

cd (4.36)

Note that no experiment has determined how much gravity field a given
electromagnetic energy density creates. (Note to self: the bending of light by
the sun ought to tell us something!)A variation on this theme is the Proca
equation, which corresponds to a massive spin-1 field (see the exercises).

4.7 Perfect Fluids

4.8 Exercises

1. Derive Lagrange’s equation in the case where the $ = $ (ψ,∇aψ,∇a∇bψ).

2. Find a suitable Lagrangian for the Proca equation, and derive the corre-
sponding stress-energy tensor.

Homework, Due Friday, October 27.
1. Derive the equations for matter under pressure inside a spherical star,

but with a cosmological constant term. To do this, follow the notes, step by
step, starting from Einstein’s equations with cosmological constant. For extra
credit, find a solution.

2. Let the Lagrangian for a physical system be given by

SabS
ab +AaA

a

, where S is the same as the electrodynamic F except symmetric instead of anti-
symmetric, and A is the field. Derive the equation for A, and the stress-energy
for the system.

3. (Review) Let A=(1,2,3,4), B=(-2,-1,1,1). Find all quantities as in previ-
ous homework problem of the same type.

4. Let a two-dimensional spacetime be given by

ds2 = f(x, y)
(

dx2 + dy2
)

. Write down the Christoffel symbols and curvature terms, assuming f depends
on both y and x. Try to find a solution that gives R=constant.
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Chapter 5

The Schwarzschild Solutions

While Einstein’s theory is highly aesthetic, it only has meaning if it can be re-
lated to observations and the results of experiments. Einstein believed that the
equation could only be solved approximately. Schwarzschild, a German medic
on the Russian front, managed to find two exact solutions, both for spheri-
cal symmetry, one of them for an exterior vacuum, the other an interior fluid
with constant energy density. Einstein, receiving the manuscript, was enthusi-
astic, and replied with his congratulations by return mail. Shortly thereafter,
Schwarzschild died tragically of a skin disease contracted while serving for the
Russian Army during the Great War.

The prescription for solving the Einstein equation is straightforward:

(1) Choose an appropriate general form for the metric.

(2) Compute the Christoffel symbols, which, given the symmetries on the
indices, amounts to less than 32 terms.

(3) Using the Christoffel symbols, obtain the Ricci tensor and Ricci scalar
components; load them into Einstein’s equation.

(4) Solve the resulting system by any means you are able.

Choosing the general form of the metric can usually be done intuitively, and
often involves assumptions based on symmetry and on the exact form of the
stress-energy tensor. More rigorous is to find the Killing vectors appropriate to
a given symmetry and use them to write down a trial metric. From this trial
metric, some simplifying changes may be made through coordinate transforma-
tions. This is one of the great principles Einstein introduced, the idea that the
physics shouldn’t depend on what system of coordinates is used, hence all are
equivalent, and it therefore makes sense to choose the system that makes the
problem easier.

41
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5.1 Exterior Schwarzschild Solution

A static, spherically symmetric body should have a gravity field that is inde-
pendent of time. For a trial metric, it is natural to choose

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2θdφ2) (5.1)

where ν = ν(r) and λ = λ(r). Next, the Christoffel symbols must be cal-
culated. Note that given the symmetry in the lower two indices, at most 32
must be calculated rather than 64. (There are ways of reducing this number
further, but generally it’s not worth the trouble). Note that off-diagonal metric
terms are zero, so in fact many terms drop immediately out in the course of the
calculations.

Γ0
01 = ν′

2 Γ1
00 = ν′

2 e
ν−λ Γ1

11 = λ′

2

Γ1
22 = −re−λ Γ1

33 = −r sin2 θe−λ Γ2
12 = 1

r

Γ2
33 = − sin θ cos θ Γ3

13 = 1
r Γ3

23 = cot θ

(5.2)

In this case the Einstein equation reduces to Rab = 0, so there is no need to
compute the Ricci scalar. It can be verified that there are only four equations,

R00 = eν−λ
(

ν′′

2
− ν′λ′

4
+
ν′2

4
+
ν′

r

)

= 0 (5.3)

R11 =

(

−ν
′′

2
+
ν′λ′

4
− ν′2

4
+
λ′

r

)

= 0 (5.4)

R22 = e−λ
(

−1− rν′

2
+
rλ′

r

)

+ 1 = 0 (5.5)

R33 = sin2 θR33 (5.6)

with all others equal to zero. Multiplying the first equation by e−ν+λ and adding
to the second gives

λ

r
+
ν

r
= 0→ λ = −ν (5.7)

Substituting this result into the third equation gives:

eν (−1− rν′) + 1 = 0→ (reν)′ = 1 (5.8)

So

eν = 1 +
β

r
(5.9)

From the linear equations and weak-field limit,

β =
2GM

c2
(5.10)
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The Schwarzschild exterior metric reads:

ds2 = −
(

1− 2MG

c2r

)

c2dt2 +
dr2

(

1− 2MG
c2r

) + r2
(

dθ2 + sin2 θdφ2
)

(5.11)

Notice that as r gets large, we recover the Minkowski metric, as we should.
This very famous metric was the first exact solution found, and gave a precise
correction to the perihelion shift of Mercury and predicted the bending of light
by the sun. Much later, after the death of Einstein, it also correctly predicted
the delay in the reflection of radar, the redshift of light from the sun, and the
change in period of binary pulsars.

5.2 Schwarzschild Interior Solution

The interior solution for constant density requires an energy-momentum tensor.
In general, this is written as

Tab = ρuaub +
p

c2
(uaub − gab) (5.12)

where ua is the four-velocity, ρ is the energy density, and p is the pressure.

For static, spherical symmetry, ua = (u0, 0, 0, 0). Further, g00u
02 = 1 so u0 =

sqrtg00. Using these facts, the stress tensor can be written as

Tab =









ρeν 0 0 0
0 p

c2 e
λ 0 0

0 0 p
c2 r

2 0
0 0 0 p

c2 r
2 sin2 θ









(5.13)

Einstein’s equations can be written in the form

Rab = 8π
G

c2

(

Tab −
1

2
Tgab

)

(5.14)

which, with the same trial metric as in the previous section, becomes

R00 = eν−λ
(

ν′′

2
− ν′λ′

4
+
ν′2

4
+
ν′

r

)

= C

(

ρ

2
+

3p

2c2

)

(5.15)

R11 =

(

−ν
′′

2
+
ν′λ′

4
− ν′2

4
+
λ′

r

)

= C
(ρ

2
− p

2c2

)

(5.16)

R22 = e−λ
(

−1− rν′

2
+
rλ′

r

)

+ 1 = C
(ρ

2
− p

2c2

)

r2 (5.17)

R33 = sin2 θR22 (5.18)

with all others equal to zero. The first two equations can be easily combined,
as in the exterior solution, resulting in
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(

ν′ + λ′

r

)

= C
(

ρ+
p

c2

)

e−λ (5.19)

Note that if the left hand side is equal to zero, then either both ρ and p are zero,
or one of them is negative. Negative mass has not been found, though negative
pressures, corresponding to tensions, do make some sense, as will be seen in the
chapter on cosmological defects. Equations 5.17 and 5.19 can be solved for ρ
and p, while ρ and p can be eliminated from from equations 5.16 and 5.17. This
results in the following system of three equations:

Cρ = e−λ
(

1

r2
− λ′

r

)

− 1

r2
(5.20)

C
p

c2
=

1

r2
− e−λ

(

1

r2
+
ν′

r

)

(5.21)

eλ

r2
=

1

r2
− ν′2

4
+
ν′λ′

4
+
ν′ + λ′

2r
− ν′′

2
(5.22)

These three equations can be solved just by specifying ν, which makes equation
5.22 into a simple equation for λ. Solving it and plugging into the other equa-
tions yields the density and pressure, respectively. Such a fishing expedition is
constrained, however, since eν = 1− 2m/r must hold at the boundary, and the
pressure and energy density, at least most of the time, must be positive definite,
unless the matter is exotic.

Next, define

e−λ = 1− 2m(r)

r
(5.23)

This is just a renaming of the metric component in favor of a function that not
only facilitates matching at the boundary, but also leads to an easy geometric
interpretation of the function m(r). From equation 5.20, substitute and get

−Cρ =

(

re−λ
)′

r2
− 1

r2
=

(r − 2m)′

r2
− 1

r2
= −2m′

r2
(5.24)

Rearranging this equation gives

dm

dr
=

4πG

c2
r2 (5.25)

This can be recast as an integral:

m(r) =
G

c2

∫ r

0
4πr2ρdr (5.26)

This makes m look like the rest mass of the star, given radius r, but in fact
it isn’t. That’s because the integral doesn’t include the factor of

√
−h, where

h = dethab, with hab being the spatial metric. So because the expression doesn’t
include the right volume element, it isn’t the correct rest mass. There should
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be a factor of eλ/2 next to the dr. However, m does indeed correspond to the
total mass as viewed by an exterior observer, rest mass plus internal energy plus
gravitational energy:

m(r) = m0(r) + U(r) + Ω(r) (5.27)

Note that the rest mass energy is

m0(r) =
G

c2

∫ r

0
4πr2µ0n (1− 2m/r)−1/2 dr (5.28)

where µ0 is the mass of a typical particle and n is the number density of those
particles, and whereas the total internal energy is

U(r) =
G

c2

∫ r

0
4πr2 (ρ− µ0n) (1− 2m/r)−1/2 dr (5.29)

Subtracting these from the total mass energy should give the gravitational po-
tential energy of the system, which is

Ω = − κ
c2

∫ r

0
ρ
[

(1− 2m/r)−1/2 − 1
]

4πr2dr ≈ − κ
c2

∫ r

0

ρm

r
4πr2dr (5.30)

This last equation agrees with what is usually thought of as the gravitational
potential energy, which lends support to the idea that m is the total mass of the
star, including gravitational and thermal contributions. Using m as defined, it
is possible to get the following equation from equation 5.21:

ν′ = 2
m+ 4πGpr2/c4

r(r − 2m)
(5.31)

Differentiating 5.31 and eliminating ν′′ from the result by using equation 5.22
gives:

−8πG

c4
p′ = e−λ (ν′ + λ′)

ν′

2r
(5.32)

Then by inspecting equation 5.19:

p′

c2
= −ν

′

2

(

ρ+
p

c2

)

(5.33)

Combining this and equation 5.31 results in the celebrated Tolman-Oppenheimer-
Volkoff (TOV) equation:

p′ = −
(

ρc2 + p
) (

mc2 + 4πGpr3/c2
)

r(r − 2m)
(5.34)

These two equations together with equations 5.25, 5.23 and an equation of state

p = p(ρ) (5.35)
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form a nonlinear system of first order equations for the structure of a static,
non-rotating star. This set of equations will be studied in greater detail in the
chapter on stellar structure. Schwarzschild solved them for the special case
where the equation of state is given by

ρ = ρ0 (5.36)

where ρ0 is a contant. Obviously this is not the best model of a stellar interior,
since the density would be expected to decline along with the pressure when
moving from the core to the exterior boundary of the star. However, some
valuable information might be obtained, nonetheless, from the resulting exact
solution. After all that analysis, the solution is easy. First, the mass equation
5.26 can be immediately integrated:

m(r) =
4πGρr3

3c2
(5.37)

With this result in hand, equation 5.23 can also be integrated:

e−λ = 1− 8πGρr2

3c2
(5.38)

For convenience, let

R2 =
3c2

8πGρ
(5.39)

Then

e−λ = 1− r2

R2
(5.40)

In the case of constant energy density, equation 5.33 can be solved for ν′ and
easily integrated:

Leν/2 =
8πG

c2

(

ρ+
p

c2

)

(5.41)

with L the constant of integration. Substituting this into equation 5.19 yields

Le−ν/2 =
e−λ

r
(ν′ + λ′) (5.42)

Since λ is known this gives a differential equation for ν. Multiplying by reλ/2,
rearranging and substituting, we obtain:

(

1− r2

R2

)

ν′eν/2 +
r

R2
eν/2 =

1

2
Lr (5.43)

This is clearly an inhomogeneous differential equation for f = eν/2:

(

1− r2

R2

)

f ′ +
r

R2
f =

1

2
Lr (5.44)
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The particular solution is

fp =
1

2
LR2 (5.45)

The homogeneous equation can be easily solved by separation of variables. The
solution is

eν/2 =
1

2
LR2 −B

(

1− r2

R2

)1/2

(5.46)

Setting

A =
1

2
LR2

the metric may be written as

ds2 =

(

A−B
(

1− r2

R2

)1/2
)2

c2dt2 −
(

1− r2

R2

)−1

dr2 − r2
(

dθ2 + sin2 θdφ2
)

(5.47)
Using the convenient substitution

L =
2

3

8πρG

c2
A

equation 5.41 can be integrated:

ρ+
p

c2
=

2ρA/3

A−B(1− r2/R2)1/2
(5.48)

The pressure vanishes at the periphery of the star at r = r0, which yields

A = 3B

(

1− r20
R2

)1/2

(5.49)

To evaluate B, invoke the condition that the interior and exterior metrics ought
to be continuous at the boundary. This results in the interior Schwarzschild
metric, given by

ds2 =

[

3

2

(

1− r20
R2

)1/2

− 1

2

(

1− r2

R2

)1/2
]2

c2dt2 −
(

1− r2

R2

)−1

dr2 − r2dΩ2

(5.50)
Some bounds may be placed on the mass of such a constant density star.

First, the radius ought to be such that the Schwarzschild coordinate singularity
doesn’t occur. This means that

r0 > 2MG/c2 (5.51)

which means that the mass must satisfy

M <
c2r0
2G

(5.52)
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A stronger condition can be put on M by requiring that the pressure is never
infinite. This means that the denominator of equation 5.48 must never vanish.
This leads to

3

2

(

1− r2

R2

)1/2

>
1

2
(5.53)

which, using the expression for ρ, leads to

M <
4

9

c2r0
G

(5.54)

This can also be turned into a restriction on M depending on central density,
ρ0.

5.3 Exercises

1. Verify the Christoffel symbols calculated for the Schwarzschild solution, to-
gether with the Ricci tensor components.

2. Set up Einstein’s equations for a constant density interior solution in the
case where there is a non-zero cosmological constant term.

3. Using 5.20 through 5.22, solve Einstein’s equations for the case ν = −α ln r,
where α is a constant, which should be judiciously chosen to facilitate solution.
Is the solution a reasonable stellar model?



Chapter 6

Tests of General Relativity

6.1 Red-shift of Light from the Sun

A light wave with origin at the surface of the sun will go through n oscillations
in a given proper time, ∆τs. If νs is the frequency as measured at the surface
of the sun, then

n = νs∆τs

When the light wave reaches Earth, it will have a new frequency. In a given
proper time, ∆τe, n complete waves will be received. Thus

νs∆τs = νe∆τe

So

νe = νs
∆τs
∆τe

The passage of coordinate time can be assumed to be the same on Earth as
on the sun. Hence

∆t =
∆τe

√

g00(xae)
=

∆τs
√

g00(xas)

This gives the ratio of proper times needed. Together with the previous
equation, this results in:

νe = νs
∆τs
∆τe

= νs

(

g00(x
a
s)

g00(xae)

) 1
2

= νs

(

1− 2MG/c2rs
1− 2MG/c2re

)
1
2

Note that

F (x, y) =

(

1 + x

1 + y

)1/2

≈ 1 +
1

2
x+

1

2
y
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Setting x = 2MG/c2rs and y = 2MG/c2re, substituting into the equation
and doing some algebra gives:

νe − νs
νs

=
MG

c2

(

1

re
− 1

rs

)

The quantity on the right is definitely negative, which means the frequency
measured on Earth is less than the frequency measured on the sun. This corre-
sponds to a redshift in the light. This effect has been verified to high accuracy,
including experiments done with lasers in tall towers, a’ la Galileo!

6.2 The Perihelion shift of Mercury

Mercury, like most planets, has an elliptical orbit with a closest point of ap-
proach, or perihelion, and a furthest point of recession, the aphelion. Because
of perturbations caused by other planets, principally Jupiter, this egg-shaped
orbit precesses–as time goes by, the perihelion advances. This means it takes
Mercury slightly more than 360 degrees to get back to its closest point of ap-
proach.

The advance in perihelion is very slow– on the order of 600 seconds of arc
per century. All but 43 seconds of arc can be attributed to perturbations by the
other planets. Explaining this discrepancy was a very big problem at the turn of
the century. As it turns out, General Relativity can account for these additional
43 seconds. There is some uncertainty, of course–because there are other effects
that could contribute, such as the sun’s quadrupole moment, which have not
been determined as yet. And if these other effects could be determined, it may
be that GR would turn out to predict the perihelion advance incorrectly.

