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Chapter 1

Special Relativity

Special Relativity was motivated by Einstein’s idea that all theories of physics
ought to be invariant under Lorentz transformations, just like Maxwell’s equa-
tions. Newton’s laws, therefore, and the usual concepts of momentum and
energy, had to be altered so as to be Lorentz invariant.

1.1 Coordinate Transformations

1.1.1 Galilean Transformations

The Galilean tranformations relate measurements of an observer O to those of
a second observer, O′, who is moving at constant velocity with respect to the
first coordinate system. These are:

t′ = t (1.1)

x′ = x− vt (1.2)

y′ = y (1.3)

z′ = z (1.4)

These equations are completely intuitive, and few would challenge them. It
can be shown that Newton’s laws are invariant under these transformations.

1.1.2 Lorentz Transformations

Einstein (and others) noted that Maxwell’s equations were not invariant under
Galilean transformations. This means that observers in different states of rela-
tive motion would get different answers for the same physical problem, obviously
an unsatisfactory state of affairs. The Lorentz Transformations leave Maxwell’s
equations unchanged. They are

t′ = γ
(

t− v
c2 x

)

(1.5)

1



2 CHAPTER 1. SPECIAL RELATIVITY

x′ = γ (x− vt) (1.6)

y′ = y (1.7)

z′ = z (1.8)

1.1.3 The Basis Theorem

The basis theorem relates derivatives in one coordinate system to derivatives in
another coordinate system. It’s really a chain rule, and will be useful in some of
the mathematical proofs. Basis Theorem Let

(

x0, ..., xn
)

and
(

y0, ..., yn
)

be
a second coordinate system. Let V represent a differential operator expressed
in the {yi} coordinate system. Then in the x-coordinate system,

V =
n

∑

i=1

V xi ∂
∂xi

Example. Use the basis theorem to convert the Laplacian from Cartesian
coordinates in two dimensions to polar coordinates. Solution: The coordinate
transformations are given by

r =
√

x2 + y2

θ = tan−1 y
x

Now apply the basis theorem, setting V = ∂/∂x, then ∂/∂y:

∂
∂x

=
∂r
∂x

∂
∂r

+
∂θ
∂x

∂∂θ =
x

√

x2 + y2

∂
∂r

− y
√

x2 + y2

∂
∂θ

Now, switching everything to polar:

∂
∂x

= cos θ
∂
∂r

− sin θ
r

∂
∂θ

For the other partial derivative operator, we have:

∂
∂y

=
∂r
∂y

∂
∂r

+
∂θ
∂y

∂∂θ =
x

√

x2 + y2

∂
∂r

+
y

√

x2 + y2

∂
∂θ

Again, switching everything to polar:

∂
∂y

= sin θ
∂
∂r

+
cos θ

r
∂
∂θ
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Next, convert the Laplacian using these operators. This is lengthy but
straightforward.

∂2

∂x2 +
∂2

∂y2 =
(

cos θ
∂
∂r

− sin θ
r

∂
∂θ

)(

cos θ
∂
∂r

− sin θ
r

∂
∂θ

)

+

+
(

sin θ
∂
∂r

+
cos θ

r
∂
∂θ

)(

sin θ
∂
∂r

+
cos θ

r
∂
∂θ

)

=

= cos2 θ
∂2

∂r2 +
sin2 θ

r
∂
∂r

− cos θ sin θ
r

∂2

∂θ∂r
+

cos θ sin θ
r2

∂
∂θ
−

−cos θ sin θ
r

∂2

∂r∂θ
+

sin θ cos θ
r2

∂
∂θ

+
sin2 θ

r2

∂2

∂θ2 +

+sin2 θ
∂2

∂r2 +
cos2 θ

r
∂
∂r

+
cos θ sin θ

r
∂2

∂θ∂r
− sin θ cos θ

r2

∂
∂θ

+

+
sin θ cos θ

r
∂2

∂r∂θ
− cos θ sin θ

r2

∂
∂θ

+
cos2 θ

r2

∂2

∂θ2 =

=
∂2

∂r2 +
1
r

∂
∂r

+
1
r2

∂2

∂θ2

1.2 Vectors and Tensors

1.3 Examples

Example 1. A Mercedes sports car passes a hitchhiker at 40 m/s. Five seconds
later, the hitchhiker spots a policecar approaching from behind at 50 m/s, 200
meters away. Find the position and speed of the policecar as determined by the
driver of the Mercedes at this time.

