
Volume 2, Article 3
July 1999

FOCUS ISSUE ON LEGACY INFORMATION SYSTEMS
AND BUSINESS PROCESS CHANGE:

MIGRATING LARGE SCALE LEGACY SYSTEMS TO
COMPONENT- BASED AND OBJECT TECHNOLOGY:

The Evolution of a Pattern Language

A. J. O’Callaghan
Faculty of Computing Sciences and Engineering
DeMontfort University, Leicester, United Kingdom

 aoc@dum.ac.uk

LEGACY INFORMATION SYSTEMS

AND BUSINESS PRESS CHANGE

NOTE: LETTERS TO THE EDITOR FOLLOWS PAGE 39
Click here for hperlink to the Letters Page

mailto:aoc@dmu.ac.uk

Communications of AIS Volume 2, Article 3 2
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

FOCUS ISSUE ON LEGACY INFORMATION SYSTEMS

AND BUSINESS PROCESS CHANGE:

MIGRATING LARGE-SCALE LEGACY SYSTEMS TO
COMPONENT-BASED AND OBJECT TECHNOLOGY:

The Evolution of a Pattern Language

A.J. O'Callaghan

Faculty of Computing Sciences and Engineering
De Montfort University, Leicester, United Kingdom

aoc@dmu.ac.uk

ABSTRACT

The process of developing large-scale business critical software systems

must boost the productivity both of the users and the developers of software,

while at the same time responding flexibly to changing business requirements in

the face of sharpening competition. Historically, these two forces were viewed as

mutually hostile. Component-based software development using object

technology promises a way of mediating the apparent contradiction.

This paper presents a successful new approach that focuses primarily on

the architecture of the software system to migrate an existing system to a new

form. Best practice is captured by software patterns that address not only the

design, but also the process and organizational issues. The approach was

developed through four completed, successful live projects in different business

and technical areas. It resulted in a still-evolving pattern language called

ADAPTOR (Architecture-Driven and Pattern-based Techniques for Object Re-

engineering).

This article outlines the approach that underlies ADAPTOR. It challenges

popular notions of legacy systems by emphasizing business requirements.

Architectural approaches to migration are then contrasted with traditional reverse

engineering approaches, including the weakness of reverse engineering in the

face of paradigm shifts. The evolution of the ADAPTOR pattern language is

mailto:aoc@dmu.ac.uk

Communications of AIS Volume 2, Article 3 3
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

outlined with a brief history of the projects from which the patterns were

abstracted.

Keywords: Legacy system migration, object-oriented development, component-

based development, reverse engineering, software patterns, pattern languages

I.INTRODUCTION

The process of developing large-scale business critical software systems

faces twin challenges as general pressures in the global economy make

themselves felt in computing. One pressure is the need to continually boost the

productivity both of the users and the developers of software; the other is to

enable software systems to respond flexibly to changing business requirements in

the face of competitive pressure. These two forces historically were viewed as

mutually contradictory (increased productivity generally resulted in the past from

centralization and economies of scale). Component-based software development

utilizing object technology promises a way of mediating the apparent contradiction

and delivering an attack on both fronts simultaneously [Graham 1995]. However,

the movement of any large-scale business-critical system to components is

fraught with difficulty. Each such system has a development history, intimately tied

not only to its function but through that to a business and organizational context

that is always unique. Even more difficult, therefore, is the problem of generalizing

from successful practice in such a way as to reuse hard-won expertise and

develop guidelines for the successful migration of numbers of such systems in an

enterprise.

This paper presents a new approach, which has already demonstrated

success. It focuses primarily on the architecture of the software system in order to

migrate an existing system to a new form. Best practice is captured in the form of

software patterns [Coplien 1996] that address not only the design, but also the

process and organizational issues that inevitably surround such a project. The

Communications of AIS Volume 2, Article 3 4
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

approach was developed through five successful live projects in different business

and technical areas. It resulted in a still-evolving pattern language called

ADAPTOR (Architecture-Driven and Pattern-based Techniques for Object Re-

engineering) [O'Callaghan 1998b]. Although developed in the telecommunications

sector, ADAPTOR is currently being tested in both the machine-tools industry and

the defence sector, suggesting wide applicability.

II. WHAT IS A LEGACY SYSTEM?

The Oxford English Dictionary defines a legacy as "a tangible or intangible

thing handed down by a predecessor; a long-lasting effect of an event or

process". Legacy information systems are typically the targets of reverse

engineering projects. Legacy systems have been defined as stand-alone

applications built during a prior era's technology [Ulrich 1994], but they are

perhaps more widely understood as software systems whose plans and

documentation are either poor or non-existent [Connall & Burns 1993]. More

than fifteen years ago the size of the 'legacy problem' in the US was already

estimated at US$400 million resulting from the labour of more than half a million

IT professionals over the previous thirty years [Appleton 1983]. More recently it

was suggested that organizations spend US$70 billion each year to maintain an

estimated 10 billion lines and more of code [Lerner 1994].