To determine the orbits in a Schwarzchild spacetime, it is necessary to cal-
culate the extremal curves:

δ

∫

ds = 0 (6.1)

This variational calculation gives the same result as

δ

∫

[

−
(

1− 2MG

c2r

)

ṫ2 +

(

1− 2MG

c2r

)−1

ṙ2 + r2
(

θ̇2 + sin2 θφ̇2
)

]

ds = 0

(6.2)
hence the latter will be used, since it simplifies the calculations. Three of

the Euler-Lagrange equations, together with the metric (instead of the Euler-
Lagrange equation for r, will be used to determine the orbit. Recall that the
Euler-Lagrange equation is given by

d

ds

∂L

∂ẋa
=

∂L

∂xa

The Euler-Lagrange equations are
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d

ds

(

r2 ˙theta
)

= r2 sin θ cos θφ̇2 (6.3)

d

ds

(

r2 sin2 θφ̇
)

= 0 (6.4)

d

ds

[(

1− 2MG

c2r

)

ṫ

]

= 0 (6.5)

In addition, the metric divided by ds2 will be used:

−
(

1− 2MG

c2r

)

c2ṫ2 +

(

1− 2MG

c2r

)−1

ṙ2 + r2
(

θ̇2 + sin2 θφ̇2
)

= −1 (6.6)

Without loss of generality, equation 6.3 may be specialized to the case θ =
π/2, with initial conditions chosen so that θ̇ = 0. This corresponds to choosing
the orbital plane. Equation 6.4 can be integrated, giving

r2φ̇ = h (6.7)

where h is a constant similar to the areal velocity. Recall, however, that the
dot refers to a derivative with respect to the path length parameter, ds, not to
coordinate time. Similarly, equation 6.5 leads to

(

1− 2MG

c2r

)

ṫ = b = constant (6.8)

Substitute these expressions into equation 6.6:

1 =

(

1− 2MG

c2r

)−1

c2b2 −
(

1− 2MG

c2r

)−1

ṙ2 − h2

r2
(6.9)

As in standard celestial mechanics, let r = r(φ), so that

r′ =
dr

dφ
=
dr

ds

ds

dφ
=
ṙ

φ̇
(6.10)

Solving this for ṙ and substituting yields:
(

1− 2MG

c2r

)

= c2b2 − h2

r4
r′2 − h2

r2

(

1− 2MG

c2r

)

(6.11)

Next, again following standard celestial mechanics, put r = 1/u:
(

1− 2MG

c2
u

)

= c2b2 − h2u′2 − h2u2
(

1− 2MG

c2
u

)

(6.12)

This equation could be solved for u′ and integrated. It’s more useful, however,
to take a further derivative:

2u′u′′ =
2MG

c2h2
u′ − 2uu′ +

6MG

c2
u2 (6.13)
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From this equation (or the previous), it is evident that u′ = 0 → r = constant
solutions are possible here as in standard orbital mechanics. The other possi-
bility is:

u′′ + u =
MG

c2h2
+ 3

MG

c2
u2 (6.14)

This looks like standard mechanics with two differences. First, there is the
additional term on the right hand side. Second, instead of the Areal velocity
H = r2dφ/dt, there is the similar quantity h = r2dφ/ds = r2dφ/dtdt/ds, where
t is of course the coordinate time and s is the arclength parameter. Perturbation
theory must be used to make further progress. This requires the choice of a small
parameter, but since ’small’ depends on the units used, the above equation must
first be made dimensionless. Since MG/c2h2 has dimensions of m−1, a natural
choice would be

u =
MG

c2h2
x

Substituting gives:
x′′ + x = 1 + εx2 (6.15)

where

ε = 3
M2G2

c4h2
(6.16)

It is important to verify that ε is small. Since the equation will be applied to
planetary orbits, especially Mercury, values for h for such bodies must be found.

h = r2
dφ

ds
= r2

dφ

dt

dt

ds
≈ rv 1

c

since special relativity is approximately valid for typical planetary orbits, and
dt/ds = (1/c)γ. Inserting all these numbers for Mercury yields about 2.5x10−9,
justifying the use of ε as a small parameter. Next, the variable x is expanded
in terms of this small parameter:

x = x0 + εx1 + ε2x2 + ... (6.17)

Here the x0, x1, x2... are all functions associated with the different powers of ε
in the original equation. Substituting and retaining only first order terms:

x′′0 + x0 + ε (x′′1 + x1) = 1 + εx20 (6.18)

Equating the different powers of ε gives two equations:

x′′0 + x0 = 1 (6.19)

x′′1 + x1 = x20 (6.20)

The first equation can be solved easily, and represents the standard solution:

xo = 1 +A cos(φ+ δ) (6.21)
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The phase shift factor can be set equal to zero. Any variance from standard
orbits will be caused by solutions to the second equation, which can be written

x′′1 +x1 = 1+2A cosφ+A2 cos2 φ = (

(

1 +
A2

2

)

+2A cosφ+
A2

2
cos 2φ (6.22)

where the identity cos2φ = (1/2)(1+cos 2φ) was used. This differential equation
is easily solved by inspection:

x1 = B cos(φ+ δ2) +

(

1 +
A2

2

)

+Aφ sinφ− A2

6
cos 2φ (6.23)

Hence the full solution can be written

x = x0+εx1 = 1+A cos(φ)+ε

(

B cos(φ+ δ2) +

(

1 +
A2

2

)

− A2

6
cos 2φ+Aφ sinφ

)

(6.24)
The cos 2φ and cos(φ + δ2) will cause a small back-and-forth shifting of the
perihelion as time goes on, but nothing that would be noticeable, given the
size of ε. The last term, φ sinφ, however, will get larger and larger as time
progresses. Using the identity

cos(φ− εφ) = cosφ+ εφ sinφ

The solution becomes

x = 1 + a cos(φ− εφ) + small periodic terms (6.25)

This corresponds to 1/r, so maximums in x will correspond to minimums (per-
ihelia) in r. These perihelia will occur when

φ(1− ε) = 2φn (6.26)

Hence φ is given approximately by

φ =
2πn

1− ε
≈ 2πn(1 + ε) (6.27)

The change in the angle from one orbit to the next is:

∆φ = 2π(1 + ε) (6.28)

so the shift per orbit is given by

δφ = 2πε =
6πM2G2

c4h2
=

6πM2G2

c4r4(dφ/dt)2(dt/ds)2
≈ 6πM2G2

c2r4v2
(6.29)

For Mercury, this result is 43.03 seconds of arc per century, in excellent agree-
ment with the observed discrepancy.
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6.3 Bending of light by the sun.

One of the original predictions made by Einstein concerned the bending of light
by the sun. Light is massless, and should therefore follow a null geodesic in
spacetime. Starlight passing near the sun should be bent toward the sun, so
that it appears shifted in position away from the sun when observed by as-
tronomers on Earth. An eclipse expedition led by Sir Arthur Eddington verified
this prediction soon after the Great War. Einstein, understandably, was elated
at the result.

Light travels on null geodesics, so given a curve parameter λ, the Lagrangian
is given by

δ

∫

[

−
(

1− 2MG

c2r

)

ṫ2 +

(

1− 2MG

c2r

)−1

ṙ2 + r2
(

θ̇2 + sin2 θφ̇2
)

]

dλ = 0

(6.30)
The parameter is λ rather than the arclength, ds, because for null geodesics,
no proper time passes. In addition to the Lagrange equations for φ and t, the
metric relationship can be used (instead of the Lagrange equation for r):

−
(

1− 2MG

c2r

)

c2ṫ2 +

(

1− 2MG

c2r

)−1

ṙ2 + r2
(

θ̇2 + sin2 θφ̇2
)

= 0 (6.31)

where a dot is a derivative with respect to the parameter λ.
Following the same steps as for the perihelion shift calculation, the following

equation for u = 1/r can be derived:

u′′ + u = 3
MG

c2
u2 (6.32)

where the prime denotes a derivative with respect to phi. As usual, it is neces-
sary to rescale the variable u so as to make it dimensionless, and then pick out
a natural small quantity with which to conduct the perturbation calculation.
The natural choice v = (MG/c2)u doesn’t work out well, as can be verified.
Instead, use

v = r0u (6.33)

where r0 is the light ray’s closest point of approach to the sun. It’s easy to see,
that with the sun’s radius on order of a billion meters, that this quantity will
be small. Substituting, the equation becomes

v′′ + v = εv2 (6.34)

where ε is given by

ε =
3MG

c2r0
(6.35)
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Carrying out the perturbation expansion as before and solving results in

u =
1

r0
sinφ+

3MG

2c2r20

(

1 +
1

3
cos 2φ

)

(6.36)

The first term on the right is a straight line in polar coordinates. Without loss
of generality, this may be taken to be the straight line parallel to the x-axis and
passing through y = r0. As r →∞, u→ 0, so set u = 0 and solve for φ, which
is the asymptotic angle through which the light is bent as it goes to infinity, and
one-half the total angle bent through (since the ray came from negative infinity,
during which it bent by an identical amount).

sinφ

r0
≈ φ

r0
≈ −3MG

2c2r20

(

1 +
1

3

)

φ = −2MG

c2r0
(6.37)

The minus sign means the light bends toward the sun. The total angle the light
is bent through, ∆, is therefore given by

∆ =
4MG

c2r0
(6.38)

. This quantity corresponds to 75 seconds of arc, and was verified by the famous
eclipse expedition to Africa led by Sir Arthur Eddington in about 1919.

6.4 The reflection of radar by Venus

A more modern test of general relativity involves measuring how long it takes
radar to bounce off Venus and return to Earth. Einstein’s theory predicts a
delay in the return of the wave, and this turns out to be the case. Since radar
is a frequency of light, it will travel on null geodesics. A ray of light traveling
between Earth and Venus will travel approximately on a straight line. The path
may be taken as parallel to the x-axis in the x-y plane. In spherical coordinates,
the line will therefore be given by r sinφ = ro and θ = π/2

The line element for an infinitesimal displacement on this line is

0 = −
(

1− 2MG

c2r

)

c2dt2 − dr2
(

1− 2MG
c2r

) + r2dφ2 (6.39)

From the equation of the path of the ray, obtain

dφ =

(

d

dr
arcsin(ro/r)

)

dr =
dr

(1− ro2/r2)1/2

This can be used to eliminate dφ from the previous equation, resulting in

c2dt2 = dr2

(1−2MG/c2r)2
+

r2odr
2

(1−2MG/c2r)(r2−r2o)
=

=
dr2(1−2mr2o/r3)

(1−r2o/r2)(1−2MG/c2r)2

(6.40)



56 CHAPTER 6. TESTS OF GENERAL RELATIVITY

Taking the square root and expanding to first order in MG/c2 yields

cdt =
dr

(1− r2o/r2)
1/2

(

1 +
2MG

c2r
− MGr2o

r2

)

(6.41)

Despite appearances, this can be readily integrated:

ct =
(√

r2p − r2o +
√

r2e − r2o
)

+ 2MG
c2 log

(

(
√
r2p−r2o+rp)

(√
r2e−r2o+re

)

ro2

)

−

−MG
c2

(√
r2p−r2o+re
rp

+

√
r2e−r2o
re

)

(6.42)
The first term on the right represents the usual flat space result, while the

next two terms are additional contributions from GR, increasing the effective
length. This extra distance means that signals bounced off Venus will be delayed,
arriving later than expected, approximately 200µs at superior conjunction.

6.5 Exercises

1. Complete the perturbation calculations for the bending of light by the sun.



Chapter 7

Some Basic Exact Solutions

Einstein, when he first came up with general relativity, thought there would
never be any exact solution to the theory. Today there are hundreds of solutions,
and more are found every year. Nevertheless, very few of these exact solutions
might be considered important or basic. Solutions that yield immediate insight
into how the universe actually works. Aside from the Schwarzschild exterior
and interior solutions, there are the Friedmann and Robertson-Walker solutions
for cosmology, which are taken up in a later chapter. In this chapter, solutions
describing a radiating body, an electrostatically charged body, and a rotating
body will be taken up. The latter solution, called the Kerr solution, is no doubt
the most important exact solution in this chapter, as it describes a rotating
black hole.

7.1 De Sitter Space

7.2 The Reissner-Nordstrom Solution

An exact solution for the Einstein-Maxwell system for an idealized charged point
particle yields another important exact solution of interest, called the Reissner-
Nordstrom solution. The equation for a particle exhibiting a spin-1 long-range
field in flat space is Maxwell’s equation:

∂bF
ab = 4πja (7.1)

where
Fab = ∇aAb −∇bAa (7.2)

In flat space, various gauges can be chosen, each of which yields a different field
equation and Lagrangian. Only the "gauge-free" equation has an exact solution,
as far as anyone knows. The Lagrangian shall be therefore chosen to be:

$ =
√
−gFabF ab (7.3)
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In solving the coupled Einstein-Maxwell system, a suitable stress-energy
tensor is needed. This can be obtained by varying the Lagrangian density with
respect to the metric:

Tab = −
αM
8π

1√
−g

δ

δgab
√
−g$ (7.4)

Tab =
αM
16π

(

F daFbd −
1

4
gabFcdF

cd

)

(7.5)

This stress energy is traceless, hence Einstein’s equations read

Rab = κ

(

Tab −
1

2
gabT

)

= κTab (7.6)

The metric for static spherical symmetry can be taken to have the form

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin2 θdφ2
)

(7.7)

It is advantageous to recast Maxwell’s equation in terms of ordinary partial
derivatives:

1√
−g

∂a
(√
−gF ab

)

= 0 (7.8)

This is possible only because F ab is a second rank antisymmetric tensor, which
is not hard to show. First, the last term in the covariant derivative vanishes
because Γabc is symmetric in its lower indices while F bc antisymmetric:

∇aF ab =
∂F ab

∂xa
+ ΓaacF

cb + ΓbacF
ac =

∂F ab

∂xa
+ ΓaacF

cb (7.9)

Second, it can be shown that the other Christoffel symbol can be written as

Γaac =
∂

∂xc
log
√
−g =

1

2g
∂cg (7.10)

where g is the determinant of the matrix of the metric tensor components. In-
serting this expression and doing some algebra results in equation 8.14. Equa-
tions 8.13 and 8.14 shall now be solved. We search for a solution where Fab is
of the form

Fab =









0 −A′0 0 0
A′0 0 0 0
0 0 0 0
0 0 0 0









(7.11)

With this choice, the stress-energy tensor becomes

Tab =
αM
32π

A′20









−e−λ 0 0 0
0 e−ν 0 0
0 0 r2e−λ−ν 0
0 0 0 r2 sin2 θe−λ−ν









(7.12)
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Einstein’s equations then can be written down as

R00 = eν−λ
(

ν′′

2
− ν′λ′

4
+
ν′2

4
+
ν′

r

)

=
1

4

GαM
c4

A′20 e
−λ (7.13)

R11 =

(

−ν
′′

2
+
ν′λ′

4
− ν′2

4
+
λ′

r

)

= −1

4

GαM
c4

A′20 e
−ν (7.14)

R22 = e−λ
(

−1− rν′

2
+
rλ′

2

)

+ k =
1

4

GαM
c4

A′20 e
−λ−νr2 (7.15)

In the last equation, k=1 for spherical symmetry, k=0 for plane symmetry,
and k=-1 one for hyperbolic symmetry. Multiplying equation 8.18 by e−ν+λ

and adding to equation 8.19yields

ν′ + λ′ = 0→ ν = −λ (7.16)

Using this result, it is now possible to simplify equation 8.14 to

∂

∂r

(

r2 sin θF 01
)

= 0 (7.17)

which further reduces to

∂2A0

∂r2
+

2

r

∂A0

∂r
= 0 (7.18)

The solution, of course, is

A0 =
a

r
+ b (7.19)

Inserting this solution into equation 8.20and using the fact that λ = −ν
results in

1 + eν (−1− rν′) = 1− (reν)′ =
a2GαM
4c4

1

r2
(7.20)

This equation can be immediately integrated to yield

eν = 1− 2MG

c2r
+
a2GαM
4c4

1

r2
(7.21)

A cosmological constant term can be added in, which results in an additional
term. The constant a can be taken as proportional to the charge. Similar
solutions can be found for plane and hyperbolic symmetry. One interesting
feature of the Reissner-Nordstrom metric is that the force can be repulsive. It’s
unlikely, however, that enough charge could be accumulated to observe such an
effect, since the large charges necessary would arc to ground.
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7.3 The Vaidya Radiating Metric

7.4 Dust Solutions

7.5 The Tolman Metric

7.6 The Kerr Solution

In 1967 Kerr, as a graduate student, came upon his exact solution. At first
its physical meaning wasn’t clear, but soon it was found to describe a rotating
black hole.

7.7 Projects

7.7.1 Interior Electrostatic Solution

In this project, the idea is to develop interior solutions that correspond to the
Reissner-Nordstrom exterior. On the inside of a body, which might be sub-
atomic in size, there is a charge density and corresponding electric field, held
together by gravitation and possibly by other forces, which could be modeled
by negative pressures (tensions). The stress energy is given by a sum of the
stellar structure stress-energy plus the Maxwell stress-energy, supplemented by
Maxwell’s equation in the presence of charged material. The basic equations
are (with tons of luck):

R00 = eν−λ
(

ν′′

2
− ν′λ′

4
+
ν′2

4
+
ν′

r

)

= Λeν +
4πG

c2

(

ρ+ 3
P

c2

)

eν+

+
4πG

c4
ε0A

′
0
2
e−λ (7.22)

R11 =

(

−ν
′′

2
+
ν′λ′

4
− ν′2

4
+
λ′

r

)

= −Λeλ + 4πG

c2

(

ρ− P

c2

)

eλ−

−4πG

c4
ε0A

′
0
2
e−ν (7.23)

R22 = e−λ
(

−1− rν′

2
+
rλ′

2

)

+ 1 = −Λr2 + 4πG

c2

(

ρ− P

c2

)

r2+

+
4πG

c4
ε0A

′
0
2
r2e−λ−ν (7.24)

∂

∂r

(

e−ν/2−λ/2r2
∂A0

∂r

)

= eλ/2r2
ρe
ε0

(7.25)
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Adding eλ−νR00 +R11 gives the usual

8πG

c2

(

ρ+
P

c2

)

eλ =
ν′ + λ′

r
(7.26)

A cheap shot idea here would be to look at charged textures, which are extended
defects thought to result during the big bang. These structures are thought to
have negative pressures, which are interpreted as tensions. Assume, therefore,
that

P = −ρc2 (7.27)

Then λ′ + ν′ = 0. It can then be shown that the following equations hold:

e−λ = 1− 2m

r
+

1

3
Λr2 − 2ε

r
(7.28)

m′ =
G

c2
4πρr2 (7.29)

ε′ =
G

c4
4π

(

1

2
ε0A

′
0
2
)

r2 (7.30)

q = 4π

∫ r

0
eλ/2r2ρedr = 4πr2ε0A0

′ (7.31)

Believe it or not, these equations are all that’s left of Einstein-Maxwell.
Numerically integrate out from the center, assuming Λ = 0, say, and e−λ = 1 at
the core. As an alternative, following precisely the steps for the derivation of the
TOV equation, and making use of a couple of similar definitions, the following
equations can be derived:

8πG

c2
ρ = e−λ

(

λ′

r
− 1

r2

)

+
1

r2
+ Λ− 4πG

c4
ε0A

′
0
2
e−λ−ν (7.32)

8πG

c4
P = e−λ

(

ν′

r
+

1

r2

)

− 1

r2
− Λ +

4πG

c4
ε0A

′
0
2
e−λ−ν (7.33)

eλ

r2
=

(

1

r2
− ν′2

4
+
ν′λ′

4
+
ν′ + λ′

2r
− ν′′

2

)

+
8πG

c4
ε0A

′
0
2
e−ν (7.34)

Painstakingly following the previously developed technique, the TOV equiv-
alent can be derived:

P ′ = −ν
′

2

(

ρc2 + P
)

+
2ε0A

′
0
2
e−ν−λ

r
+

(

1

2
ε0A

′
0
2
e−ν−λ

)′

(7.35)

with (cross fingers)

ν′ =
8πG
c4 Pr

3 + 2m+ 2ε+ 2
3Λr

3

r
(

r − 2m− 2ε+ 1
3Λr

3
) − 4πG

c4
ε0A

′
0
2
e−νr (7.36)
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Couple all this with the Maxwell equation and an equation of state, and
you’ve got a system of equations.

q = 4π

∫ r

0
eλ/2r2ρedr = 4πε0r

2 ∂A0

∂r
e−ν/2−λ/2 (7.37)

P = P (ρ) (7.38)

The charge density and mass density should probably be proportional. Exact
solutions may be possible, as well. Doubtless the basic equations, here, could
use some more grinding. Again, you can start in the interior and work your way
out. Note that the definitions for the previous texture case hold here, as well.

7.7.2 New and probably useless solutions to Einstein’s
equations

The intrepid student could take other combinations of the basic anti-symmetric
tensors divised by Vuille and attempt to derive additional exact solutions in
the spherically-symmetric case. I can assure you these solutions exist, and I’ve
already found some, but there is no reason to think they are of value. One never
knows. See the handout on the quark solution.

7.7.3 Homework 6

1. Calculate the perijovian shift of Io. Would this be observable?

2. Fill out the perturbation calculations for the bending of light by the sun.

3. Suppose you observed that the 434 nm line of hydrogen in light from a
star was shifted to 520 nm. If, through analysis of an orbiting companion, you
determined the mass of the star to be 100 solar masses, compute the radius of
the star using gravitational red shift.

4. Suppose the action integral for a theory of gravity is given by

I =

∫

(ηab − hab)
dxa

dλ

dxb

dλ
dλ

where ηab is the usual Minkowski metric and hab is given by

2MG

c2r









c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Calculate the perihelion shift of Mercury in this theory, and the bending of light
by the sun.



Chapter 8

Approximation Methods

8.1 Metric Perturbations

In many instances Einstein’s equation is intractable, and it is necessary to re-
sort to perturbation theory, often in tandem with numerical techniques. This
process is fraught with peril, of course, since in General Relativity a spacetime
is an equivalence class, under diffeomorphism, of an infinite number of different
spacetimes. There is no guarantee, however, that all perturbations will yield
the same result if every case. Similar problems arise in numerical solutions.
Guidance must be sought in physical reasonableness and special cases.