Solution: Apply the Galilean transformations. Let the primed coordinate
system travel with the Mercedes, the unprimed being that of the hitchhiker.
Then

x′ = x− vt = −200− 40 · 8 = −520 m

ux
′ = ux − v = 50− 40 = 10

Example 2. A beam of protons is traveling at 0.99c around a cyclotron
as measured by an observer at rest with respect to the Earth, while a beam of
antiprotons travels at the same speed but the opposite direction. What is the
speed of the protons as measured by an antiproton?

Solution: Let x′ denote the antiproton frame, with x the lab frame. Plugging
into the velocity tranformation equation yields

u′x = ux − v = 0.99c− (−0.99c) = 1.98c

So superluminal velocities are possible in old style Galilean physics!
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Example 3 An infantryman observers a British Wellington Bomber passing
overhead at 100 m/s, headed due East. One minute later, a Nazi warplane
passes one kilometer to the south, traveling northeast at 120 m/s. Find the
(A)position and (B) velocity at this time, as observed from the Wellington. (C)
What is the relative speed?

Solution: Grind with Galileo. Let the primed coordinates be those of the
bomber, unprimed those of the infantryman. Let north be the positive y-
direction, east the positive x-direction.

x′ = x− vt = 0− 100 m/s · 60 s = −6000 m

y′ = y = −1000 m

ux = 120 cos 45o = 60
√

2 m/s

uy = 120 sin 45o = 60
√

2 m/s

ux
′ = ux − v = 60

√
2− 100

uy
′ = uy = 60

√
2 m/s

Example 5: Show that the scalar wave equation is not invariant under Galilean
transformations.

Solution: We use the basis theorem to transform the derivative operators.
Example 6. Show that the Lorentz metric is invariant under the Lorentz
transformation.

Example 7. An observer O measures a flash of lightning as located at t =
1 × 10−3 s, x = 200 km, y = 50 km, and z = 2 km. A second observer, O′, is
taveling at 0.6c relative O. What does O′ measure for the coordiantes of this
event?

Solution: First, calculate the γ-factor:

γ =
1

√

1− v2/c2
=

1√
1− 0.36

= 1.25

Next, apply the Lorentz transformations.

x′ = γ(x− vt) = 1.25(200, 000− 0.6c · 10−3) = 25, 000 m

t′ = γ
(

t− v
c2 x

)

= 1.25
(

10−3 − 0.6c
c2 · 200, 000

)

= 7.5× 10−4 s
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1.4 Postulates of SR

1. Nothing can travel faster than the speed of light, c.
2. Physics is the same when viewed in all inertial frames of reference.

These two postulates are at the foundation of Einstein’s theory. The con-
stancy of the speed of light, together with the conditions that transformations
from one coordinate system to the moving coordinate system is linear in the co-
ordinates, and that the resulting transformations reduce to the Galilean trans-
formations when relative velocities are small, are sufficient to determine the
Lorentz transformations.

Special relativity, it turns out, means measurements of length and time are
dependent on the observer, a bizarre but well-tested fact.

1.5 Length Contraction

Consider a meter stick approaching a laboratory observer, O, at some uniform
speed v. An observer traveling with the meter stick, O′, will naturally measure
it to have one meter of length. The lab observer will have a different opinion.
O measures the position of both ends, at xa and xb, at the same time. Then,
taking differences of equation ??,

∆x′ = γ
(

∆x− v
c2 ∆t

)

(1.9)

∆x′ = xb
′ − xa

′ is just the proper length, called L0, while L = xb − xa = ∆x is
the length measured by O. Since tb = ta, we have

L =
L0

γ
= L0

√

1− v2

c2 < L0 (1.10)

From this, it appears that as observed by O, the moving rod is contracted. This
effect is called Lorentz-Fitzgerald Contraction, after Lorentz and Fitzgerald,
who proposed such contraction to explain the results of the Michelson-Morley
experiiment.