The scale of this problem is simply not explained by the definition of legacy

systems given by either Ulrich or Connall and Burns. To take the first, if new

technology is available why have not all the 'old' systems simply been made

redundant? As for the second, if the essence of the problem is poor or missing

documentation, then why is the problem apparently worsening despite the infusion

of ISO 9001 and other quality assurance mechanisms into the field of software

development? It seems that the term ‘legacy system’ has become something of a

catch-all for any installed system that has any kind of problem. Since there is no

known general panacea that will 'cure' all these systems, it follows that only a

subset of this wide spectrum of systems comprises genuine candidates for

migration projects. The option of completely replacing an existing system is

Communications of AIS Volume 2, Article 3 5
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

always a possibility, but what is needed is a definition that aids in identifying likely

candidate systems.

MAIN SOURCES OF THE 'LEGACY PROBLEM'
The area that can be usefully addressed is best scoped by looking at the

business consequences of the recent history of IT deployment. The spread of the

PC from the mid-1980s encouraged a culture in which 'point solutions' were

developed. Departments, or even single business users within large companies,

developed individual procurement and/or software development policies to meet

their perceived needs, often on an application-by-application basis. Similar

applications running on different operating systems on different boxes became

common. Worse still, key business abstractions such as 'Customer' could be

running on different applications on the same machine at the same time, and

since these applications could not talk to each other, information integrity could

not be maintained. Subsequently, such point solutions became subject to

localized optimizations, and uncontrolled maintenance, exacerbating the position

even further.

Meanwhile successful systems simply aged, some less gracefully than

others. Jones estimates that the average rate of change of software systems is

between 5% and 7% every year, year on year [Jones 1994]. The compound

impact over a period of years is such as to degrade the original structure of the

system in an increasingly uncontrolled way.

Most crucially of all, accelerated competition in the global marketplace

rendered the corporate environment more volatile than ever before. Mergers,

takeovers, shutdowns and corporate restructuring can turn well-planned, well-

engineered up-to-date systems into obsolescences virtually overnight.

The combination of these factors lends an aspect of inertia to software or

IT systems when compared to the required agility of the enterprise that owns it.

These kinds of legacy systems are typically both large and complex. Bucken for

example, describes an organization that owns more than 1000 software

programs, with an average age of 17 years, containing an accumulated total of

140 million lines of COBOL source code [Bucken 1992].

Communications of AIS Volume 2, Article 3 6
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

A NEW, WORKING DEFINITION OF 'LEGACY SYSTEM'
Drawing on the characteristics of legacy systems described above a more

useful definition of the term 'legacy system' is as follows:

"A legacy system is a large system delivering significant business value

today from a substantial pre-investment in hardware and software that may be

many years old. Characteristically, it will have a long maintenance tail. It is,

therefore, by definition a successful system and is likely to be one that is, in its

own terms, well-engineered. It is a business-critical system which has an

architecture which makes it insufficiently flexible to meet the challenges of

anticipated future change requirements" [O'Callaghan 1996].

This working definition was adopted by the Object Engineering and

Migration (OE&M) group at De Montfort University more than two years ago to

develop criteria to judge which so-called legacy systems were suitable for

conversion to component-based or object-based architectures, and which

required different actions altogether. The definition all but rules out the type of

system described by Connall and Burns above. Crucially, it establishes the

business case as the key criteria for determining whether or not to migrate a

legacy system and identifies the software architecture as the main focus of

attention for the migration process.

The argument for this last point is established in Section III. What we can

say here, however, is that in examining the problem space we find that it is only in

small part occupied by technology. It is a mistake to see the 'legacy problem' as

purely a technical one. The essence of the problem is as much in the nature of

business requirements as it is for a 'greenfield' development. If a company in the

financial services sector, for example, wishes to sell new products but increasingly

finds its current IT investment inefficient in responding to these new requirements

then the issue is decidedly not "How do we preserve as much of the existing

system as possible?" but rather, "How do we best support the sale of new

financial products, and what is the optimum configuration of IT for this purpose?"

The solution may indeed involve new software development to replace the old

system, or it may mean simple, incremental enhancement of the old system, or a

Communications of AIS Volume 2, Article 3 7
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

mixture of both. The point is that the legacy problem is primarily a business

problem, and only incidentally a technical one, and that any solution must be

driven from the problem space. A business case must be made for each and

every proposed legacy system migration before it can proceed. In this respect,

legacy system migration can be considered as a form of forward engineering that

is actually much closer to 'greenfield' development than it is normally considered

to be, differing from it only in that it consciously 'reuses' some amount or other of

legacy software.