The basic perturbation method is straightforward. Let g0ab be a known exact
solution to Einstein’s equations that is thought to be close to true metric, gab,
of the spacetime. Then the true metric might be rewritten as

gab = g0ab + λg1ab + λ2g2ab + ... (8.1)

Most of the time only the first order term is retained, and lambda is absorbed
into g1ab. Using this truncated series, the Christoffel symbols and curvature terms
may then be calculated, with terms quadratic in g1ab subsequently dropped while
terms of zero and first order terms separated out. Generally speaking, it’s still
a very tough calculation. An example might be a quantum field that is thought
to be close to a Schwarzschild solution.

The most common use of metric perturbation theory is the derivation of the
so-called Linearized Equations. In this technique, the metric is approximated
by

gab = ηab + hab (8.2)

where hab is considered small compared to the Minkowski metric, ηab. Rais-
ing and lowering of indices will be effected with η. The inverse of the metric, to
first order in hab, is

gab = ηab − hab (8.3)
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Next, the Christoffel symbols must be calculated. Because of the raising and
lowering convention, all these symbols will be linear in hab:

Γabc =
1

2
ηad (hbd,c + hcd,b − hbc,d) (8.4)

where the comma in, for example, hbc,d indicates a partial derivative of hbc
with respect to xd. It is straightforward, then, to calculate the Riemann tensor,
which to first order is:

Rabcd =
1

2
(had,bc + hbc,ad − hac,bd + hbd,ac) (8.5)

The Einstein tensor, again to first order, may now be written as

Gab = Rab −
1

2
Rgab (8.6)

where the various contractions have, of course, been effected with ηab. This
expression is complicated, but can be simplified with a gauge transformation.

8.1.1 The Einstein-Proca System in Perturbation

In this section, perturbation technique will be illustrated by applying it to the
Einstein-Proca system. The calculation will be developed in three different
ways, with details left for the reader. In the first method, the equations shall be
set up, variables will be made dimensionless, and the resulting equations solved.
The second approach will involve a perturbation of Minkowski space, while the
third method will use a perturbation of the Schwarzschild exterior solution.

An exact solution for the Einstein-Proca system for an idealized point par-
ticle has yet to be found [1], [2]. Such systems have been occasionally discussed
in the literature, for example in Dereli et al. [3], and have been invoked by
Tucker and Wang [4] in connection with dark matter gravitational interactions,
where it was shown that such fields could explain in part the galactic rotation
curves. Numerical solutions were found independently by Obukov and Vlachyn-
sky [5]and Toussaint [6]. These latter two papers demonstrated the existence of
naked singularities in this system. In this section, the system will be solved up
to a final integral, which will then be subjected to perturbation analysis.

Consider a force modeled as a Proca interaction. During gravitational col-
lapse, the equivalent of the force charge, referred to here as the Proca charge,
would not be cancelled by an accumulation of opposite charges, as in elec-
tromagnetic interactions. The stress energy of the force field would therefore
be expected to make contributions to the gravitational field of the spacetime
surrounding the collapsed object. Because both the force and the associated
gravitational field fall off exponentially, the effect on the spacetime surrounding
a stellar-size black hole would be completely negligible.

On the other hand, it is thought that microscopic black holes may have been
created in vast numbers during the Big Bang. These micro black holes would
be expected to have a variety of different sizes, including, conceivably, some on
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the order of a femtometer across. For such objects, there is the possibility that
associated fields of Proca-type would prevent the formation of event horizons,
leaving a (short-lived) naked singularity. This, then, might be considerred a
counter-example to Penrose’s cosmic censorship conjecture.

The equation for a particle exhibiting a spin-1 short or intermediate-range
field in flat space is Proca’s equation [7], which in the absence of currents is

∂aF
ab + µ2Ab = 0 (8.7)

where
Fab = ∇aAb −∇bAa (8.8)

The metric will be taken to have diagonal form c2,−1,−1,−1. The quantity µ
is a constant, interpreted as being proportional to the mass of the field quanta
and inversely proportional to the range of the interaction.

Traditionally, the form of equation 8.7 was chosen for several good reasons.
First and foremost, it gives an intuitively correct answer, which is a potential
that rapidly falls off as r gets large. Second, it can be realized by adding a linear
term to Maxwell’s equations. Third, the equation is covariant, and finally, a
Lagrangian exists, meaning this equation is extremal in a more general function
space.

The Lagrangian density for the classic Proca system is:

$ =
√
−g
(

αFabF
ab + βAaA

a
)

(8.9)

where g is the determinant of the metric, and α and β are constants. Varying this
equation with respect to Ac returns equation 8.8, provided that β/2α = −µ2. It
turns out that the last term on the right in 8.9 , which distinguishes the standard
Proca from Maxwell, causes considerable difficulties in finding the solution to
the general relativistic problem. These difficulties are absent in the Reissner-
Nordstrom problem primarily due to the antisymmetry of Fab. Nonetheless,
considerable progress can be made, as will be demonstrated in the next section.

Derivation and Solution of the Field Equations

The metric for static spherical symmetry can be taken to have the form

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin2 θdφ2
)

(8.10)

Similar forms can also be written down for plane and hyperbolic symmetry: all
subsequent steps in this paper could equally well be taken in those two cases .
The Proca stress-energy tensor can be obtained from

Tab = −
αM
8π

1√
−g

δ

δgab
√
−g$ (8.11)

For a given field, the constant αM is a parameter that tells how strongly the
stress-energy of the field creates gravitation. This gravitational strength is so
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weak compared to the other forces that it is impractical to determine exper-
imentally. Again for convenience, this constant and the factor of 8π shall be
rolled into the constants α and β. Applying this formula to equation 8.9 results
in

Tab = 2αFa
dFbd + βAaAb −

1

2
gab
(

αFcdF
cd + βAcA

c
)

(8.12)

The Proca stress energy, unlike the Maxwell stress-energy, is not traceless.
Einstein’s equations read

Rab = κ

(

Tab −
1

2
gabT

)

(8.13)

It is advantageous to recast the Proca equation in terms of ordinary partial
derivatives:

1√
−g

∂a
(√
−gF ab

)

− β

2α
Ab = 0 (8.14)

The Proca system corresponds to a choice of

β

2α
= −µ2 (8.15)

We search for a solution of equations 8.9-8.14 where Fab is of the form

Fab =









0 −A′0 0 0
A′0 0 0 0
0 0 0 0
0 0 0 0









(8.16)

With these choices, the stress-energy tensor becomes

Tab = αA′20









−e−λ 0 0 0
0 e−ν 0 0
0 0 −r2e−λ−ν 0
0 0 0 −r2 sin2 θe−λ−ν









+

+
βA2

0

2









1 0 0 0
0 eλ−ν 0 0
0 0 r2e−ν 0
0 0 0 r2 sin2 θe−ν









(8.17)

Einstein’s equation then can be written down as

R00 = eν−λ
(

ν′′

2
− ν′λ′

4
+
ν′2

4
+
ν′

r

)

= −καA′0
2
e−λ + κβA0

2 (8.18)

R11 =

(

−ν
′′

2
+
ν′λ′

4
− ν′2

4
+
λ′

r

)

= καA′0
2
e−ν (8.19)

R22 = 1 + e−λ
(

−1− rν′

2
+
rλ′

2

)

= −καr2A′0
2
e−λ−ν (8.20)
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Of course, R33 = R22 sin
2 θ. Finally, the equation 8.7for the massive vector

field is given by

A′′0 +
2

r
A′0 −

(

λ′

2
+
ν′

2

)

A′0 +
β

2α
eλA0 = 0 (8.21)

On the face of it, these equations are not dissimilar to Einstein-Maxwell,
differing only by the inclusion of two rather innocuous terms. In fact, these
small changes result in a tremendous complications, as will soon be seen. In the
first place, unlike Einstein- Maxwell, the enormous simplification of λ′ + ν′ = 0
does not occur. Indeed, multiplying equation 8.18 by e−ν+λ and adding to
equation 8.19 yields

ν′

r
+
λ′

r
= κβA0

2eλ−ν (8.22)

Solving this equation for λ′ and substituting into equation 8.20 results, after
some algebra, in:

eλ =
1 + rν′ − καr2A′0

2
e−ν

1 + 1
2κβr

2A0
2e−ν

(8.23)

So the function eλ has been solved in terms of the other two functions. This
result, when substituted into the 00 and 11 equations, makes them identical.
Using the last two equations, the remaining equations for ν and A0 can be
written as:

ν′′ + ν′
2
+

2ν′

r
= −2καA′0

2
e−ν +

(

2 +
rν′

2

)

κβA0
2e−ν

1 + rν′ − καr2A′0
2
e−ν

1 + 1
2κβr

2A0
2e−ν

(8.24)

A′′0 +
2

r
A′0 =

β

2α
A0

(

−1 + ακrA0A
′
0e
−ν) 1 + rν′ − καr2A′0

2
e−ν

1 + 1
2κβr

2A0
2e−ν

(8.25)

The equation for ν can be significantly simplified by the substitution

eν = f (8.26)

where f = f(r). Substituting this into equation 8.24 results in

f ′′ +
2

r
f ′ = −2καA′0

2
+ κβA0

2

(

2 +
rf ′

2f

)

[

f + rf ′ − καr2A′0
2

f + 1
2κβr

2A0
2

]

(8.27)

Similiarly, in equation 8.25:

A′′0 +
2

r
A′0 =

β

2α
A0

(

−1 + ακrA0A
′
0

f

)

[

f + rf ′ − καr2A′0
2

f + 1
2κβr

2A0
2

]

(8.28)

It may be there is an exact solution for these two equations, however finding
it would be a matter of experimentation and luck, given the cubic nonlinearities.
A perturbative approach, on the other hand, has good chances of success, and
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can be quite accurate for reasonable values of the parameters of the theory. The
procedure involves redefining all quantities so that they are dimensionless, using
naturally-occurring parameters.

First, to get the Proca, it is necessary to define α and β. Let these be

α = −1

2
ε0 (8.29)

and
β = µ2ε0 (8.30)

The quantity ε0 fulfills the same function as the permittivity of free space in
electromagnetism, but in this context pertains to the Proca interaction. µ is, of
course, the standard range parameter. Next, set

x = µr (8.31)

This redefines the r-coordinate in terms of a dimensionless parameter. The met-
ric function f is already dimensionless; however A0 has dimensions of Joules per
Proca charge. Denote the Proca charge by q, in analogy with electromagnetism.
Next, set

A = su (8.32)

where
s = ε−10 qµ (8.33)

The parameter s carries all the units of A. Substitute all these into the above
equations and obtain the following two equations in terms of dimensionless
variables only:

(

u′′ +
2

x
u′
)(

f +
1

2
εx2u2

)

f = u

(

f +
1

2
εuu′

)(

f + xf ′ +
1

2
εx2u′

2
)

(8.34)

(

f ′′ +
2

x
f ′ − εu′2

)(

f +
1

2
εx2u2

)

f = εu2
(

2f +
1

2
xf ′
)(

f + xf ′ +
1

2
εx2u′

2
)

(8.35)
where

ε =
κq2µ2

ε0
(8.36)

is a small, dimensionless perturbation parameter, with κ = G/c4. For a scale
similar to that of the strong force, the factor µ2 is quite large, ≈ 1030, and κ ≈
10−44. The remaining term, q2/ε0, is analogous to electromagnetic quantities,
where the term would have magnitude of about 10−27. Since the strong force
is about 100 times stronger than the electromagnetic force, it follows that this
combination of terms should be around 10−25 in the case under consideration.
It appears therefore well justified to consider ε a small quantity for a wide range
of scale. The functions u and f may therefore be expanded:

f = f0 + εf1 + ε2f2 + .. (8.37)
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u = u0 + εu1 + ε2u2 + ... (8.38)

Inserting these expressions, the following zeroth order equations are obtained:

(

f0
′′ +

2

x
f0
′
)

f0
2 = 0 (8.39)

(

u0
′′ +

2

x
u0
′
)

f0
2 = u0f0

(

f0 + xf0
′) (8.40)

Equation 8.39 has the solution

f0 = a+
b

x
(8.41)

The second term on the right will be the usual Schwarzschild term, but will
evidently be small, and more appropriately first order. Hence b will be taken to
be zero, with a = 1, giving Minkowski space as the lowest order in the metric.
With this choice, equation 8.40 has the usual flat space solution, which is

u0 = c0
e−x

x
+ c1

ex

x
(8.42)

It is evident that c1 = 0 in this case. The first order equations may be written:

(

u1
′′ +

2

x
u1
′
)

f0
2 +

(

u′′0 +
2

x
u′0

)

f0

(

2f1 +
1

2
x2u20

)

=

= u0f0

(

f1 + xf1
′ +

1

2
x2u′0

2
)

+
(

f0 + xf0
′)
(

f0u1 + u0f1 +
1

2
u20u
′
0

)

(8.43)

(

f1
′′ +

2

x
f1
′ − u′0

2
)

f0
2 +

(

f0
′′ +

2

x
f0
′
)(

2f0f1 +
1

2
x2u20

)

=

= u0
2
(

2f0 +
x

2
f0
′
)

(

f0 + xf0
′) (8.44)

The focus here is on equation 8.44, which yields the first-order correction to the
metric. The homogeneous solution is again given by equation 8.41, except this
time the constant solution will be discarded and the b/x term retained. This can
be identified with the standard Schwarzschild term. In addition, a particular
solution is needed. After substituting the functions f0 and u0, the equation for
f1 becomes

f1
′′ +

2

x
f1
′ = c20

(

3
e−2x

x2
+ 2

e−2x

x3
+
e−2x

x4

)

(8.45)

The particular solution of this equation is

f1p = c20

(

1

2

e−2x

x
+

1

2

e−2x

x2
+

∫

e−2x

x
dx

)

(8.46)
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This expression is positive-definite, which will be important in the subsequent
interpretation. The last term can be integrated by parts to give a slight simpli-
fication, which is

f1p =
c20
2

(

e−2x

x2
+

∫ ∞

x

e−2x

x2
dx

)

(8.47)

The metric function eν , with appropriate renormalization of the constants,
can then be written in the form

eν = 1− 2MG

c2r
+
q2G

ε0c4

(

e−2µr

r2
+ µ2

∫ ∞

r

e−2µr

r2
dr

)

(8.48)

In the above equation, it has been assumed that the total classical energy of the
field contributes to the gravitational field. In the limit as µ→ 0, corresponding
to an infinite range for the vector potential, a Reissner-Nordstrom spacetime is
recovered.

In the early universe, it is thought, numerous micro black holes may have
been created. These black holes would be expected to evaporate over time
due to emission of thermal radiation. The positive Proca terms in the above
metric suggest the possibility that some of these objects might be devoid of
event horizons, in agreement with the earlier numerical solutions of Obukov
and Vlachynsky and Toussaint.

Another interesting property of the above solution is that the gravitational
field is repulsive when the constants take on suitable values, since as r gets very
small the exponential terms will dominate. One is left to speculate whether such
repulsive effects could prevent complete catastrophic gravitational collapse.

Method 2: Perturbation of Flat Space

Method 3: Perturbation of the Exterior Schwarzchild Solution
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Chapter 9

Gravity Waves

The generation of gravity waves and their direct detection is one of the greatest
test of general relativity. The LIGO project, championed and godfathered by
Kip Thorne, is an ambitious project with the goal of detecting directly the
emission of gravity waves by systems of collapsed objects.

9.1 Einstein-Rosen metric

One of the first wave solutions in general relativity was the famous Einstein-
Rosen metric. The trial metric is taken to have the form

ds2 = e2γ−2ψ
(

dt2 − dρ2
)

− e−2ψρ2dφ2 − e2ψdz2 (9.1)

Where ψ = ψ(t, ρ) and γ = γ(t, ρ). This is, of course, not the only possible
trial metric for cylindrical symmetry. Einstein’s equations then yield:

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
− ∂2ψ

∂t2
= 0 (9.2)

∂γ

∂t
= ρ

[

(

∂ψ

∂ρ

)2

+

(

∂ψ

∂t

)2
]

(9.3)

9.2 The Binary Pulsar

In 1975 Brian Hulse, a graduate student working at Arecibo, detected a series of
curious signals from a pulsar in deep space. At first he and his research advisor,
Taylor, thought it was only a glitch in the system, but Hulse kept hacking away
at the equipment. Finally, it came out that the pulsar signal was coming from
two distinct pulsars tightly orbiting each other.

Any pair of stars bound to each other gravitationally represents a system
with a non-zero quadrupole moment, and if the stars are close enough together,
there is the possibility that significant energy in the form of gravitational waves
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will be emitted. This loss of energy will result in the stars approaching each
other, which in turn will shorten the period of the motion. And over a period
of years, this shortening of the period was measured precisely, and found to be
in agreement with the prediction of general relativity. This observation is the
most accurately measured of any in physics, which makes GR the best-tested
theory in all of physics.

The derivation begins with an analysis of plane waves propagating through
vacuum far from the source. Obviously, Rab = 0 in this region. In addition,
since the waves are weak, it is possible to make some approximations. The
analysis begins with

∇c∇c ¯hab = 16π
G

c2
Tab (9.4)

9.3 LIGO

9.4 Exercises

1. Compute the Christoffel symbols and verify the equations for the Einstein-
Rosen Metric.
2. Estimate the power flux per unit length of gravitational radiation emitted
by an Einstein- Rosen system.



Chapter 10

Stellar Structure

10.1 Newtonian Stars

Finding the structure of a star means finding the mass, radius, and the density
and pressure as a function of position. In addition, quantities such as the
moment of inertia, temperature, and compression modulus are interesting and
useful. Since the equations are generally intractable, numerical calculations are
required, and are best illustrated with simple Newtonian models. Consider a
thin box of gas at a radius r inside a star. In equilibrium, there are three forces
on this box: gravity, acting inwards; P1the pressure on the inside face, acting
outwards; and P2, the pressure on outside face, acting inwards (pressure on the
sides of the box balance and can be safely forgotten). The derivation of the
central equation follows from elementary principles:

P1A− P2A−
GMm

r2
= 0→ P2 − P1 = −GMρA∆r

Ar2

M is the total mass inside a given radius r, whereas m is the mass of the
material in the box, with ρ its density and A the cross-sectional area. In the
above equation, we used the fact that m = 4πr2ρ∆r. This leads to the system
of equations

dP

dr
= −GMρ

r2

dM

dr
= 4πr2ρ

To obtain the structure of a star, we have only to integrate this equation out-
wards from the core until the pressure is zero. This can be done with Euler’s
method, in which we basically back up a couple steps and replace the derivatives
with discrete differences. Call the pressure at the center P0 . Label the pressure
one step further out by P1, and n-steps out by Pn. From the above equation,
we can derive the following difference equations:

Pn+1 = Pn −
GMρ

r2
∆r
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Mn+1 =Mn + 4πr2ρ∆r

Notice that if at the point ro we knew all the values on the right hand side,
we would then be able to easily compute the pressure one step further out from
the center, r1. Once we know the values at r1, we repeat the process until the
pressure drops below zero, which indictates we have left the star. . Before we can
start this process of interation, however, it is necessary to prescribe an equation
of state linking the pressure and density and possibly other thermodynamic and
physical quantities. PV = nRT is an example of such an equation of state. To
solve the structure of the star, we use the following prescription:

1. Specify a central density 2. Obtain and from the equation of state. 3.
Plug into the pressure equation. This gives us , since . 4. Obtain and from the
mass equation and the equation of state. 5. Plug into the pressure equation,
and get . 6. Continue this process until the pressure first drops below zero. At
this point, M will be equal to the stellar mass, and r to the stellar radius.