1.6 Time Dilation

The phenomenon of time dilation is perhaps the most famous of the quirky
predictions of Einstein’s theory. This, like length contraction, is a real effect,
and in fact has been verified by countless experiments, from millions of daily
events in particle accelerators, to the rain of cosmic ray-created muons, and even
from measurements taken in jets traveling around the world. Moving clocks run
slow.
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Again, a time difference is written down, using the Lorentz transformation.

tb′ − ta′ = γ
(

(tb − ta)− v
c2 (xb − xa)

)

(1.11)

Here, as before, O′ is moving with at v with respect to O. O measures the
interval between two events which, according to O, take place in the same
spatial location. Hence xb − xa = 0, and

∆tmoving = γ∆tproper (1.12)

∆tproperis the time measured by the observer at rest with respect to the clock.
The moving observer will measure a greater length of time between the two
events. Since γ ≥ 1, the time measured by the moving observer, O′, will be
longer than that measured by O, where the clock is at rest. The time has been
dilated, or enlarged, stretched out to a larger size.

This leads to a famous paradox, called the Twin paradox. Peter and Earl
are identical twins. Peter takes off in a spaceship, moving at an appreciable
fraction of c, while Earl remains on Earth. The clock carried in his ship, since it
is moving, runs slow, so when Peter returns years later he finds Earl has turned
into an old man, while Peter is still young.

Many people erroneously think that this discrepancy in age is the paradox,
but the real paradox is this: from Peter’s point of view, the Earth is traveling
away from him at v. Hence Earl is moving, and when Peter returns, it is Earl
who should be younger.

This paradox was resolved by noting that Peter actually changes reference
frames by accelerating up to speed, then turning around and coming back,
again undergoing accelerations. Earl, meanwhile, never changed frames. So the
situation isn’t truly symmetric. Peter did the moving, so his clock ran slow,
while Earl’s ran at the normal Earth rate. This is the standard resolution, and
it isn’t entirely satisfactory, since it would be nice to have a clear-cut calculation
that shows Peter’s clock slowing down, while Earl’s clock jackrabbits along.

1.7 Relativistic Forces

There are a couple of different approaches to defining a relativistic force. Both
will be explored here. The most obvious way is

d
dt

mua = Fa (1.13)

Here, Fa are the components of the usual force, for a = 1, 2, 3, the spatial
components only. Multiplying both sides by γ gives

d
dτ

mua = γFa (1.14)

There remains only the necessity of finding the time component. Take the inner
product of both sides with ua:

ua d
dτ

mua = γFaua
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Use the fact that
ua d

dτ
=

1
2

d
dτ

uaua =
1
2

d
dτ

(−c2) = 0

to conclude that
Faua = 0 → F0u0 = −Fiui

1.8 Relativistic Momentum and Energy

1.9 The Compton Effect

1.10 Examples

1.10.1 Postulates of SR

1.10.2 Length Contraction

1.10.3 Time Dilation

Example: Trip to α-Centauri
Peter climbs aboard his starship and travels to α-Centauri, 4.1 light years away,
traveling at 0.8c relative Earth. When he returns, how much younger will he be
than his twin brother Earl, who remained on Earth?

Solution: Finding how much Earl has aged is simple, since it uses pre-relativity.

d = vt → ttot =
4.1
0.8

× 2 = 10.25 yrs

Meanwhile, the clock in Peter’s cabin will register a proper time of

∆tproper
√

1− v2/c2
= ∆tearth = 10.25 yrs → ∆tproper = 10.25

√

1− v2/c2 =

= 10.25
√

1− 0.82 = 10.25 · 0.6 = 6.15 yrs

So Earl will be 4.1 years older than Peter.

Example: Muons from Space
A balloon at 2,600 meters of elevation measures a flux of 458 muons per second.
At sea level, the flux is only 87 muons per second. What’s the average speed of
the muons, given that their normal half life is 1.87× 10−6 s?

1.10.4 Relativistic Forces

1.10.5 Relativistic Momentum and Energy

1.10.6 Relativistic Forces

1.10.7 The Compton Effect
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Chapter 2

General Relativity

Einstein is most famous for the equation E = mc2, but his greatest contribution
is probably the theory of General Relativity, which describes gravitation in terms
of the curvature of spacetime.