All you need is a do-loop that will march you out to the periphery. Experi-
ment with step size for the highest value, starting crude and going to a smaller
step. Caution: a counter in your program, which has the function of preventing
infinite loops in the event of a bug or failure to satisfy a conditional statement,
should be increased for very small step size. This is especially crucial for the
white dwarf or a larger star, else the program will never reach the periphery
where the pressure drops to zero. The code can easily be checked by comparing
the numerical constant density solution with the exact solution.

10.2 Relativistic Stars

In stars the pressures and densities can become very high, so it is appropriate to
use General Relativity to describe the equilibrium configurations. The operative
equation is the Tolman- Openheimer-Volkoff equation derived in Chapter 5,
together with supporting equations. To recap, these are:

p′ = −− GMρ

r2

(

1 +
P

ρc2

)(

1 +
4πpr3

Mc2

)(

1− 2MG

c2r

)−1

(10.1)

ν′ = − 2p′

ρc2 + p
(10.2)

e−λ = 1− 2MG

c2r
(10.3)

M ′ = 4πr2ρ (10.4)

p = p(ρ) (10.5)

The equations have been arranged so as to explicitly show factors of G and
c. These five equations must be solved when finding the structure of static stars.
A considerably more challenging set must be solved in the rotating case, where
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a single equation can take several lines to write down. The mass and radius
are of the greatest interest, since these are measurable quantities. If there is no
particular interest in the metric potentials ν and λ, equations 10.2 and 10.3 can
be completely ignored.

Some care must be taken in the initial step of any numerical routine, since
in some terms a zero appears in the denominator. These problems don’t occur
in the limit as r goes to zero, so a simple expedient is to start the integration
one step away from the center of the star. Since it can be shown that a relative
maximum exists in the pressure at r=0, there is no change in moving from the
center to the first grid point, anyway.

10.3 The Equation of State

The only equation left to determine is the equation of state, 10.5. This equation
is generally derived and put in tabular form, since most of the time it isn’t
possible to express the results in closed form. The simplest example is

ρ = constant (10.6)

This EOS can be used to test a numerical routine, since an exact solution is
available. Another often-used EOS, especially in cosmology, is

P = αρc2 (10.7)

where 0 ≤ α ≤ 1. The case α = 0 corresponds to dust–effectively pressure-free,
while for ’stiff matter’ α = 1. In this latter extreme case, the adiabatic speed
of sound, given by

dp

dρ
= v2s (10.8)

equals the speed of light. Superluminal sound speed is generally regarded as
physically impossible, though little is really known of the nature of matter at
such extreme densities. In fact, no actual particle would travel faster than light
in this case, only a signal, and it may be there would be some bizarre quantum
phenomena associated with tunneling.

A common EOS that is frequently used is

P = kNΓ (10.9)

N is the number density, and the constant K is usually chosen so as to make the
pressure continuous when matching up with some other equation of state, say
at lower density. Γ is called the adiabatic index, the heat capacity at constant
pressure divided by the heat capacity at constant volume. It takes the value
of 5/3 for typical gas, and goes to 4/3 for a relativistic gas. At ultra high
density it tends to increase to about 2, and might go as high as 3 in extreme
cases, though a higher value than that would be considered unlikely. For this
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equation of state, it’s not hard to derive an expression for the energy density.
The derivation starts from the first law of thermodynamics,

dQ = d
ρ

n
+ Pd

(

1

n

)

(10.10)

where ε is the energy per baryon and n is the number density, while Q is the
heat exchanged and P is the pressure. Notice that 1/n is a volume per baryon.
In the adiabatic case, dQ=0, and a straight-forward integration gives

ρ =
P

c2 (Γ− 1)
+DN (10.11)

D is again a constant that would be chosen by matching the pressure and energy
densities to some known true or trusted values. When matching to nuclear
densities, this value typically turns out to be equal to one AMU.

A number of different equations of state have been derived, and are operative
in different density regimes. One of the original is the Feynman-Metropolis-
Teller (aka FMT) equation of state, which works for lower densities up to about
1x104gm/cm3 The Harrison-Wheeler EOS is based on models of nuclear matter,
and is valid up to nuclear densities. This has been supplanted by other models,
most notable BPS (Baym-Pethick-Sutherland) and BBP (Baym-Bethe-Pethick)
equations of state. All of these may be used with reasonable confidence up
to nuclear density, which occurs at about 2x1014gm/cm3. Beyond that, it’s
anyone’s guess, though that hasn’t stopped numerous researchers from deriving
candidates.

10.3.1 EOS for a degenerate, ideal Fermi gas

White dwarfs and neutron stars cool to T=0 after some considerable time. At
such a temperature, the matter would be a completely degenerate collection
of fermions. Completely degenerate means they fill all the lowest available
energy states. In order to calculate thermodynamic quantities, it is necessary
to find an expression for the number of occupied states in a given cell in phase
space. The total volume of phase space is given by

Vtot = VxVp (10.12)

where Vx is the ordinary volume, and Vp is the volume of momentum space.
Particles occupy a certain volume in phase space that can be determined from
the DeBroglie relationship:

pλ = h (10.13)

A particle will occupy a space about as large as its wavelength, so its position
volume is λ3, while the momentum volume is p3. Larger momentum means
smaller wavelength and vice versa, so this means a typical cell will have volume
h3. Each cell, in addition, can have more than one particle, depending on the
spin g of the particle. For massive particles g = 2S+1, while for photons g = 2
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and for neutrinos g = 1. Then the total number of available states in the phase
space, N, is given by

N =
gV Vp
h3

(10.14)

This doesn’t say anything about the number of particles in a given cell, or
state. To get the average number of particles occupying a cell with energy given
between E and E + dE, it is necessary to multiply by a distribution function,
f , which gives the average number of particles oer cell. Dividing by the total
volume of phase space then gives a phase space number density, ℵ:

dℵ
d3xd3p

=
g

h3
f (10.15)

From this phase space number density, the ordinary number density, n, can be
calculated, as well as the energy density ρ and the pressure, p. These are given
by

n =

∫

dℵ
d3xd3p

d3p (10.16)

ρ =

∫

E
dℵ

d3xd3p
d3p (10.17)

and

P =
1

3

∫

pv
dℵ

d3xd3p
d3p (10.18)

In the above equations,

E =
(

p2c2 +m2c4
)1/2

(10.19)

and

v =
pc2

E
(10.20)

For fermions, the distribution function takes the Fermi-Dirac form,

f(E) =
1

exp((E − µ)/kT ) + 1
(10.21)

where k is Boltzman’s constant and µ is the chemical potential. As T → 0,
µ→ EF , the Fermi energy, and the distribution function takes the form

f(E) =

{

1 E ≤ EF
0 E > EF

(10.22)

Finding the equation of state consists of carrying out the integrals. For a
gas of electrons, the number density becomes

ne =
2

h3

∫ pF

0
4πp2dp =

8π

3h3
p3F (10.23)
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where the Fermi momentum is defined by

EF =
(

p2F c
2 +m2

ec
4
)1/2

(10.24)

Define a dimensionless Fermi momentum by

x =
pF
m2c

(10.25)

Then

ne =
1

3π2λ3e
x3 (10.26)

The energy density is

ρe =
2

h3

∫ pF

0

(

p2c2 +m2
ec

4
)1/2

rπp2dp = m2c
2λ3eχ(x) (10.27)

where

χ(x) =
1

8π2

{

x
(

1 + x2
)1/2 (

1 + 2x2
)

− ln
(

x+
(

1 + x2
)1/2

)}

(10.28)

The pressure is given by

Pe =
1

3

2

h3

∫ pF

0

p2c2

(p2c2 +m2
ec

4)1/2
4πp2dp =

8πm4
ec

5

3h3

∫ x

0

x4dx

(1 + x4)1/2
=

=
mec

2

λ3e
φ(x) = 1.4218x1025φ(x)dyne− cm−2 (10.29)

with

φ(x) =
1

8π2

{

x
(

1 + x2
)1/2 (

2x2/3− 1
)

+ ln
(

x+
(

1 + x2
)1/2

)}

(10.30)

While the pressure may be primarily supplied by the degenerate electrons,
the rest mass density is still mainly due to the ionized atoms. The density is
given by

ρ0 =
∑

nimi (10.31)

with ni the number density and mi the mass of the ith atomic species. The
baryon number density is given by

n =
∑

niAi (10.32)

where Ai is the atomic weight. An average baryon rest mass can be defined by

mB =
1

n

∑

nimi (10.33)

Then the rest mass density can be written as

ρ0 = nmB =
nemB

Ye
(10.34)
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where Ye is the average number of electrons per baryon. These equation give
the EOS parametrically in x. The number density of electrons is evidently
related to the number density of baryons. Given ne, it is possible to compute
x corresponding to it, then also to obtain the energy density and pressure and
average baryon number density. In a numerical routine, once the new pressure
is found, it will be necessary to invert the equation through some root-finding
method, such as the bisection method, to find the new value of x. This value
can then be plugged in to find n and ρ for the next loop.

10.3.2 Harrison-Wheeler EOS

10.3.3 BPS/BBP

10.3.4 BJ EOS

10.4 Exercises

1. Write a program solving a constant density Newtonian star, and then com-
pare your results to the exact solution, which can be easily derived

2. Generalize Exercise 1 to the case of relativistic stars, and solve in the case of
constant density, again comparing it to the exact solution.

3. Show that
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Chapter 11

Cosmology

Cosmology is the study of the structure and evolution of the universe. In the
early twentieth century, the universe was thought to be finite, consisting mainly
of the Milky Way Galaxy. Various nebula, from irregulars to elliptics and dra-
matic spirals, were thought to be clouds of gas within the galaxy. Around 1930,
when Hubble discovered the red shift of these nebulas, and others noted the
appearance of supernova, was it found that these nebulae were in fact galaxies
in their own right, and that they were distributed across vast distances. Cur-
rently, the microwave background appears as strong evidence that the universe
began in a gigantic explosion some fifteen billion years ago. It useful to develop
mathematical models of the universe as a whole in order to better understand
its structure and evolution.

11.1 Newtonian Cosmology

Newton thought that the universe was infinite and filled with stars. If it were
not infinite, he reasoned that the stars would eventually collapse together, and
that was not apparently the case. With Newton’s law of gravitation it is possible
to derive a model of an expanding universe that has many features in common
with the solutions of general relativity (see Guth and Steinhardt,1989). First, we
start with Newton’s law of gravity, in particular the total kinetic and potential
energy of a portion of the universe, m:

Etot =
1

2
mv2 − GMm

r
(11.1)

Assuming the density is constant, we can use

M =
4π

3
r3ρ (11.2)

together with Hubble’s law,

v = Hr (11.3)
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Substituting these last two equations into 11.1results in

Etot =
1

2
mr2

(

H2 − 8π

3
Gρ

)

(11.4)

As in classical mechanics, the test particle can escape whenever Etot ≥ 0.
The critical mass density at which escape is possible, therefore, is given by

ρc =
3H2

8πG
(11.5)

This result would be modified if a cosmological constant term were added, cor-
responding to an additional potential energy. Equation 11.1 would then be
modified to read

Epot = −
GMm

r
− 1

6
Λmc2r2 (11.6)

This corresponds to a repulsive force; changing the sign would make it attractive.
An expanding universe model can be obtained from this Newtonian model

by supposing that the variable r scales with time. Let s be a standard distance
between two galaxies at a given time. If the universe is expanding with time,
then for some function R(t)

r(t) = R(t)s (11.7)

R(t) is called the scale factor. Hubble’s law follows from the assumption of
expansion, since taking the derivative of 11.7 with respect to time (indicated
with a dot) gives:

v = ṙ = Ṙs =
Ṙ

R
Rs =

Ṙ

R
r (11.8)

Hubble’s contant is therefore given by

H =
Ṙ

R
(11.9)

Inserting this expression into the total energy, equation 11.4, results in

Etot =
1

2
ms2R2

(

H2 − 8π

3
Gρ

)

(11.10)

Next, define a parameter k by

k = − 2Etot
mc2s2

(11.11)

With this definition, equation 11.10 can be rearranged to read

k =
1

c2
R2

(

8π

3
Gρ−H2

)

(11.12)

Note that k, as defined, is a constant, is the same for all test particles, and
is independent of time and position. This means that its value determines
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properties valid for the entire space-time. Indeed, from equation 11.11, it is
clear that if k > 0 then Etot < 0 and the spacetime will collapse. If k ≤ 0, on
the other hand, then Etot ≥ 0 and the universe will expand forever. The size
of k is immaterial, because by definition it depends on a chosen, fixed value of
s, which is arbitrary. By convention, then, k is chosen to be -1,0, or 1. k = 1
corresponds to a closed universe that expands and then falls back on itself, while
for k = 0 or 1 the universe is open, meaning it will expand forever.

To obtain a differential equation for R, substitute equation 11.9 into equation
11.12:

(

Ṙ

R

)2

=
8π

3
Gρ(t)− kc2

R2
(11.13)

This gives us one equation with two unknown function, the density, ρ(t), and the
scale factor, R(t). A relationship between them can be obtained from equations
11.2and 11.7:

ρ =
3M

4πs3R3
(11.14)

These two equations can now be solved for the three different values of k. In
the case of k = 0, the solution is

R = bot
2/3 (11.15)

where bo is a constant. The Hubble constant can then be determined using
equation 11.9:

H =
2

3t
(11.16)

For the case of k = ±1, the solution is more complicated, and must be given
in terms of a parametrization rather than an explicit function of cosmic time.

If the cosmological constant is non-zero, the same analysis leads from equa-
tion 11.6 to

(

Ṙ

R

)2

=
8π

3
Gρ(t) +

1

3
Λc2 − kc2

R2
(11.17)

The original form of the equation can be regained by making the following
definition:

ρeff = ρ+
Λc2

8πG
= ρ+ ρvac (11.18)

With this vacuum energy density, equation 11.17 becomes

(

Ṙ

R

)2

=
8π

3
Gρeff (t)−

kc2

R2
(11.19)

This background mass density must be provided by one or another quantum
fields. The empirical bound on Λ is about 3x10−52m−2, hence the bound on
ρvac is about 1.6x10−26kg. ρvac can supercharge the rate of inflation in early
universe, which, as will be seen, can provide answers to a number of problems.
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11.1.1 The deceleration parameter

Measuring the rate of change of expansion, the deceleration, is key to answering
the question of whether or not the universe is going to contract. The deceleration
is proportional to the mass density, and the mass density, in turn, determines
the geometry of the universe.

First, differentiating equation 11.14 yields

ρ̇ = −3 Ṙ
R
ρ (11.20)

Multiplying equation 11.13 by R2 and differentiating, and then substituting
equation 11.20 results in

R̈ = −4π

3
Gρ (11.21)

The deceleration is proportional to the mass density, hence measurement of
this parameter will yield the density, which determines whether the universe is
open or closed. Some modification of this equation is necessary in the relativistic
case, and while this can be inferred from

11.2 Einstein Cosmologies

The universe may be considered a homogeneous, isotropic gas, where the par-
ticles of gas are in fact galaxies. Homogeneous means that the universe is es-
sentially the same everywhere, whereas isotropic means that the universe, from
a given vantage point, looks the same in all directions. These conditions give
us exactly three trial metrics, corresponding to flat, spherical, and hyperbolic
symmetry:

ds2 = −dτ2 + a(τ)2dσ2 (11.22)

where

dσ2 =







dψ2 + sin2 ψ
(

dθ2 + sin2 θdφ2
)

k=1
dx2 + dy2 + dz2 k=0

dψ2 + sinh2 ψ
(

dθ2 + sin2 θdφ2
)

k=-1
(11.23)

The first expression corresponds to spherical symmetry–actually R
⊗

S3, where
R stands for the real line and S3 is a three-dimensional sphere (imbedded in a
four-dimensional space-time). The second expression is a flat space, which has
topology R4. The last expression is a three-dimensional hyperbola crossed with
R. As in the Newtonian analysis, the first corresponds to k = 1, the second to
k = 0, and the third to k = −1. a(τ) is the scale factor. The g00 metric term
can be taken to be equal to -1 because a trivial rescaling of the time coordinate
can make it disappear (see Exercise 3).

Of the three symmetries, we will completely solve the case k=0. The Christof-
fel symbols are given by

Γ0
11 = Γ0

22 = Γ0
33 = aȧ

Γ1
10 = Γ1

01 = Γ2
02 = Γ2

20 = Γ3
03 = Γ2

30 = ȧ/a
(11.24)
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with all other components equal to zero. The nonzero Ricci tensor components
are

R00 = −3ä/a

R11 = R22 = R33 = ä/a+ 2ȧ2/a2
(11.25)

Computing the Ricci scalar and then assembling Einstein’s equations results in:

G00 = 3
ȧ2

a2
= 8πρ (11.26)

G∗∗ = −2
ä

a
− ȧ2

a2
= 8πP (11.27)

Substituting equation 11.26 into equation 11.27 yields

3
ä

a
= −4π (ρ+ 3P ) (11.28)

The cases for spheroidal and hyperboloidal symmetry are handled similarly. The
resulting equations are

3
ȧ2

a2
= 8π

G

c2
ρ− 3k

a2
(11.29)

3
ä

a
= −4π G

c2

(

ρ+ 3
P

c2

)

(11.30)

These equations can be solved exactly for a variety of special equations of state.
P=0 gives the Friedmann solutions, identical to what was obtained in the pre-
vious section. Another common equation of state is

P = αρc2 0 ≤ α ≤ 1 (11.31)

where α is just a parameter and ρ is, naturally, the energy density (as opposed
to the mass density of the previous section). α = 0 models dust, which may
be thought of as pressure-free matter, while α = 1/3 corresponds to radiation.
The condition ∇aTab = 0 yields the dynamics of the cosmological fluid:

d

dτ

(

ρc2a3
)

= − p

c2
d

dτ
a3 (11.32)

After the initial expansion, the pressure drops effectively to zero, yielding dust.
The above equation can then be integrated to give

ρ =
c0
a3

(11.33)

This can be substituted into Einstein’s equations:

G00 = 3
ȧ2

a2
= 8πρ = 8π

( c0
a3

)

(11.34)

This can be easily solved, giving, as before

a ≈ t2/3 (11.35)
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For radiation-dominated, P = ρc2/3. Substituting into the equations of motion
and integrating results in

ρ =
α

R4
(11.36)

This, too, can be easily integrated in the flat space case.

11.3 Red Shift and Acceleration

The Robertson-Walker metric, derived in the last chapter, can also be written
as

ds2 = dτ2 −R(τ)2
(

dr2

1−Kr2
+ r2dΩ2

)

(11.37)

The red shift formula uses a parameter called z, and is defined by

1 + z =
∆λ

λemitted
=
Robserved
Remitted

(11.38)

To see how this is derived, start with the metric in the form

ds2 = dτ2 − a2dσ2 (11.39)

Light travels on null geodesics. So a photon emitted at τe and observed at a
later time τ0 will traverse spacetime according to a parameter σ, given by

∫ τ0

τe

dτ

a
= σ (11.40)

If the observed quantity is periodic, the next observation will occur ∆τ0 later,
due to emission occuring ∆τe later than the first. If these differences, which are
equal to the periods at the respective times, are small compared to the total
travel time, then they can be represented as

∫ τ0+∆τ0

τe+∆τe

dτ

a
= σ (11.41)

Subtract these two expressions:

∫ τ0

τe

dτ

a
−
∫ τ0+∆τ0

τe+∆τe

dτ

a
= 0 (11.42)

With a little inspection, and maybe a cosmological number line, this is seen as
equal to

∫ τe+∆τe

τe

dτ

a
−
∫ τ0+∆τ0

τ0

dτ

a
= 0 (11.43)

Dividing by ∆τe∆τ0, and denoting the anti-derivative by F , it then follows from
the definition of derivative that

1

a(τe)∆τ0
=

1

a(τ0)∆τe
(11.44)
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This results immediately in
λ0
λe

=
a0
ae

(11.45)

The z-factor is then defined as

z =
∆λ

λ
=
λ0 − λe
λe

=
a0
ae
− 1 (11.46)

11.4 Inflationary Cosmologies

11.5 Exercises

.1. Starting from 11.6, derive 11.17.

2. Suppose the metric is taken to be ds2 = −A(t)2dt2 + B(t)2dσ2. Show that
by coordinate transformation this metric is the same as given in 11.22 and 11.23.

3. Solve equation 11.32 for the general case, with 0 ≤ α ≤ 1. Solve for the
metric function a in the case of k=0.

4. Find the equation for the field and the stress-energy for the following La-
grangian density:

$ =

(

∇aψ∇aψ −
m2c2

h̄2
ψ2

)√
−g

don’t do the next one!! 5. Repeat the analysis of section 2, assuming gravity
is given by a massive scalar field, with potential energy Epot = GMme−µr/r.
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Chapter 12

Exotic Structures

12.1 Geometric Relics of the Big Bang

Particle physics, when applied to the early universe, yields the possibility of dra-
matic and exotic structures that may have a major impact on the evolution and
structure of the universe. These structures are related to symmetry breaking,
and result in exotic defects in the structure of spacetime in zero, one, two, and
three physical dimensions. In this section, these defects will be reviewed, then
presented in mathematical detail in subsequent sections. Defects in the struc-
ture of spacetime result from something called spontaneous symmetry breaking,
and come in several sizes and shapes. First of all, what is spontaneous sym-
metry breaking? A good example of symmetry breaking is what happens when
water turns to ice. As liquid water, the molecules can swirl around any way they
wish. You can think of the water as having a ’rotational symmetry’, since any
way you look at it, it looks the same. When the water freezes to ice, however,
you suddenly have a crystal with a regular structure. The lattice of crystal
looks different when viewed from various directions. The former symmetry, as
liquid water, is broken. Furthermore, ice crystals may start forming in different
regions, with different orientations. When these regions grow together, defects
will be observed between them: points, lines, and planes, which can be seen
in ice cubes right out of your refrigerator. Now, as the universe expanded, it
cooled, just as the freon in a refrigerator cools as it expands. And just as cool-
ing water can turn to ice with defects, many scientists believe that interesting
relic defects would have ’frozen out’ during the initial phase of expansion. The
relic defects predicted include: a point-like defect, called a magnetic monopole,
a string-like defect called a cosmic string, a sheet-like defect, called a domain
wall, and an extended defect, called a texture. Magnetic monopoles were first
postulated by Paul Dirac in the thirties, and physicists have been looking for
them unsuccessfully ever since. Imagine taking a magnet and cutting it in half.
Ordinarily, you get two magnets, each of them having a north and south pole.
This is because magnetism is caused by a circulation of electrons at the atomic
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level. A monopole, on the other hand, would be either a north or south pole
in isolation. This is a rather radical idea, and goes contrary to our everyday
experience. And such monopoles, if they exist, would be quite remarkable. First
of all, though they’d be submicroscopic in size–far smaller than a proton–they’d
be enormously heavy: a hundred thousand of them would weigh in at about
a microgram! That doesn’t sound like much, but comparing the weight of a
hydrogen atom to the weight of a monopole is like comparing the weight of a
child’s paper boat to that of a battleship. For something so tiny, monopoles
would be absurdly massive. A useful feature of monopoles would be their abil-
ity to annihilate all other forms of matter. They would eat everything in their
path, but rather than keeping most of it down for a later grand burp like a
microhole, they would convert the matter immediately into energy by stimu-
lating proton decay. A car constructed around a closed cycle monopole steam
engine could cruise for decades on one tank of water, with no pollution at all.
Of course, they could also be used in highly efficient space drives, surpassing
even antimatter propulsion. Unfortunately, only a single experiment has ever
detected a candidate monopole, and subsequent efforts have failed. This is bad
news for particle theorists, since there ought to be lots and lots of them, ev-
erywhere. Rapid universal expansion–particularly the turbocharged inflation
model–may account for their scarcity, however, so all is not lost. A second type
of monopole, the global monopole, also known as a hedgehog, would be so enor-
mous that it s unlikely astronomers could possibly overlook it, no matter where
it was in the universe. The mass energy of the hedgehog is thought to increase
linearly with distance from the core. Hedgehogs and anti-hedgehogs would at-
tract each other strongly, moving towards mutual annihilation at relativistic
speeds. Because of this, not many are expected to be hanging around today.
Some scientists think they may have created perturbations in the homogeneity
of the universe, leading to large scale structure formation. Cosmic strings, not
to be confused with the strings of string theory, are again predicted as form-
ing during the inflationary period just after the Big Bang. Whereas ordinary
magnetic monopoles are submicroscopic, cosmic strings, like hedgehogs, would
be enormous, far larger than galaxies, long, twisting tubes of ’stress-energy’
stretching for thousands, even millions of light years. Right after the Bang
there might have been great networks of them, all tangled together like a ball of
yarn the cat got into. Wherever they intersected themselves they’d tend to join
and form loops, which would then spin like gigantic hula hoops, rapidly radiat-
ing away their substance in the form of gravity waves. One interesting property
of cosmic strings is that the spacetime around them would be very nearly–but
not quite–flat. This is paradoxical for such massive objects, but follows from
solutions of Einstein s field equations. The only difference from flat space would
be a curious deficit angle: the distance around a circle would be less than times
the radius! A cosmic string, passing through an observer, would cause the op-
posite sides of that observer to approach each other at about a kilometer per
second, not a healthy prospect. Cosmic strings and loops are thought to have
formed the seeds of galaxies. Just how and why galaxies formed is one of the big
unsolved mysteries in astrophysics. The problem is, despite all its violence, the
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Big Bang was apparently a very smooth and uniform event, a kind of perfect
explosion that was the same in every direction. The evidence for this is very
strong in the microwave background, which has a uniform temperature across
the sky, though recently faint ripples have been detected in this distribution.
Without any lumps, wrinkles, or other imperfections in the expanding gas of
the universe there wouldn’t have been any reason for galactic-sized clumps to
form, and the universe would have turned out to be a very boring place: just an
expanding cloud of gas–no galaxies, no stars, no planets, no sentient beings to
ever get interested in the origins of things. The cause of the recently-detected
ripples in the microwave background has yet to be explained, though perhaps
cosmic strings or other defects are involved. Still, there’s the same problem
with cosmic strings as with magnetic monopoles: they haven’t been observed.
But astronomers are still looking for them, and they may yet turn up if we look
deep enough into space. Like cosmic strings, two-dimensional defects, called
domain walls, are supposed to be fantastic, galaxy-spanning structures. They
are thought to take either the form of sheets or of gigantic bubbles. The bub-
bles expand, contract, or oscillate in and out, while the sheets often move at
relativistic speeds. The exact behavior depends on the nature of the spacetime
on either side of the wall. Domain walls have a very intriguing property: if
you’re close to one, they push you away. That’s right. They repell you, drive
you further away. Domain walls exhibit repulsive gravity. If you could rig a
small one to the back of a space ship, you could use it to travel anywhere you
wanted, like an antigravity space drive. The tension of the wall, according to
Einstein’s equations, is what creates the repulsive effect. It acts like a source of
negative mass, a hypothetical substance with remarkable properties. There are
two problems with such a space drive, however. First, domain walls are under
such incredible tension that any normal matter would be torn to pieces long be-
fore the repulsive gravity effect could be obtained. Ordinary everyday tensions,
such as that created by stretching a rubber band, are too weak by about twenty
powers of ten! Furthermore, the repulsive gravity effect is actually limited in
range: at a distance, the wall becomes attractive again. Only universe-spanning
walls would have universal repulsive gravity. Domain walls, like monopoles and
strings, have not been observed, though my personal suspicion is that many of
them may have turned into quasars. There are a tremendous number of quasars
in deep space, and they are postulated to be driven by black holes. My gradu-
ate thesis advisor, Jim Ipser at the University of Florida, together with Pierre
Sikivie, showed that spherical domain walls with a flat spacetime interior always
collapse into black holes, and they would be whopping big ones, big enough to
eat solar systems for breakfast just as quasars are purported to do. Textures are
a three-dimensional defect–an extended region of false vacuum–and are candi-
dates for the creation of structure in the universe. This type of defect, unlike the
others, is expected to be unstable, rapidly collapsing in on itself at the speed of
light, while spewing out tremendous amounts of energy in the form of Goldstone
bosons, massless particles associated with quantum scalar fields. In the process
of self-destructing, however, the texture—also called a knot –would create fluc-
tuations in the density of matter, including galactic spheroids, which could then
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evolve into quasar-containing galaxies. So far, textures, like the other defects,
haven t been detected. This may in part be due to the fact that thicker defects
tend to unravel as the universe expands. Thinner ones would persist, though,
and of course even the thicker ones could still be seen in deep space, which is
equivalent to looking backwards in time. Some physicists are looking elsewhere
for the perturbations needed to seed not only structures such as galaxies, but
also, on a larger scale, the great voids and walls of galaxies. Currently, theories
based on quantum fluctuations, caused by the Heisenberg Uncertainty Principle,
are getting popular.

12.2 Magnetic Monopoles

12.3 Cosmic Strings

12.4 Domain Walls

12.5 Hedgehogs

12.6 Lorentzian Wormholes



Chapter 13

Singularity Theorems

Roger Penrose and Steve Hawking developed mathematical tools to study the
structure of spacetime, and under fairly reasonable assumptions proved that
the spacetime manifolds of classical general relativity had to have singularities.
Intuitively, a singularity is a bad spot, a place where physical theories breakdown
and information cannot be extracted.

A quantum theory of gravity would no doubt give entirely different results.
What is also not universally appreciated is that the singularity theorems were
reverse-engineered: all depend on conditions put on the stress-energy, conditions
that are essential in order to get the desired results. And it turns out that many
very common spacetimes violate those conditions. Nonetheless, it is of interest
to see how these problems are addressed for classical general relativity. Good
references include Penrose, Hawking and Ellis, Beam and Ehrlich, Wald, and
Barrett.

13.1 Elementary Topology

13.2 Spacetime Preliminaries

1. Definition: A space-time M is a real, 4-dimensional connected C∞ Hausdorff
manifold, without boundary, together with a globally defined C2 tensor field g
of type (0,2) which is non-degenerate and Lorentzian. In addition, M will be
taken to be time-oriented.

2. Explanation of terms in Definition 1.

A real, 4-dimensional manifold is a space which, locally, looks like 4-dimensional
Euclidean space, R4. Mathematically, this means that for every point p in M
there is a neighborhood U and a homeomorphism φ : U → φ(U) ⊂ R4. These
homeomorphisms are called charts, or coordinate systems. C∞ means that when
two coordinate systems overlap, then the composition of one with the inverse of
the other is continuously differentiable to all orders.

95



96 CHAPTER 13. SINGULARITY THEOREMS

Hausdorff means that any two points of M may be separated by a pair of
disjoint open sets, i.e. there exists two open sets U,V in the topology of M
such that x ∈ U ,y ∈ V , with U ∩ V = ∅. Locally this condition is satisfied
automatically, since Euclidean space is Hausdorff. Globally, this condition may
be suspended in certain examples (see Hawking and Ellis, page 177).

M is connected if it cannot be written as a disjoint union of two open sets,
i.e. M 6= U ∪V where U ∩V = ∅, with neither U nor V empty. This hypothesis
is reasonable, since we could have no knowledge of a disconnected component.

"Without boundary" means that there are no neighborhoods homeomorphic
to R4+, where R4+ =

{

x ∈ R4s.t.x1 ≥ 0
}

. Points of M having an image on
x1 = 0 are called boundary points of M. The assumption that there are no
such points is made on the basis of physical reasonableness (i.e. no spacetime
deadends in the middle of nowhere!). A notion of singular boundary has been
defined, however, whereby one puts in points representing the singularity and
then tries to define a manifold with boundary structure.

The tensor field g, called the metric tensor, is C2 in order to allow the
Einstein field equations, which involve second derivatives, to be defined at every
point. Non-degenerate means that if g(V,W ) = gabV

aW b = 0 for all W, (V and
W being elements of a tangent vector space), then V=0. This condition ensures
that gab has an inverse at every point. Lorentzian means that at each point p
in M there is a basis for the Tangent space Tp(M) in which g is Minkowskian,
i.e. has matrix form given by the flat space metric tensor, ηab.

A vector V ∈ Tp(M) is said to be time-like, space-like, or null according
as g(V, V ) = gabV

aV b is negative, positive, or zero. The null cone at p is the
collection of null vectors in Tp(M). This null cone separates the time-like vectors
into two componenets. If one can choose, in a continuous fashion, one of these
components at each point of M, M is said to be time-orientable. To label these
chosen components the future cones, and all the others the past cones, is to
time-orient M.

3. Definition: A curve in a manifold M is a smooth mapping α : I → M ,
where I is an open interval in R.

Generally we will consider two curves differing only by a smooth parameter
change to be the same curve. Intuitively this means we are taking a curve to
be its underlying point set in M. A curve is regular ("kink-free") if its tangent
vector is non-vanishing. A curve is time-like if its tangent vector is timelike at
every point, and future-oriented if the vector is future-pointing at every point.
A causal curve may have tangent vectors which are either null or time-like.

4. Definition: The future endpoint of a curve γ is that point p ∈M such that
for all sequences {ui} → b = sup I, γ(ui) → p. (Past endpoints are similarly
defined)

All timelike or causal curves will be required to contain their endpoints (if
they exist), or else be future and/or past endless. This excludes the curves de-
picted in figure 2 from being time-like curves: in the first case, the tangent vector
waggles back and forth, so the curve cannot be smooth at the future endpoint,
and in the second case, the curve becomes null only at the future endpoint. In
addition, this requirement means hat curves containing both endpoints wil have
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a closed interval of R as their domain of definition.
5. Definition. Let 5 denote the unique torsion-free connection on M under

whichg is covariantly constant, i.e. 5g = 0. Then ∇XY = Xa 5a Y b is
the covariant derivative of the vector field Y in the direction of X— in other
words, the usual directional derivative, generalized to manifolds. In terms of
components,

Xa 5a Y b = Xa

(

∂Y b

∂xa
+ ΓbacY

c

)

with the usual summation convention. Torsion-free means that Γbac = Γbca.
7. Definition. Let p ∈M , V ∈ Tp(M). Let γV be the geodesic with tangent

vector V at p, with γV (0) = p. Then the exponential map, exp : Tp(M) → M ,
is given by expp(V ) = γV (1), if it exists.

Let λ ∈ [0, 1]. Intuitively, one expects expp(λV ) to be on the same geodesic,
but not as far along if λ < 1.

On a sphere the exponential map is badly behaved. All vectors of sufficient
length, say at the Tangent space of the north pole, could be mapped to the
sout pole, giving a map which could not be one-to-one, obviously. However,
for a small enough neighborhood it is a diffeomorphism from a region of Tp(M)
to a neighborhood on the manifold M. This neighborhood is called a normal
neighborhood.

8.Definition: If Q is a star-shaped region containing the origin in Tp(M), and
if expp |Q (that is, the exponential map restricted to Q) is a diffeomorphism on
Q, then expp[Q] is called a normal neighborhood of p.

It can be shown that such a neighborhood exists for every point p. (See
Postnikov, O’Neill, etc) Mathematically, this models the idea that spacetime in
sufficiently small regions looks like flat space, i.e. Minkowski space.

"Star-shaped", in definition 8, means simply that V ∈ Q⇒ λ ∈ Q,λ ∈ [0, 1].
A simply convex neighborhood is a normal neighborhood of each of its points
(not just for a given point p). Such a neighborhood exists at each point of M.
(See Postnikov for the proof).

9. Definition. A simple region N is a simply convex open set such that N
closeure is compact and is itself contained in a simply convex open set.

10. Properties of simple regions 1. If p, q ∈ N , there exists a unique geodesic
in N connecting them.
2. ∂N , the boundary of N, is compact, and closed subsets of N are also compact.
3. M can be covered by a locally finite system of simple regions. Also, finite
collections cover compact subsets.

Locally finite means that every x ∈M has a neighborhood U which intersects
only finitely many elements of the cover. This property really follows from the
paracompactness of manifolds. The usefulness of simple regions will be evident
at various junctures.

11. Definition: Let γ be a geodesic with tangent vector field T. A solution
V of the geodesic deviation equation,

∇T∇T = −R(V, T )T
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is called a Jacobi field on γ. In terms of components,

T a∇a
(

T b∇bV c
)

= −RcabdV bT aT d

Example: Find the Jacobi Fields in R2 along the t-axis. Solution: Rabcd = 0
in flat space, hence the Jacobi Equation reduces to

∂2V c

∂t2
= 0⇒ V c = act+ bc

with ac and bc being constant vectors. An example is illustrated in figure 5,
for V = tx̂. If the geodesics along t=x and the t-axis represent the worldlines
of particles, it’s clear that Jacobi Fields are relative position vectors pointing
from one particular geodesic to neighboring geodesics. The first and second
derivatives of V are the relative velocity and acceleeration, respectively.

12. Definition: Let γ be a geodesic, p,q distinct points on γ, and V a Jacobi
Field vanishing at p and q but otherwise not identically zero. The p and q are
called conjugate points on γ.

Intuitively, conjugate points represent places where neighboring geodesics
intersect, though since the field is defined on γ no other such geodesic need
actually exist.

As will be seen in a later section, a conjugate point is a place where light
rays enter the chronological future of their point of origin. This phenomena
is the well-known bending of light rays by gravitation (though mathematically
obtained in a less usual way).

13. Example. The longitudinal lines on S2 are geodesics. It is left as an
exercise to show that ∂/∂φ satisfies the Jacobi equation, and that the north
and south poles are conjugate points. From Figure 6, it can be seen that ∂/∂φ
indeed vanishes at the poles, as required. Conjugate points will play a very
primary role in the proving of the singularity theorems.

14. Definition. A smooth 1-parameter system of afinely-parameterized
geodesics is a smooth map µ : (to, t1)x(−ε, ε) → Msuch that for every vo ∈
(−ε, ε), µ(t, vo) is an afinely parametrized (a.p.) geodesic.

A simple example is µ(θ, φ) =< sin θ cosφ, sin θ sinφ, cos θ >, for −ε < φ < ε
and 0 < θ < π, which parametrizes the geodesics following longitudinal lines on
the sphere in a neighborhood of φ = 0.

15. Proposition. Letγ(t) = µ(t, 0), and let ∂/∂t and ∂/∂v denote the coor-
dinate vectors on M associated with µ(t, v). Then partial/∂v is a Jacobi Field
on γ.

Discussion: µ maps a piece of R2 onto M, with ∂/∂t and ∂/∂v the tangent
vectors on R2. The actual vectors on M should be denoted "dµ(∂/∂t)" or
"dµ?(∂/∂t)" , for example. Calling them ∂/∂t and ∂/∂v is a common abuse
of notation. ("dµ" is the differential map of µ It’s defined by dµ(∂/∂t)f =
∂/∂t (f ◦ µ), where → R is a real valued function.)