9
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Chapter 3

Pre-quantum Mechanics

In this chapter, we examine some of the ideas leading up to quantum mechanics.
The most important of these is the Bohr model, which was a major breakthrough
in the understanding of the light given off by hot gases. Later, De Broglie came
up with his theory of matter waves, and Heisenberg invented his uncertainty
principle.

3.1 Planck’s Radiation Law

3.2 Photoelectric Effect

3.3 The Bohr Model

Neils Bohr, with a combination of luck and insight, assembled a classical theory
with quantum ansatz that resulted in a description of the electronic energy levels
in hydrogen and other elements. This simple model also led to an understanding
of the periodic table of the elements.

To create the Bohr Model, follow these steps. First, write down the classical
force equation for an electron in circular orbit around a proton.

−mv2

r
= −ke2

r2 (3.1)

Second, make the quantum leap, which is

L = pr = nh̄ (3.2)

There is no justification for this except that it works. Solve this for v:

v =
nh̄
mr

(3.3)

11



12 CHAPTER 3. PRE-QUANTUM MECHANICS

and substitute it back into the first equation, getting, after a little algebra,

rn =
n2h̄2

mke2 (3.4)

Here, the rn indicates that the radius depends on n, which is taken to be a
positive integer. The possible orbital radii are quantized, which means they can
take on only a countable number of discrete values, countable meaning infinite,
but in one-to-one correspondence with the integers. Next, the quantized energies
can be found. Start with the energy equation:

E =
1
2
mv2 − ke2

r
(3.5)

Solve equation 3.1 for v and substitute into equation 3.5:

E = −ke2

2r
(3.6)

Finally, substitute equation 3.4 for r in equation 3.6, and simplify, getting

En = −mk2e4

2n2h̄2 (3.7)

Often, several of the constants in the above equation are replaced by the single
quantity α, given be

α =
ke2

h̄c
= 137 (3.8)

The quantity α is called the fine structure constant, a dimensionless num-
ber that is of importance in quantum electrodynamics, in perturbation theory.
The special case of n = 1, which corresponds to the lowest energy level in the
hydrogen atom. The Bohr radius, a0, is given by equation 3.4:

a0 = r1 =
h̄2

mke2 = 5.29× 10−11 m. (3.9)

This is the approximate radius of the hydrogen atom. The energy for n = 1 is:

E1 = −mk2e4

2h̄2 = −2.178× 10−18 J = −13.6 eV (3.10)

The energy levels can then be conveniently written as

En = −13.6 eV
n2 (3.11)

Bohr’s motivation for creating this model, of course, was to explain the spectrum
of light given off by hot hydrogen. Many of the lines could now by understood as
transitions of electrons from higher to lower energy states, always accompanied
with the emission of a photon. This can be written as

∆Enj = hν =
hc
λ

= −13.6 eV
(

1
n2 −

1
j2

)

(3.12)
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Rearranging this equation gives the famous Rydberg formula:

1
λ

= R
(

1
n2 −

1
j2

)

(3.13)

where R = 1.09737×10−3A−1. This had been found empirically by Rydberg in
the previous century.

3.3.1 Corrections to the Bohr Model

There are various modifications of Bohr’s model to make it more accurate and
generally applicable. First of all, the electron in the hydrogen atom is much
lighter than the proton, but the fact that the proton moves a little should also
be taken into account. This can be effected by replacing the electron mass m
by the reduced mass µ:

µ =
memp

me + mp
(3.14)

This differs only a little from the electron mass, but gives more accurate re-
sults. Second, it would be of interest to apply this equation to atoms that are
completely ionized but for one electron. In this case, the modification consists
of replacing the charge e of the proton, wherever it occurs, with Ze, where Z
is the number of protons in the nucleus. This results in factors of Z2 in the
equations, taking into account the higher nuclear charge.

3.3.2 Alternate Method.

Another way of creating a Bohr model is as follows.

1. Write down an expression for the energy
2. Make the quantum leap, pr = nh̄, substituting for the momentum, p
3. Find r where the energy in minimized.