For convenience we may choose ∂/∂t and ∂/∂v to be elements of the basis
{∂/∂xa of coordinate vectors. Also, set ∂/∂t = T = T a∂/∂xa, and ∂/∂v = V =
V a∂/∂xa.
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Proof: [T, V ] = ∇TV −∇V T = 0since in components,

T a∇aV b − V a∇aT b = T a
(

∂V b

∂xa
+ ΓbacV

c

)

− V a
(

∂T b

∂xa
+ ΓbacT

c

)

=

= T a
∂V b

∂xa
− V a ∂T

b

∂xa
+ ΓbacV

cT a − ΓbacV
aT c = 0

Note that T a = V a = 1, and Γabc = Γacb so the first two are zero and the last
two cancel.

Hence ∇TV = ∇V T . Differentiate again, and add two terms which are both
zero:

∇T∇TV −∇T∇V T = ∇T∇V T −∇V∇TT +∇[V,T ]T = −R(V, T )T

∇TT = 0 since µ(t, vo) is a geodesic. [V, T ] = 0, so ∇[V,T ]T = 0. In the
definition of R(X,Y)Z on page 5, set X=V, Y=T, and Z=T.

This completes the derivation of the Jacobi equation.
16. Proposition: Let T be the longitudinal vector field of a one-parameter

system of geodesics. If g(T, T ) = gabT
aT b is the same for each geodesic of the

system, then g(T, V ) = gabT
aV b is constant along γ.

Proof:

∇T [g(T, V )] = ∇T g(T, V )+g(∇TT, V )+g(T,∇TV ) = g(T,∇TV ) = g(T,∇V T ) =
1

2
∇V [g(T, T )] = 0

This shows that g(T,V) is constant along the geodesics γ in the one-parameter
family with tangent field T.

The above propositions will be used in the next section.

13.3 Causality and Chronology

1. Definition: A trip is a curve which is piece-wise a future-oriented timelike
geodesic.

For a trip from x to y, write "x << y", which is read "x chronologically pre-
cedes y". Penrose is the originator of the idea: nearly everyone else uses timelike
curves. For most purposes the two concepts are identical, and equivalent in the
sense that whenever a time-like curve connects two points, there exists a trip
also and vice versa. In many cases trips make for easier proofs. Both trips and
timelike curves will be employed subsequently, according to convenience.

2. Definition: A causal trip is the same as a trip, except that causal geodesics,
possibly degenerate, replace timelike geodesics. Write p < q if "p causally
precedes q".

Note thatp < p always makes sense, , degenerate meaning the trip consists
of a single point. However p << p is a violation of causality: one may return
to the same oint in spacetime while traveling into the future. As will be shown
later, compact spacetimes always admit such trips.
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The requirement that curves contain their endpoints prevents the accumu-
lation of an infinite number of joints, otherwise known as a bad trip. Hence,
unless a trip is future or past endless, it will be composed of a finite number of
"joints".

3. Proposition: a << b⇒ a < b
a << b, b << c⇒ a << c
a < b, b < c⇒ a < c
Proof: This is immediate, from the definitions.

"Mixed transitivity" is more difficult (e.g. a < b, b << c ⇒ a << c).
Proving this will be one of the major results of this section.

4. Definition: The set I+(x) = (y ∈M |x << y ) is called the chronological
future of x. I−(x) = (y ∈M |y << x ) is called the chronological past of x.
The set J+(x) = (y ∈M |x < y ) is called the causal future of x. J−(x) =
(y ∈M |y < x ) is called the causal past of x.

The chronological future of a set is defined in the natural way: If S ⊂ M ,
then I+[S] = ∪x∈SI+(x). I−[S], J+[S], and J−[S] are defined similarly.

5. Examples

6. Proposition. I+(p) is open for any p ∈M .

Proof: Let x ∈ I+(p). Then there is a trip γ from p to x. Let N be a sim-
ple region containing x, and let y ∈ N be on the terminal segment of γ. Let
V = exp−1y (x), Then V is timelike adn belongs to the open set Q of future-
pointing timeslike vectors in exp−1y [N ]. But the exponential map is a homeo-
morphism when restricted to exp−1y [N ], so expy(Q) is open in M and contains x.
But expy(Q) ⊂ I+(y) ⊆ I+(p), meaning that I+(p) must be open, since every
point x ∈ I+(p) is contained in an open set, and I+(p) is the union of these
open sets.

Note that the proof depends on the openness of Q. This fact follows from N
and hence exp−1y N being open (exp is a diffeomorphism), and the openness of
the collection of future-ointing timelike vectors in Ty(M). Ty(M) and R4 are
homeomorphic spaces and the interior of the upper hypercone t2 = x2+ y2+ z2

is clearly open. Q is the intersection of the set of vectors homeomorphic to this
interior, and the open set exp−1y [N ]. The intersection of two open sets is open.

7. Corollary. The relation , , is open, i.e. if p << q om <. there are disjoint
open sets U and V, p ∈ U and q ∈ V, such that for all p′ ∈ U and q′ ∈ V,
p′ << q′.
Proof: Exercise.

8. More Corollaries, and exercises
A. x ∈ I+(y) ⇐⇒ y ∈ I−(x)
x ∈ J+(y) ⇐⇒ y ∈ J−(x)
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B. I+[S] = I+[S̄]
C. I+[S] = I+[I+[S]] ⊂ J+[S] = J+[J+[S]]

The above corollaries will be used routinely when needed. The next series of
propositions will lead to proof of "mixed transitivity" : p << q, q < r ⇒ p << r.

9. Definition. Let N be a simple region, and let p, q ∈ N . The world function
Φ : N ×N → R is defined by

Φ(p, q) = g(exp−1p (q), exp−1p (q))

i.e. Φ(p, q) is the squared length of the geodesic pq from p to q (that is, of
the unique geodesic lying in N). Φ(p, q) = Φ(q, p), and is positive, negative, or
zero according as pq is spacelike, timelike, or null. Continuity follows from the
existence and uniqueness of the geodesic connecting p and q.

10. Lemma. Let NB be a simple region and let p ∈ N . The hypersurfaces
Hp,k = (q | Φ(p, q) = K) are smooth in N (except at q=p) and are spacelike,
timelike, or null according as the constant K is negative, positive, or zero. In
addition, the geodesic pq is normal to Hp,k at q.

Proof: In Minkowski Normal coordinates the equation for Hp,K is −t2 + x2 +
y2 + z2 = K, which is smooth except at the origin when K=0. A smooth
hypersurface is spacelike, timelike or null according as its normal vectors are
timelike, spacelike, or null at every point.

Now let q ∈ Hp,K , and let V be a tangent vector to Hp,K at q. Vary q along
a curve with tangent vector field V in Hp,K . Then the geodesics pq form a
1-parameter system (see figure 9). So V belongs to a Jacobi Field vansihing at
p. Since on each of the geodesics g(T, T ) = K (T = exp−1p q), proposition I.16
holds, so g(T,V)=0 all along pq (being evidently zero at p, where V vanishes).
Hence pq is perpendicular to Hp,Kat q.

11. Lemma. Let N be a simple region, suppose a, b, c ∈ N̄ are such that ab
and bc are both future-causal, having distinct directions at b if both are null,
or suppose a timelike curve or trip γ existsin barN from a to c. Then ac is
future-timelike.

Proof: Consider Φ(p) = Φ(a, p), as p travels from a to c along ab∪ bc, or along
γ, Let T be the tangent vector to the curve. The rate of change of Φ(p) is given
by ∇TΦ.

Now, the previous lemma indicates that∇Φ = gab∇bΦ must be future-causal
(this also follows on direct calculuation of ∇Φ from Φ(p) = −t2 + x2 + y2 +
z2, p = (t, x, y, z)), Since T is also future-causal, we have that ∇TΦ = T a∇aΦ is
negative, unless both vectors are null and proportional (see the next proposition
for a proof of this).

Because of the joint at b, p must enter I+(a) (if it has not already done so).
Once in I+(a) it must remain, since escape would require a velocity faster than
light. But then ∇TΦ will be strictly negative after leaving b, so Φ will be a
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decreasing function from b to c. With Φ(p) non-decreasing on ab (i.e. in the
event T and ∇Φ are null and proportional), decreasing on bc, and Φ(a, a) = 0,
it follows that Φ(a, c) < 0. So the geodesic ac is future timelike.

Next, some unfinished business in Lemma 11 will be addressed.
12. Proposition: Causal vectors V and W, not proportional if both are

null, are in the same causal cone if and only if g(V,W)<0.

Proof: Let V be, say, a future-pointing causal vector, W an arbitrary causal
vector. Chooose a basis so that the metric g is Minkowskiian. Let v and w be
spacelike vectors in (∂/∂t)⊥, the subspace of vectors perpendicular to (∂/∂t),
such that

1. V = a ∂∂t + v ;W = b ∂∂t + w

Since V and W are causal, obtain:

2. g(V, V ) = −a2 + g(v, v) ≤ 0 ⇐⇒ g(v, v) ≤ a2
3. g(W,W ) = −b2 + g(w,w) ≤ 0 ⇐⇒ g(w,w) ≤ b2

Restricted to (∂/∂t)⊥, g becomes the Euclidean dot product. Hence the usual
Schwarz inequality holds, giving:
4. |g(v, w)| ≤ |v||w| ≤ |ab|
5. g(V,W ) = −ab+ v · w = −ab+ |v||w| cos θ
where theta is the angle between v and w. Now, if either |a| > |v| or |b| > |w|,
or if θ 6= 0 orπ, then by 5,
6. sgn(g(V,W )) = sgn(−ab) = sgn(−b)

Since a > 0 by supposition, then sgn(g(V,W )) < 0 ⇒ b > 0 ⇐⇒ W is in the
future-causal cone, i.e., the same cone as V. So the theorem follows, modulo the
special cases.

Case 1: |a| = |v|, |b| = |w|, b > 0, θ = 0.
b>0 implies W is in the same causal cone as V. θ = 0 implies w and v are in
the same direction. Under these conditions,

V =
∣

∣

∣

a

b

∣

∣

∣W

, and of course V and W are both mull, which is excluded in the statement of
the theorem.

Case 2: |a| = |v|, |b| = |w|, b < 0, θ = 0.

Then −ab+ |v||w| > 0, which is okay since W is in the opposite causal cone.

Case 3.|a| = |v|, |b| = |w|, b > 0, θ = π.
Then W is in the same causal cone as V, and

−ab+ |v||w| cosπ < 0
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, fulfilling the requirements of the proposition.

Case 4.|a| = |v|, |b| = |w|, b < 0, θ = π.
Then

V = −
∣

∣

∣

a

b

∣

∣

∣W

, excluded as in case 1.

At last we’re ready to prove the other important result of this section (the
first being I+(p) is open).

Note: insert figure in proposition 13

13. Proposition. If a << b and b < c, then a << c. Similarly, if a < b
and b << c, then a << c. Proof: Suppose a << b and b < c. Let α be a trip

from a to b. and let γ be a causal trip from b to c. Cover γ with a collection
of simple regions, (Ni). Since γ is compact, there is a finite subcollection which
also covers γ, say (N1, ..., Nr). Set b = x0 in Ni0 . Choose y1 in Ni0 on the
terminal segment of α, y1 6= x0. If c ∈ Nio , then by Lemma 11 y1c will be
future timelike, so a << c and we’re done. Otherwise, choose x1 to be the
future end point of N̄i0 ∩γ. If x1 = c then again we’re done, since y1x1 is future
timelike. Otherwise, choose y2, y2 6= x1, in Ni0 , on the geodesic y1x1, x2 the
endpoint of N̄i0 ∩ γ. If c ∈ Ni1 , then again we’re done, since y2c is timelike,
and a << y1 << y2 << c. If x2 = c, again done. Otherwise, continue in this
manner. Since there are only finitely many N ′is, the process must terminate,
with a << c.

13.4 Past, Future, and Achronal Sets

1. Definition F is a future set if F = I+[S] for some S ⊂ M . P is a past
set if P = I−[S] for some S ⊂M .

By previous results, it’s clear that F = I+[F ] and P = I−[P ]. In the following,
results for future sets will have dual results for past sets, so only the former will
be stated and proved.

2. Proposition: If F is a future set then F̄ = (x |I+(x) ⊂ F ).

Proof: Let x ∈ F̄ . Note that I+[F̄ ] = I+[F ] = F by previous results, (I.8.b),
so I+(x) ∈ F .

Conversely, note that if I+(x) ⊂ F , then I+(x) ⊂ F̄ . Since it is always true
that x ∈ I+(x), then x ∈ (x |I+(x) ⊂ F ) implies x ∈ F̄ .

The only possible glitch in the above argument might be I+(x) = ∅. This
possibility is excluded since x is contained in a simple region, homeomorphic to
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a neighborhood of the origin in Tx(M), which contains future-pointing vectors.
So neither I+(x) nor I−(x) can be empty for any x ∈M .

3. Proposition: Let F be a future set. Then:
A. F̄ =∼ I−[∼ F ]
B. ∂F = (x | I+(x) ⊂ F and x /∈ F )
C. ∂F =∼ F∩ ∼ I−[∼ F ]
D. F = I+[F̄ ]

Note: ∼ A =M −A, the complement of the set A. ∂F is the boundary of F.

Proof: Part D was proven in proposition 2. For A, we need to prove mutual
containment.

Let x ∈ F̄ . Then by proposition 2 I+(x) ⊂ F . But then ∼ I+(x) contains
∼ F , so I−[∼ I+(x)] ⊃ I−[∼ F ] and ∼ I−[∼ I+(x)] ⊂∼ I−[∼ F ]. (Taking
complements reverses the inclusion symbol).

Case 1: x /∈ I+(x) and x /∈ I−(x) Then x ∈∼ I+(x) and x /∈ I−[∼ I+(x)], so
x ∈∼ I−[∼ I+(x)] hence x ∈∼ I−[∼ F ].

Case 2:x ∈ I+(x) and x ∈ I−(x) Then x ∈∼ I+(x). But then x /∈ I−[∼ I+(x)]
for otherwise there would be a trip γ from x to y ∈∼ I+(x), a contradiction,
since y cannot be in I+(x) and ∼ I+(x) at the same time. So x /∈ I−[∼ I+(x)],
which means x ∈∼ [∼ I+(x)], and consequently x ∈∼ I−[∼ F ].

Now let x ∈∼ I−(F ). Then x /∈ I−(∼ F ). This means I+(x)∩ ∼ F = ∅. I+(x)
is nonempty, hence it must intersect F, i.e. I+(x) ⊂ F . Then by Proposition 2,
x ∈ F̄ .

The proofs of C and D are left as exercises.

4. Proposition. Let Q ⊂M . Then the following are equivalent:

I+(Q) ⊂ Q
I−[∼ Q] ⊂∼ Q
I+[Q] ∩ I−[Q] = ∅
intQ = I+[Q]
∂Q = (∼ I+[Q]) ∩ (∼ I−[∼ Q])

Proof: Exercise. Note that the conditions on Q, in each case, make a ∈ Q, b ∈∼
Q and a << b impossible.

5. Proposition If I+[Q] ⊂ Q and Q is open, then Q is a future set.

Proof: By proposition 4,
∫

Q = I+[Q], ad since Q is open, Q =
∫

Q, hence
Q = I+[Q] and Q is a future set.

6. Proposition. The union of any system of future sets is a future set. The
intersection of any finite system of future sets is a future set.

Proof: Let (Fi) be a system of future sets. Then ∪iFi = ∪iI+[Fi] = I+[∪iFi]
is immediate, so ∪iFi is a future set. ( x ∈ ∪Fi ⇐⇒ x ∈ Fi0 for some io ⇐⇒
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x ∈ I+[Fio ] ⇐⇒ x >> y for some y ∈ Fio ⇐⇒ x ∈ I+[∪iFi] since y ∈ ∪Fi.)
Let Q, R be future sets. Then I+[Q ∩R] ⊂ conI+[Q] ∩ I+[R] ⊂ conQ ∩R and

by proposition 5, Q ∩R is a future set.

7. Definition A set S ⊂M is achronal if no two points of S are chronologically
related. (i.e. if x, y ∈ S, then neither x << y nor y << x holds.)

8. Examples. Null geodesics are achronal sets, as are light cones and the
planes t=0 and t=x in Minkowski space.

A set can be space-like—having only spacelike tangent vectors—and yet still
not be an achronal set. For example, take the set (t, x, y) = (t, 2 cos t, 2 sin t) in
Minkowski 3-space. The tangent vector field to this spiral is< 1,−2 sin t, 2 cos t >
which is spacelike for all t. But if p = (0, 2, 0)andq = (2π, 2, 0 > then p << q.

9. Definition A set B ⊂ M is called an achronal boundary if B = ∂I+[S]
for some set S ⊂M . (i.e. the boundary of a future set.)

Note: If A is a set , ∂A is the boundary of A. It is defined as the set of points
x such that every neighborhood intersects both A and ∼ A.

An example would be the light cone enclosing I+(p). The next proposition
shows that the concept is time-symmetric.

10. Proposition. B is an achronal boundary if and only if B = ∂I−[T ] ;for
some T ⊂M .

Proof: We’ll prove both directions of the implication, starting with ⇒. Set
T =∼ F , where F is the future set with B = ∂F .
Claim: B = ∂I−[T ]. Let x ∈ ∂F = B. Then by proposition 3B I+(x) ⊂ F
and x ∈∼ F . Since I−(x) 6= ∅, there exists y ∈ I−[∼ F ] and a trip γ from
y to x. Therefore every neighborhood Nx of x contains points of I−[∼ F ].
By proposition 3A, we have F̄ =∼ I−[∼ F ] So since x ∈ F̄ (boundary points
are always in the closure of a set), every neighborhood Nx contains points of
∼ I−[∼ F ]. This makes x a boundary point of I−[∼ F ], i.e. x ∈ ∂I−[T ].

Suppose, on the contrary, that x ∈ ∂I−[∼ F ]. Then every neighborhood Nx
of x contains points of I−[∼ F ] =∼ F̄ and ∼ I−[∼ F ] = F̄ . Hence x ∈ ∂F̄ . But
∂F̄ ⊂ ∂F (Proof:Exercise). So x ∈ ∂F .

reverse rightarrow. Suppose B = ∂I−[T ] for some set T. It must be shown
that B is also the boundary of a future set, i.e. an achronal boundary. To this
end, set F =∼ I−[T ].

Claim: F is a future set with B = ∂F .
A. F is a future set.
Let x ∈ I+[F ]. Then there is a z ∈ F with z << x, i.e. z ∈∼ I−[T ] and

precedes x. If x were not in F, then x ∈ I−[T ] and z ∈ I−(x) ⊂ I−[I−[T ]] =
I−[I−[T ]] = I−[T ] ⊂ I−[T ], a contradiction, since z is in the complement of
this last set. Hence x ∈ F must hold, and I+[F ] ⊂ F . Further, F is open (it’s
the complement of a closed set). So by proposition 5 F is a future set.
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B. B = ∂F . (i.e. ∂I−[T ] = ∂(∼ I−[T ]). "⊂" Let x ∈ ∂I−[T ]. Then every
neighborhood Nx contains points of I−[T ] and ∼ I−[T ]. I+(x) ⊂∼ I−[T ], for
otherwise there would be a y ∈ I+(x) ∩ I−[T ] with x << y and a sequence
in I−[T ] (yi) with yi → y, giving x << yi << t for some t ∈ T , and hence
x ∈ I−[T ], which would preclude it from being a boundary point of I−[T ] (
which is open). so I+(x) ⊂∼ I−[T ], giving x ∈ ∂F , since in every neighborhood
there will be found points of ∼ I−[T ] and , of course, I−[T ] ⊃ I−[T ].

"⊃". If x ∈ ∂
(

∼ I−[T ]
)

, then every Nx contains points of ∼ I−[T ] and

I−[T ]. But if p ∈ I−[T ], then there is a sequence {pi} in I−[T ] converg-
ing to p (or p ∈ I−[T ]), and so Nx will contain elements of I−[T ]. Further-
more, ∼ I−[T ] ⊃∼ I−[T ]. Hence every neighborhood intersects both I−[T ] and
∼ I−[T ], so x ∈ ∂I−[T ], and B = ∂F .

11. Proposition. If B(6= ∅) is an achronal boundary, then there is a unique
past set P and a unique future set F such that F,P, and B are disjoint with
M = P ∪ B ∪ F . Furthermore, any trip or timelike curve from a point of P to
a point of F must meet B in a unique point.

Proof: By the previous proposition, a future set F and a past set P exist
satisfying B = ∂F = ∂P . With F =∼ I−[T ] as in that construction, it follows
from proposition 3 that F̄ =∼ I−[∼ F ] =∼ I−[I−[T ] =∼ I−[I−[T ]] =∼ I−[T ],
making clear that T =∼ F . Then P = I−[∼ F ], and again by proposition 3
∼ P =∼ I−[∼ F ] = F , showing that F̄ ∪ P = F ∪B ∪ P =M .

If γ is a trip from P to F, then γ∩ ∼ F and γ∩ ∼ P are closed sets, contain-
ing between them containing all of γ. Thus there is overlap, which evidently
must be in B. (F ∪ B = Bc, so ∼ F∩ ∼ P = B). But B is achronal, so the
intersection with γ must be a single point.

There remains the question of the uniqueness of the decomposition.
Let P ′ = I−[P ′], F ′ = I+[F ′] be sets such that M = P ′ ∪ B ∪ F ′. Since

M = P ∪ B ∪ F also, it follows that either P ∩ F ′ or F ∩ P ′ is non-empty, say
the former.

Any two points in M may be connected, by a curve γ. Let x ∈ P ∩ F ′. If
γ leaves P, it must enter ∼ P = B ∪ F . But since x was also in F ′, γ must
also enter ∼ F ′ = B ∪ P ′. Since exiting any future or past set entails crossing
a boundary, it follows that γ must be contained in B ∪ (P ′ ∩ F ) ∪ (F ′ ∩ P ). M
is connected, hence arc-wise connected, so from x one can draw a path to any
other p ∈M . But then:

M = B ∪ (P ′ ∩ F ) ∪ (F ′ ∩ P )

∅ =∼ B ∩ (∼ P ′∪ ∼ F ) ∩ (∼ F ′∪ ∼ P )

∅ = (F ∪ P ) ∩ (F ′ ∪B ∪ P ) ∩ (P ′ ∪B ∪ F )
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∅ = (F ′ ∪B ∪ P ) ∩ [(F ∪ P ) ∩ (P ′ ∪B ∪ F )]

= (F ′ ∪B ∪ P ) ∩ [((F ∪ P ) ∩ P ′) ∪ ((F ∪ P ) ∩B) ∪ ((F ∪ P ) ∩ F )]

= (F ′ ∪B ∪ P ) ∩ [((F ∪ P ) ∩ P ′) ∪ ∅ ∪ F ]

= [(F ′ ∪B ∪ P ) ∩ F ] ∪ [(F ′ ∪B ∪ P ) ∩ (F ∩ P ′ ∪ P ∩ P ′)]

= (F ′∩F )∪[F ′∩(F∩P ′)]∪[B∩(F∩P ′)]∪[P∩(F∩P ′)]∪[F ′∩(P∩P ′)]∪[B∩(P∩P ′)]∪[P∩(P∩P ′)]

∅ = (F ′ ∩ F ) ∪ ∅ ∪ ∅ ∪ ∅ ∪ ∅ ∪ ∅ ∪ (P ∩ P ′)

The final result is, at last,

∅ = (F ′ ∩ F ) ∪ (P ∩ P ′)

This last equation holds true only if F ′ ∩ F = ∅, and P ′ ∩ P = ∅. But then
F ′ ⊆ P and P ′ ⊆ F . Since M = F ′ ∪ P ′ ∪ B, it follows that F = P ′ (and
P = F ′). But then F is both a future and a past set, i.e. I−[F ] = I+(F ) = F .
By exercise 26 (which is "true"), this implies F=M, a contradiction. It follows
that F ′ = F and P ′ = P , and uniqueness is proved.

In Minkowski space, F = I+[B] and P = I−[B] gives the decomposition,
but mutilate the space and this no longer holds true, as in the follow two figures.

Proposition. Any achronal boundary is a topological 3-manifold.

Proof: Let P and F be as in the preceding proposition, and let a ∈ B. Let
N be a simple region containing a, and choose Minkowski Normal coordinates
for N. We would like curves with (x,y,z)= constant, "parallel" to the "t-axis" in
N to be timelike curves. This isn’t automatically guaranteed, since the metric
fluctuates from point to point. Since exp−1 is continuous in its argumnents, one
will always be able to find a neighborhood where this property holds. Hence
let Q = {p ∈ N | |t| ≤ ρ;x2 + y2 + z2 < ρ2} with rho chosen sufficiently small.
Label the timelike curves ηx,y,z for (x,y,z)= constant. Each such curve stretches
from (−ρ, x, y, z) in I−(a) to (ρ, x, y, z) in I+(a), and since B is achronal, must
meet B at a single point, denoted b(x,y,z). b(x,y,z) is therefore a 1-1 mapping
between B∩Q and an open ball in R3 of radius ρ. Since we can obviously cover
B with such coordinate neighborhoods, B will be a 3-manifold, provided it can
be shown b(x,y,z) is continuous. But this follows from the achronality of B.

lim
∆x,∆y,∆z

= b(x0, y0, z0)

necessarily, as achronality implies the difference in the time coordinate,

∆t2 ≤ ∆x2 +∆y2 +∆z2

else the points b(x0 +∆x, y0 +∆y, z0 +∆z) and b(x0, y0, z0) would be chrono-
logically related. So ∆t → 0 necessarily as ∆x,∆y,∆z → 0, showing that b is
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continuous.

Null hypersurfaces such as E+(a) = J+(a)− I+(a), γ a timelike curve, turn
out to be achronal boundaries of particular interest. In Minkowski 3-space take
η to be the closed, spacelike curve given by t = 0 = x2+y2−1. ( See figure 16).
Note that every point of B = ∂I+[η] which is not on η is the future endpoint of
some null geodesic in B. This property holds true in general.

13. Lemma Let F be a future set with B = ∂F . Let x ∈ B and suppose an
open set Q 3 x exists such that:

(a) for any y ∈ Q ∩ F there is a trip γ from a point z ∈ F − Q to y or,
equivalently,

(b) F = I+[F −Q]

Then B contains a null geodesic with future endpoint x.

Note that the condition on Q, F = I+[F − Q], excludes the possibility
J+(x) ∩ F = ∅, in which case the lemma couldn’t hold.

Proof: The equivalence of (a) and (b) will be left as an exercise.

Let N be a simple region, x ∈ N ∩ F ⊂ Q, x ∈ B. Let {yi} be a sequence in
N ∩ F converging to x. By (a), each yi is the future endpoint of a trip γi from
some xi ∈ F−Q ⊂ F−N . Let vi ∈ F∩∂N be the past endpoint of the connected
component of γi ∩N which terminates at yi. By Lemma I.11 the geodesics viyi
are timelike. ∂N is compact, so vij → v ∈ ∂N . (vij is some infinite subsequence
of the vi). vx must be timelike or null, since each vijxij is timelike, and the
world function is continuous, (Φ(vi, xi) < 0 and Φ(vi, xi)→ Φ(v, x)).

But vx cannot be timelike. v ∈ F , and by proposition 2 I+(v) ⊂ F , which
would imply x ∈ I+(v) ⊂ F , a contradiction, since x ∈ B (disjoint from F by
proposition 11.) Hence vx is null, and by the same reasoning no point of vx
can reside in F. Further, each point u ∈ vx must be a limit point of F. (To see
this rigorously, choose a smaller simple region N’ containing x, with u on ∂N ′).
Hence vx must like entirely in B.

14. Theorem. Let S ⊂ M and set B = ∂I+[S]. Then if x ∈ B − S
there exists a null geodesic η ⊂ B with future endpoint x and which is either
past-endless or else has a past endpoint on S.

Proof: Figure 16 is a good illustration for this theorem, where all null geodesics
on B have past endpoints on S.

S is closed and x /∈ S, so there an open set Q 3 x and an open set V ⊃ S
such that V ∩Q = ∅. (I+[S]∩ V )∩ γ 6= ∅ for any trip γ with initial point on S,
so clearly the condition F = I+[F −Q] of the previous lemma is satisfied. Thus
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there is a null geodesic on B with future endpoint x. Let η be the maximal
extension into the past of this geodesic. If η is not past-endless (recall that
past-endless means absence of a past endpoint, not necessarily that the curve
extends indefinitely into the past) then it has past endpoint y, which is in B
since B is closed. If h /∈ S, then apply the previous lemma again, obtaining an-
other null geodesic, say γ, with future endpoint y, and with a distinct direction
from η, since η was maximally extended into the past. But then by Lemma
I.11 points of γ chronologically precede points of η, a contradiction since B is
achronal. Hence either y ∈ S or else η is past-endless.

Figure 16 illustrates another general feature of achronal boundaries. Note
that at the point p at the apex of the cone, different null geodesics intersect, and
subsequently must exit B and enter I+[S]. Thus we have the next proposition.

15. Proposition. Let B = ∂I+[S]. Suppose x ∈ B − S is an endpoint of
two null geodesics on B. Then:

(a) if x is a past endpoint of one or both geodesics, then their union is a null
geodesic on B;

(b) If x is a future endpoint of both geodesics, then unless one is contained in
the other, every extension of either geodesic into the future beyond x must leave
B and enter I+[S].

Proof: (a) If x is the past endpoint of one geodesic and the future endpoint
of another geodesic, then since B is achronal, the two must constitute a single
geodesic, else Lemma 1.11 gives a contradiction to achronality. On the other
hand, if x is the past endpoint of both geodesics, then by Lemma 13 there must
exist another geodesic on B having x as its future endpoint. All three geodesics
must constitute a single geodesic, else again the achronality of B is violated.

(b) Extend one of the geodesics into the future beyond x. If the geodesic remains
on B, then achronality is violated unless one geodesic contains the other. Hence
no extension can lie on B, except in this case. Now suppose the geodesics are
distinct. Extend one of them, and call it η, the other gamma. Let y ∈ η on
the extension beyond x, and let z ∈ γ preceding x. Lemma 1.11 gives x << y.
z ∈ ∂I+[S], and by proposition 2, y ∈ I+[S] since z is in the closure of a future
set.

13.5 Global Causality Conditions

In this section various causal conditions will be introduced, with theorems lead-
ing to the establishing of a topology based on causal structure, called the Alexan-
drov Topology after the person who first suggested it.

The grossest causality violation is considered closed timelike curves or trips.
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There is a spectrum of other causality conditions, such as closed causal curves,
and the following:

1. Definition. A spacetime M is future distinguishing at p ∈M if and only
if I+(p) 6= I+(q) for each q ∈M with q 6= p. M is future distinguishing if it
is future distinguishing at each of its points. Similar definitions hold for past
distinguishing.

Clearly no spacetime which has a closed trip or causal trip can be future-
or past-distinguishing. Figure 18 gives an example of a spacetime which has no
closed causal trip, yet is neither future- nor past-distinguishing.

Take Minkowski space with |x| ≤ 1 and identify (t,1) and (t,-2). Let ds2 =
dtdx + t2dx2. The light cones are tangent to the null geodesics obtained by
setting ds2 = 0 = dx(dt+ t2dx)⇒ x = constant and t = 1/(x+c). Now remove
the origin. The spacetime is causal, but not distinguishing.

An equivalent definition is the following: M is future-distinguishing at p if
an only if for every causal trip γ initiating at p there is a neighborhood of p
which γ intersects at most once. The proof will be left as an exercise. This al-
ternate definition makes clear the difference between causal and distinguishing
spacetimes. In a distinguishing spacetime, causal curves come close to being
closed, but never actually close. There will always be a neighborhood (albeit
possibly very small) to which the departing trip cannot return.

2. Definition. An open set Q ⊂ M is causally convex if and only if Q inter-
sects no trip in a disconnected set.

The definition is equivalent to: for every x, y ∈ Q, x << z << y ⇒ z ∈ Q,
which is reminiscent of the usual definition of convex set (i.e. for any x, y ∈ Q,
the straight line connecting x and y is contained in Q). (Figure 19).

3.Definition. M is strongly causal at p if and only if p has arbitrarily small
causally convex neighborhoods. M is strongly causal if and only if it is strongly
causal at each point.

When strong causality is violated causal trips can leave the spacetime and
later return, though an actual closed causal trip need not occur. Figure 20 gives
an example of a spacetime which is causal but not strongly causal.

Minkowski two-space with |t| ≤ 1, (1.x) and (-1,x) identified, and two half-
infinte lines removed. Strong causality fails along the dotted null geodesic.

4. Definition. Let Q be an open subset of M and x, y ∈ Q. Write x <<Q y if
a trip from x to y exists which is completely contained in Q. A similar definition
holds for x ≺Q y.

Since Q is open it is a spacetime manifold in its own right, so propositions
proven for << and ≺ hold for <<Q and ≺Q.

5. Defintion. < x, y >Q= {x|s <<Q z <<Q y}. < x, Y >=< x, y >M .
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In particular, < x, y >= I+(x) ∩ I−(y) which is open since both I+(x) and
I−(y) are. sets of this form will constitute a base for a topology on M, as we
will see.

6. Proposition. Let N be a simple region and x, y ∈ N . Then the set
< x, y >N has the property that no causal trip lying in N can intersect < x. >N
is a disconnected set.

Proof: Let γ ⊂ N be a causal trip intersecting < x.y >N , and let u, v be in
the intersection with u ≺ v. (We assume x << y, else the proposition holds
vacuously.) Let w ∈ γ, with u ≺ w ≺ v. Then x << u ≺ w ⇒ x << w.
and w ≺ v ≺ y ⇒ w << y. Furthermore, xw and wy are timelike geodesics
which exist and lie entierly in side N, since N is a simple region. But this means
w ∈< x, y >N . Inasmuch as u,v and w were chosen arbitrarily, it follows that
γ∩ < x, y >N must be connected.

7. Proposition. If N is a simple region, Q an open set contained in N, and
p ∈ Q, then there exist points u.v ∈ Q such that p ∈< u, v >N⊂ Q.

Proof: Choose Minkowski Normal Coordinates for N at p, and ε > 0 so that
the ball B, t2+x2+ y2+ z2 ≤ ε is entirely contained in Q. Make ε small enough
so that any timelike curves in B are also timelike with respect to the flattened
Minkowski metric ds2 = −4dt2 + dx2 + dy2 + dz2 (this is possible because the
manifold is Lorentizian). This ensures that the relevant portions of I−(v) and
I+(u) and their boundaries will be contained entirely inside B. (see figure 21).
Let u = (−ε/2, 0, 0, 0) and v = (+ε/2, 0, 0, 0).

By our choice of ε we may be confident that the actual timecones of u
and v are contained in the modified cones, which themselves are in B. Now
let w ∈< u, v >N and let γ be the timelike geodesic uw. By construction,
if γ reaches ∂B, then γ must have intersected the past nullcone of v. If q is
the point of intersection, then qwq ∪ wv is a trip, which makes qv a timelike
geodesic by proposition 2.11. But this is a contradiction, since qv is null. Hence
w ∈< u, v >N⊂ N ⊂ B ⊂ Q.

8. Proposition. Any simple region must be strongly causal.

Proof: Proposition 6 says < x.y >M is causally convex, and proposition 7 says
that each point of N has arbitrarily small causally convex neighborhoods. Hence
N is strongly causal.

9. Definition. A local causality neighborhood is a causally convex open
set whose closure is contained in a simple region.

10. Proposition. M is strongly causal at p if and only if p is contained in
some LCN.

Proof: If M is strongly causal at p then there exist arbitrarily small causally
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convex neighborhoods at p. Choose a simple region N containing p, an open set
Q containing p inside N, and finally a causally convex set containing p inside
Q. The closure of this last set will be inside N, hence will be a local causality
neighborhood.

Conversely, if p belongs to an LCN then, by proposition 7, there exist arbi-
trarily small sets < u, v >N contained in the LCN which contain p. If a trip
γ intersected < u, v >N in a disconnected set, then by proposition 6 γ cannot
be contained enitrely in N. Thus it must leave and re-enter N, and so leave and
re-enter the LCN, a contradiction. So < u, v >N is causally convex, and M is
strongly causal at p.

By the above proposition, the collection of points at which M is strongly
causal constitutes an open set.

11. Proposition. No local causality neighborhood can contain a future or
past endless causal trip.

Proof: Exercise.

12. Lemma. Let p ∈ M . Then strong causality fails at p if and only if there
exists q ≺ p, q 6= p, such that:x << p and q << y together imply x << y for all
x,y.

Proof: Suppose strong causality fails at p. Let N be a simple region containing
p, and let Qi =< ui, vi >N , a nested sequence of neighborhoods of p convergin
on p, i.e. Q1 ⊃ Q2 ⊃ Q3..., ∩Qi = p, Qi ⊂ N . Then each Qi fails to be causally
convex, else it would be an LCN, violating proposition 10. Let γi intersect Qi
in a disconnected set. By proposition 6 γi cannot be completely contained in
N. Let γi have past enpoint ai in Qi, exit N at bi ∈ ∂N ∩ γi, and re-enter N at
ci ∈ ∂N , terminating at di ∈ Qi. ∂N is compact, so there is an accumulation
point c of the {ci}. cidi is future timelike for all i, and since di → p, cp must be
future causal. Choose q ∈ cp, q 6= c and q 6= p. Suppose x << p and q << y.
(see figure 22.

p ∈ I+(x) and I+(x) is open, so Qi ⊂ I+(x) for large enough i. But then
ai ∈ I+(x). c ≺ q << y gives c ∈ I−(y). I−(y) is open and so contains
infinitely many ci. So for large enough i, x << ai << bi << ci << y ⇒ x << y
as required.

Conversely, assume q ≺ p, x << p, andq << y ⇒ x << y for all x,y. Let
P 3 p,Q 3 q be disjoint open sets. Then P cannot be causally convex (see figure
23).

If z ∈ I+(p), then q < p << z gives z ∈ I+(q). Choose y on the trip from q
to z. Then x << y << z gives a trip which intersects P in a disconnected set.
So strong causality fails at p.

13. Proposition. If M is stronly causal at P then M is distinguishing at p
(future and past).

Proof: Exercise.
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14. Stable causality, whereby a spacetime remains causal under arbitrarily
small perturbations of the metric, is yet a stronger condition than strongly
causal. Fig 24 gives an examples of a spacetime which is strongly causal but
not not stably causal.

Minkowski space, with removed half-line and identification. a perturbation
of g widening the light cone woudl result in closed trips. Otherwise, strong
causality prevails.