Example. Hot hydrogen. Calculate the wavelength

3.4 De Broglie Waves

3.5 Heisenberg Uncertainty Principle
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Chapter 4

Quantum Mechanics

Quantum Mechanics was invented in the early 1920’s by Werner Heisenberg
and Erwin Schrodinger, using different approaches. No one understands why it
appears to work so well–the motivation was to understand the light given off by
atoms, such as hydrogen, when it was heated. Heisenberg’s matrix mechanics
and Schrodinger’s wave equation were shown by Heisenberg to be equivalent,
however the wave mechanical method of Schrodinger was vastly more popular,
due to its intuitive appeal and ease of use.

4.1 The Four Postulates of Quantum Mechanics

4.1.1 Observables and Operators

Postulate 1. For anything that can be observed, called A, there is a mathe-
matical operator Â, with the eigenfunction equation

Âψ = aψ

yielding eigenvalues a that are the same as the actual observed values.

This is an amazing statement, part of the quantum faith. In the above equation,
ψ is called the eigenfunction, and the value a is the eigenvalue corresponding the
the eigenfunction. For a given observable, like Energy, Momentum, and angular
momentum, there will be a number of eigenvalues and eigenfunctions, usually
an infinite number. The ”spectrum” of eigenvalues, however, is usually discrete–
meaning only certain, separate values are obtained, rather than a continuum.
This is the difference between, say, the integers and the real line. The integers
form a discrete set of numbers, just like the different energy levels in an atom.

4.1.2 Quantum Measurement

Postulate 2. The measurement of an observable A, yielding an answer a, in a
quantum system leaves the system in the state described by the wavefunction

15
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ψa, which has eigenvalue a.

This is another article of faith. Quantum mechanical systems render prob-
abilities rather than certainties. However, once a system is measured as being
in a state ψa, it is assumed to evolve subsequently, with ψa as a starting point.
If this were not the case, all predictive power–even the inexact predication of
future probabilities, would be impossible,

This postulate is the famous ”Collapse of the Wave Function”. Systems are
thought to have no definite energy or momentum, only probable energies and
momenta, until someone disturbs the system by looking at it. Then the system
collapses into a particular state, and renders a value to the observer.

4.1.3 State Functions and Expectation Values

4.1.4 Time Development of the State Function

4.1.5 Born’s Probability Waves

4.2 Schrodinger’s Equation

The first and most important postulate of quantum mechanics is that the
Schrodinger Wave equation gives solutions that are physically meaningful. This
must be taken on faith, and on the basis of experimental evidence, since the
derivation of Schrodinger’s equation is as mysterious as is its incredible success.
We start with the classical energy, multiplied by a wave function, Ψ:

EΨ =
p2

2m
Ψ + V Ψ

Next, we perform ’operator replacement’ as follows.

E → ih̄
∂
∂t

(4.1)

~p → −ih̄∇ (4.2)

In spacetime, these can both be written elegantly as

pa → ih̄∇a (4.3)

The apparent sign difference is simply a matter of covector as opposed to vector,
and is unimportant. Now, why have we made these definitions? The main
reason is, they work. Schrodinger, who derived the equation in a different
way (replacing the wave function in the classical action with the natural log of
the wave function), chose this equation because it gave the right answers for
hydrogen. Making the replacements, we arrive at

ih̄
partialΨ

∂t
= − h̄2

2m
∇2Ψ + V Ψ (4.4)
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This is the famous Schrodinger wave equation.
The equation can be motivated somewhat by looking at plane waves. For

example, it’s evident that
Ψ = Aei(~k·~r−ωt) (4.5)

is a solution of the Schrodinger equation when V = 0. This complex wave
appears in many areas of physics and mathematics, and is at the foundation of
fourier analysis. Since the Schrodinger equation is linear, linear combinations of
solutions of this kind can be summed, and through these series, functions with
virtually any desired property can be constructed. Combined with the fact that
V is essentially a user selectable function, and it perhaps seems less unlikely that
the equation could fail to give physically useful results. Nonetheless, unphysical
solutions crop up regularly, and are dismissed. This is most glaringly the case
in the hydrogen atom.

The Schrodinger equation can be separated readily. Set

Ψ(~r, t) = e−iωtψ(~r) (4.6)

where ω = E/h̄. Plugging this into Schrodinger’s equation, carrying out the
partial derivatives, and canceling the factors of e−iωt on either side gives

Eψ = − h̄2

2m
∇2ψ + V ψ (4.7)

This is called the time-independent Schrodinger equation, and most of the time
will represent the primary point of departure.

4.3 Simple Quantum Systems in One Dimension

4.4 Particle in a Box

Consider a particle trapped in a one dimensional box with infinitely high po-
tential walls. The potential is given by

V =
{

∞of x < 0//0 0 ≤ x ≤ L
0 x > L

In the region between the walls, Schrodinger’s time-independent equation reads

− h̄2

2m
d2ψ
dt2

= Eψ (4.8)

Since V=0 in between the walls. Rearranging, this becomes the harmonic oscil-
lator equation:

d2ψ
dx2 +

2mE
h̄2 ψ = 0

For E > 0, the solution therefore reads:

ψ = A sin(kx) + B cos(kx) (4.9)

where A and B are constants. Applying boundary conditions
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4.5 Quantum Systems in Two and Three Di-
mensions

4.6 Tunneling

4.7 The Hydrogen Atom

4.8 Quantum Scattering

4.9 Fermi’s Golden Rule

4.10 Approximate Methods

4.11 Examples



Chapter 5

Relativistic Quantum
Mechanics

One of the shortcomings of Schrodinger’s Quantum Mechanics was the fact that
it was not invariant under Lorentz transformations. This is considered a serious
defect, since it seems to say that a moving observer might find some alteration
in the laws of physics. And this doesn’t make a lot of sense. For this reason,
researchers sought relativistic theories.

5.0.1 The Klein-Gordon Equation

The Klein-Gordon equation was actually discovered by Schrodinger, even before
he came up with his wave equation, but he rejected it because it didn’t give the
right spectrum for hydrogen. Starting with the energy-momentum equation,

E2 − p2c2 = m2c4

and using the standard operator substitution,

E → ih̄
∂
∂t

p → −ih̄∇
the Klein-Gordon equation is obtained:

∂2Ψ
∂t2

−∇2Ψ +
m2c2

h̄2 Ψ = 0 (5.1)

To introduce a scalar potential, V , the method is to let E → E−V , followed by
operator replacement. Using the tensor equations is somewhat preferable and
more systematic. Then there is only a single replacement:

pa → ih̄∇a (5.2)

which is substituted into the equation

ηabpapb = m2c2 (5.3)
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5.0.2 The Dirac Equation

One of the positive qualities of the Schrodinger equation is that it is first-
order in time. That means that specifying Ψ at a single moment determined
the subsequent evolution. The derivative initial condition, ∂Ψ/∂t, need not be
considered. So Dirac set out to find an equation that was first order, and which
also satisfied the Lorentz transformations.



Chapter 6

Atomic Physics

Atomic Physics is about the detailed electronic structure of the atom, taking
into account a variety of subtle effects that result in splittings in atomic spectra,
as well as explaining the regularities in the periodic table.
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Chapter 7

Nuclear Physics

Nuclear physics is the study of the nucleus of atoms and their reactions and
interactions. It turns out that quantum mechanics plays a key role in determin-
ing the structure of the nucleus, just as it had determined energy levels in the
electronic structure of atoms.

7.1 Structure of Nuclei

The nuclei of atoms contain two kinds of particles, protons and neutrons. The
protons have positive charge equal in magnitude to the charge on an electron,
while the neutrons are neutral. Outside the nucleus, neutrons decay with a
half-life of about 12 minutes, according to

n → p + e− + ν̄e (7.1)

where ν̄e is an antielectron neutrino. Protons, on the other hand, are sta-
ble against decay, apparently forever, though experiments indicated a lifetime
greater than about 1034years.

There are several important facts about nuclei of different sizes. 1. The
number of protons in a nucleus is usually about the same as the number of
neutrons.
2. The density of nuclei is approximately constant, regardless of the size of the
nucleus.
3.
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7.1.1 Liquid Drop Model

7.1.2 Shell Model

7.1.3 Collective Model

7.2 Radiation

7.3 Fission and Fusion

7.3.1 Fission

7.3.2 Fusion

7.4 Advanced Propulsion

7.4.1 Nuclear Thermal Rockets

7.4.2 Nuclear Pulse

7.4.3 Fusion Propulsion



Chapter 8

Particle Physics

25



26 CHAPTER 8. PARTICLE PHYSICS



Chapter 9

Cosmology
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