Sets of the form < u, v > cover M. If p ∈ Q∩R, Q and R of this form, and if
for any such p there exists a set S =< w, z > such that p ∈ S ⊂ Q ∩R, then a
theorem from general topology says that the collection of all such sets forms a
base for a topology on M. Recall that the collection of open n-balls forms a base
for a topology in Rn, or for that matter, Minkowski space. The diamond-shaped
sets < u, v > form an equivalent topology, called the Alexandrov Topology.
Hence, we have the following propositions and theorem.

15. Proposition. If p << q and p << r then there exists a point w such that
w << qw << r, and p << w.

Proof: Exercise.

16. Proposition. If x, p, q, r, s ∈ M are such that x ∈< p, q > ∩ < r, s >,
then there exist u, v ∈M such that x ∈< u, v >⊂< p, q > ∩ < r, s >

Proof: Exercise.

17. Theorem. The following three restrictions on a a spacetime M are equiv-
alent:

(a) M is strongly causal;

(b) the Alexandrov topology agrees with the manifold topology;

(c) the Alexandrov topology is Hausdorff.

Proof: (a) ⇒ (b). Suppose strong causality holds at p. Let P 3 p be open
in the manifold topology. It must be shown that an Alexandrov neighborhood
containing p exists in P. Let N be a simple region in P containing p and Q 3 p,
a causally convex open set contained in N (which exists by propositions 7 and
10). Also, by proposition 7, there exists a pair of points u, v in Q such that
p ∈< u, v >N⊂ Q. But < u, v >N=< u, v >, since Q is an LCN. (otherwise,
some trip could leave and re-enter N, hence leave and re-enter Q, a constra-
diction). Hence p ∈< u, v >⊂ Q ⊂ P , as required, showing that sets open in
the manifold topology are also open in the Alexandrov Topology. Since sets of
the form < u, v > area already open in the manifold topology (as proved in
proposition 2.13, together with the fact that finite intersections of open sets are
open → I+(u) ∩ I−(v) =< u, v >.) Therefore we have equivalent topologies.

(b) ⇒ (c). Immediate, since the manifold topology was assumed to be Haus-
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dorff.

(c)⇒ (a). Suppose by way of contradiction that strong causality fails at p. Let
q ≺ p as in Lemma 12, with p ∈< x.u > and q ∈< v,w >. q ≺ p << u, so
q ∈ I(u). Choose y just to the future of q, so y ∈ I−(u), and y ∈< v,w >. By
Lemma 12, x << y so y ∈< x, u > also. Since < x, u > and < v,w > were
arbitrary Alexandrov neighborhoods of p and q, and < x, u > ∩ < v,w >6= ∅,
the Hausdorff property fails for p and q.

18. Proposition. If M is compact it must contain closed trips.

Proof: Cover M with Alexandrov Neighborhhoods. Since M is compact, this
cover has a finite subcover, {< xi, yi >}, i = 1, 2, ....n. If xi, say, is in < xi, y1 >
, then x1 << x1 and we’re done. So suppose x ∈< xi1 , yi1 > for some i1 6= 1.
xi1 must be contained in some element of the cover, say in < xi2 , yi2 >. Obtain
an infinitsequence in this manner, with ... << xi3 << xi2 << xi1 << x1. But
there are only finitely many xi’s! This means the sequence must repeat itself,
i.e. xik << xik for some index, giving a closed trip.

Such a point xik is called vicious. If V is the set of all vicious points in M,
then clearly V = ∪x∈M < x, x >, hence the set of points is open. In fact, V is
the disjoint union of sets of the form < x, x >.

19. Proposition. If < x, x > ∩ < y, y >6= ∅, then < x, x >=< y, y >.

Proof: Let z ∈< x, x >,w ∈< x.x > ∩ < y, y >. Then z << x << w <<
y << w << x << z, so z ∈< y, y > and < x, x >⊂< y, y >. Similarly
< y, y >⊂< x, x >, so < x, x >=< y, y >.

Our last proposition in this section will be needed later for technical reasons.
Penrose proves a lot more in his book, Techniques of Differential Topology in
Relativity, much more than we will need, hence my abridgement.

20. Proposition. Suppose strong causality fails at p. Then either p ∈ V or
p lies on an endless null geodesic γ, at every point of which strong causality
fails, and such that if u and v are any two points of γ with u ≺ v , u 6= b, then
u << x and y << v together imply y << x.

Proof: Let Qi be a nested sequence of LCN’s as in Lemma 12, converging on
p, and ai, bi, ci, and di as in figure 22. ai << bi for each i,ai → p and bi → b,
so pb must be causal, and similarly cp. There are 5 cases to consider.

Case 1: cp and pb are both timelike. then p << bi << ci << p, giving and
p ∈ V .

Case 2: pb is timelike, cp null. Let xi be a sequence of points on pb, xi → p.
Then by Lemma 1.11 cxi is timelike. I−(xi) contains an infinite number of c′is,
while I+(xi) contains an infinite number of b′is. Choose i large enough so that
ci << xi << bi << ci, relabelling the indices if necessary. Obtain in this way a
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sequence of closed trips through x′is, and since xi → p, p ∈ V .

Case 3: pb is null, cp timelike. This gives p ∈ V as in case 2.

Case 4: pb and cp are both null, with different directions at p. Choose
{xi} → p on pb as before, {yi} → p on cp. By Lemma 1.11, yixi is timelike for
each i. Pick z ∈ yixi for each i. Clearly zi → p and c << zi << b. As in case
2, it is possible to show that each zi is in V, so again p ∈ V .

Case 5: pb, cp are both mull, with the same direction a p. Then c ≺ b,
and cb is a single null geodesic. Choose r ∈ cb, r 6= c. If x << r and c << y,
then x << b so I+(x) contains arbitrarily large numbers of the bi, and I

−(y) the
ci. Then x << bi << ci << y for large enough i, and x << y, so by Lemma 12
strong causality fails at r. The time-reverse of Lemma 12 gives strong causality
failure at c.

Now let N1 be a simple region containing b, and let b’ be an accumulation
point of the b′i, the intersection of ∂N1 with γi to the future of each bi in N1. If
b << b′, or bb′ is null with different direction than pb, then as in previous cases
it can be obtained that p ∈ V . So pb’ may be taken as a single null geodesic
γ. Obvioulsy strong causality fails along bb’, by the time-reverse of Lemma 12.
Continuing in this way both into the future and past, an endless null geodesic
γ is obtained at every point of which strong causality fails.

Finally, let u, v ∈ γ, u 6= v, u ≺ v, and let u << x and y << v. By
construction, c ≺ u << x so c << x and y << b(i) for some i. But then
y << b(i) << cj <, x gives y << x for a large enough j, as required.

Note that the proposition leaves open the possibility that p satisfies both
conditions, i.e. that it lies on a specified null geodesic and is in V . See figure
22 and Figure 25 (below).

At p strong causality fails, p is on endless null geodesic fulfilling proposition
20 and p ∈ V . Closed trips approach p, for example abca.

13.6 Domains of Dependence

1. Definition: Let S be achronal. Define the future, past, and total domains
of dependence, respectively, by:

D+(S) = {x | every past-endless trip containing x meets S}

D−(S) = {x | every future-endless trip containing x meets S}

D+(S) = {x | every endless trip containing x meets S}

Given initial data on an achronal set S, D(S) is that region of spacetime deter-
mined by that data. Hawking and Ellis use causal curves instead of trips, but
the difference is negligible.

2. Definition. The future, past, or total Cauchy Horizon of a closed achronal
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set S is, respectively:

H+(S) = {x | x ∈ D+(S)butI+(x) ∩D+(S) = ∅}

H−(S) = {x | x ∈ D−(S)butI−(x) ∩D−(S) = ∅}

H(S) = {x | H+(X) ∪H (S)}

Figure 26.

3. Proposition. Let S ⊂M be achronal and closed. Then:

(A) D+(S) is closed.

(B) H+(S) is achronal and closed.

(C) S ⊂ D+(S)

(D) x ∈ D+(S)⇒ I−(x) ∩ J+(S) ⊂ D+(S)

(E) ∂D+(S) = H+(S) ∪ S

(F) ∂D(S) = H(S)

(G) I+[H+[S]] = I+(S)−D+(S)

(H) intD+(S) = I+(S) ∩ I−(D+(S))

Proof: Exercise. Which of (A) through (H) do not require S to be closed? Find
a corrected version of each in terms of "edge".

4. Definition. Let S be achronal. Then

edge(S) = {x | every neighborhood Q of x contains points y,z and two trips from y to z, just one of which meets S}

Edge(S) is the set of limit points of S not in S, together with the set of points
in the vicinity of which S fails to be a topological 3-manifold. In fact, if
p 3 edge(S), then there is a connected open set Q containing p such that
S ∩ Q is an achronal boundary the spacetime Q, and conversely. This results
in:

5. Proposition. Achronal boundaries are edgeless. If S is achronal, edge(S) is
closed.

Proof: Exercise.

6. Proposition. (a) Let x ∈ I+(edge(S))∩D+(S). Then there is a trip γ from
s ∈ edge(S) to x. Choose a neighborhood Q containing s such that Q ⊂ I−(x).
By definition of edge(S), there exist y,z in Q and a trip µ from y to z, which
misses S. But z ∈ I−(x), so there exists a trip into the past of x which misses
S, which says that x 3 D+(S), a contradiction.
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(b) Let x ∈ edge(S), Qopen a neighborhood of x. By definition, there exists
a pair y,z in Q and trips µ, γ from y to z, µ missing S and γ hitting S. Since
∂D+(S) = H+(S)∪S, γ must intersect a boundary point b in reaching z (since
z ∈∼ D+(S)). If b ∈ H+(S), we’re satisfied. If b ∈ S and I+(b) ∩D+(S) = ∅,
then b ∈ H+(S). So suppose p ∈ I+(b) ∩ D+(S), close enough to b so that
p ∈ I(z). Let γ′ be the trip from z back to p, to b, then y. To reach p, γ′ must
intersect ∂D+(S), say at b’. But b′ /∈ S, since then b << b′, Contradicting the
achronality of S. Hence b′ ∈ H+(S).

Next, if µ hits H+(S) at, say, k, then µ cannot miss S, since k ∈ D+(S).
Therefore µ misses H+(S), γ′ hits H+(S), and and Q was arbitrary; so edgeS ⊂
edgeH+(S).

Now for the reverse inclusion. Let x ∈ edgeH+(S), Q y,z, µ, and γ as be-
fore, µ missing H+(S) γ hitting H+(S). Since γ hits H+(S), it must also meet
S. Finally, suppose µ hit S at b. If I+(b) ∩ D+9S) = ∅, then b ∈ H+(S), a
contradiction. But then I+(b) ∩ D+(S) 6= ∅, and as before obtain p ∈ D+(S)
and a trip µ′ which must intersect H+(S), again a contradiction. So µ misses
S, γ hits S, and edgeH+(S) ⊂ edgeS.

6.5. Theorem. Let S be achronal. Then every point of H+(S)− edgeS is the
future endpoint of a null geodesic γ on H+(S) which is either pastendless or
else has past endpoint on edge S.

Proof: Let p ∈ H+(S)− edgeS. Then (a) p ∈ I+(S) or (2) p ∈ S − edgeS.

Case 1: Let p ∈ I+[S] ∩ (H+(S) − edgeS). Choose a simple region Q con-
taining p such that Q ∩ ∂I+[S] = ∅. This can be done by simply choosing
Q inside I+[β] for a trip issuing from S and passing through p. Now let
F = I+[S] − D+[S] = I+[H+[S]] (prove it!) If y ∈ F , then a trip α going
into the past from y must miss S. α encounters ∂Q, and subsequently ∂I+[S].
Since the boundary of I+[S] was disjoint from ∂Q, α just enter I+[S]−Q. But
z = ∂Q ∩ α is in F since α misses S, so z << y, z ∈ F − Q, satisfying the
conditions of Theorem 3.13, giving a null geodesic γ with future endpoint p in
H+(S). (H+(S) is clearly part of the achronal boundary of F). At any past
endpoint on γ, simply repeat the argument, until γ is either past-endless or hits
edge S. There can be no "Joint", else achronality is violated.

Case 2: If p ∈ S − edgeS, then there exists a simple region Q containing p
such that every curve from a point of I+(p) to I−(S) in Q must hit S. Take
a sequence of points qn in I+(p) converging to p and repeat the argument in
Theorem 3.13, or argue as above.

7.Proposition. If S is achronal and x ∈ D+(S) − H+(S), then every past-
endless causal trip with future endpoint x must intersect S − H+(S) − edgeS
and must contain a point of I [S].

Proof: If x ∈ S we are done. So suppose x ∈ intD+(S) = D+(S)−H+(S)−S.
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Let γ be a past-endless causal trip with future endpoint x. Cover γ with a locallly
finite system of simple regions Na, N2, N3.... Choose y1 ∈ D+(S)∩ I+(x)∩Ni1 ,
where Ni1 is a simple region containing x = x1. Let x2 be the past endpoint of
γ ∩ Ni1 . x2 ∈ ∂Ni1 , x2 ≺ x1 << y1 so x2 << y1. Now x2 ∈ Ni2 for some i2.
Choose y2 ∈ I+(x2)∩I−(yi)∩Ni2 . Let x3 be the past endpoint of the connected
component (as before) of γ ∩Ni2 , connecting x3 ∈ ∂Ni2 to x2.Choosey3 as be-
fore, in Ni3 ∩ I+(x3) ∩ I−(y2). Continue indefinitely (see figure 27), obtaining
a sequence yi, with .... << y3 << y2 << y1; y1 ∈ D+(S), with ... ∪ y3y2 ∪ y2y1
future timelike. Since the N ′is are locally finite, they can’t accumulate. Fur-
thermore, no segment or part of γ can enter or leave any Ni more than a finite
number of times, else a past-endless trip not intersecting S would be produced.m
So the x′is must proceed indefinitely into the past on γ, at least until exiting
D+(S), and ...∪y4y3∪y3y22y1 constitutes a past-endless trip η which intersects
S, since y1 ∈ D+(S). Say η meets S at z on the segment ykyk−1. xk << z, so
xkD

+(S). Thus some point w of γ lies on ∂D+(S). If w ∈ H+(S), then by 3(g)
y1D

+(S), a contradiction. Similarly, if w ∈ edgeS, then by proposition 6 we
get the same contradiction. So w ∈ S, as required, but not in either H+(S) or
edgeS. Furthermore, xk ∈ I−(S).

8. Proposition. If S ⊂ M is acrhonal and p ∈ intD+(S), then M is strongly
causal at p.

Proof: Suppose first that some point x ∈ D+(S) lies on a cloased trip η. Such
a trip is past-endless and so meets S at, say, w. But then w << w contradicting
the achronality of S. So D+(S) ∩ V = ∅, and intD+(S) ∩ V = ∅. Now suppose
strong causality fails at at some point p ∈ intD+(S). By proposition 4.20 there
must be an endless null geodesic γ through p with the property that if q ∈ γ
and q ≺ p, q, then every y ∈ I+(q) and x ∈ I−(p) must satisfy x << y. By the
previous proposition, γ contains some point q ∈ I−(S). Let y ∈ I+(q) ∩ I−(S)
and x ∈ I−(p)∩ intD+[S]. Then x << y. B?ut there exists s1, s2 ∈ S such that
s1 << x << y << s2, by construction, violating the achronality of S. Hence
strong causality must hold on D+(S).

However, examples can be constructed where strong causality fails on S or
H+(S) (i.e. on ∂D+(S).

9. Proposition. If S is achronal and x ∈ intD+(S), then J−(x) ∩ J+(S)
is compact.

Proof: Let {Ni} be a locally finite covering of J+(u) ∩ J−(v), and suppose
by way of contradiction that J+(u) ∩ J−(v) is not compact. Then there will
be a sequence {ai} in J+(u) ∩ J−(v) failing to have an accumulation point in
J+(u) ∩ J−(v). Construct a future-endless trip γ starting at yo ∈ I−(u) ∩Ni0 ,
just as in proposition 9 but with time reversed.

you’re at the top of page 59.



13.7. EXERCISES 119

13.7 Exercises

13.7.1 Standard Point-Set Topology

1. Let X be a topological space, A ⊂ X . Suppose that for each x ∈ A there
exists an open set U 3 x such that U ⊂ A. Show that A is open.

2. Let X be a topological space. Prove that (A) φ and X are closed (B)
Arbitrary intersections of closed sets are closed (C) Finite unions of closed sets
are closed.
3. Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is
closed in X.
4. Let A ⊂ X. Then s ∈ Āif and only if every open set U containing x intersects
A.

5. Prove that Ā = A ∪A′, where A′ =set of all limit points of A

6. Prove: A subset B of a topological space X is closed if and only if it contains
all its limit points.
7. Theorem: Every finite point set in a Hausdorff space is closed.

8. Find a homeomorphism of (-1,1) onto the real line.

9. Let f : X → Y and g : Y → Z be continuous. Show that g ◦ f : X → Z is
also continuous.

10. Show that the interval (a,b) (0,1) (and [a,b] [0,1]). " " means "homeo-
morphic".

11. Proposition: A space X is connected iff ("if and only if") the only sub-
sets of X that are both open and closed in X are the empty set and X itself.

12. Proposition: the continuous image pof a connected space is connected.

13. Proposition: Every closed subset of a compact set is compact.

14. Proposition: the continuous image of a compact space is compact.

13.7.2 Topology of Spacetime

15. Let γ be a timelike geodesic or curve, V the unit tangent vector field to γ.
Show that Va∇bV a = 0

16. Find the geodesics in R2 for the metric ds2 = dr2 + r2dθ2.
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17. Characterize all static two-dimensional spacetimes with diagonal metric
i.e. solve Einstein’s equations for ds2 = −eA(x)dt2+ eB(x)dx2. Note: recall that
spacetimes that differ only by a coordinate transformation are identical.

18. (A) Show that any curve whose tangent satisfies T a∇aT b = αT b, with α an
arbitrary function on the curve, can be reparametrized to satisfy T a∇aT b = 0.
(B) Let λ be an affine parameter of a geodesic γ. Show that all other affine
parameters of γ take the form at+ b, where a, b are constants.

19. Verify that ∂/∂φ satisfies the Jacobi equation, and that the north and
south poles are indeed conjugate points.

20. Prove that << is open, that is, if p << q in M, there are disjoint neighbor-
hoods U of p and V of q such that if p′ ∈ U and q′ ∈ V then p′ << q′.

21. Prove: (A) I+[S] is open for any set S.
(B)x ∈ I+(y) ⇐⇒ y ∈ I−(x) and x ∈ J+(y) ⇐⇒ y ∈ J−(x)
(C) I+[S] = I+[S̄]
(D) I+[S] = I+[I+[S]] ⊂ J+[S] = J+[J+[S]]

The following exercises, numbers 22-26, are "True or False". That means you
must either prove them true, or show they’re false by finding a counter-example.

22. If I−(p) ⊂ I+(q), then there is a closed trip through p.

23. If I−(p) ∩ I+(q) 6= φ, then q ∈ I−(p).

24. If the chronological futures of two points do not intersect, then neither
do their pasts.

25. If I−(p) ∩ I+(q) 6= φ, then q ∈ I−(p).

26. Let S be a nonempty subset of M. If S = I+[S] = I−[S], then S =M .

27. On the domain of a coordinate system, if V =
∑

i V
i∂i and W =

∑

jW
j∂j ,

then

[V,W ] =
∑

i,j

(

V i
∂W j

∂xi
−W i ∂V

j

∂xi

)

∂j .

Note: ∂i =
∂
∂xi
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