III. ARCHITECTURAL APPROACHES TO MIGRATION VERSUS
TRADITIONAL REVERSE ENGINEERING

The migration of legacy systems is a process of re-engineering. The

accepted definition of re-engineering is that put forward by Chikofsky and Cross

[1990, p. 14]: "the examination and alteration of the target system to reconstitute it

in a new form".

There is a particular quality to the re-engineering effort that must be

understood when it involves moving a computer system from, say, a structured

representation to an object-based one, however. A strong research tradition

utilizes reverse engineering techniques, typically based on formal methods, to

achieve restructuring of a legacy system - perhaps to move it from one language

representation to another. In its own terms this approach, in different variations,

can be shown to have achieved significant successes [e.g. Lano & Houghton

1993]. However, when a shift is being contemplated from, say, representation in a

structured language to representation in an object-oriented implementation, it is

not just the language that is changing but the development paradigm itself. An

examination of the roots of this notion leads us to the conclusion that the same is

true for component-based development in general since most current notions of

components assume object-like encapsulation [Sprott & Wilkes 1998].

Communications of AIS Volume 2, Article 3 8
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

OBJECT MIGRATION IS A PARADIGM SHIFT
Cook [Cook 1994, Cook & Daniels 1994] showed that object-oriented

development is a completely different, and essentially alien, paradigm [Kuhn

1970] to the traditional methods that preceded it. Object systems are structured

around modules that bundle data and process together. Objects encapsulate data

by the operations that query and manipulate them [Meyer 1988, Booch 1991].

Such a structure separates the software solution at a given level of abstraction

from the architecture of the underlying machine, which is, contrariwise, based on

the strict separation of data and process. By contrast, structured methods retain

that separation at even the highest levels, implicitly imposing the underlying

architecture of the machine on the overall software solution [O'Callaghan 1994].

In effect, the use of object-oriented methods imposes a significantly

different separation of concerns upon systems from those of the traditional

paradigm. In process-rich 'structured' environments,

• the analysis and design methods used,

• the notation, and

• the available syntactical constructs of implementation languages

support an attack on complexity through algorithmic decomposition, typically

through top-down, stepwise refinement [Wirth 1971]. The structured approach

produces a levelled separation of concerns from the main function through its sub-

functions, which is readily seen for example, in levelled sets of data-flow

diagrams or in the canonical, hierarchical form of a structure chart [Constantine

and Yourdon 1976]. In structured environments that are data-centred, the major

separation of concerns is between the 'stable' data structures and the 'more

volatile' processes that support them. Then the data structure itself is organized

around representations of entities [Chen 1989], each uniquely described in terms

of its attributes, and the relations between them. The essential separation of

concerns is reflected in the entity relationship diagrams that are produced. It is the

separations of concerns in a system, and the way they are represented in

software, which is the basis of the software architecture of any system. Selic

Communications of AIS Volume 2, Article 3 9
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

warns that they should be regarded as the software equivalents of load-bearing

frames in building architectures [Selic et al. 1995].

In contrast to the architectures of structured systems described in the last

paragraph, an object system can be thought of as a network of individual 'virtual

machines'. Each of these machines is responsible for manipulating its own data

set, and the overall functionality of the system is delivered by them sending

messages to each other, to invoke their special behavioural responsibilities.

Object systems are ‘architecture-free’ in that crucial sense [Cook 1994]. They are

relatively unconstrained by the machine's requirement to separate data and

process. It means object-oriented developers are free to supply a software

architecture that is more strongly shaped by the shape of the business problems

they are solving than has ever been possible with structured methods.

Graham, therefore, speaks of object-orientation as a general method for

knowledge representation [Graham 1998]. That is, objects in a run-time system

can map onto abstractions of human knowledge about the real-world problems

the system is trying to solve. Graham concurs with a long line of object theorists

and practitioners [e.g., Meyer 1988, Cook 1994, Martin & Odell 1998]. More

importantly, for legacy system migrations in the context of BPR, a software

architecture that maps closely onto the key abstractions in the problem space

offers two other key advantages:

• the possibility of being able to change at a rate close to the rate of

change of the key abstractions themselves

• the likelihood of maintaining traceability from solution to requirements

through such business-driven changes.

THE IMPORTANCE OF MODELLING THE PROBLEM SPACE
The relative failure of traditional reverse engineering techniques when

applied to the restructuring of systems to an object-based or object-oriented form

results from their tendency to ignore the changing problem space which, typically,

is driving the need for change in the first place. They are concerned with changing

the representational form of the system, which, as Brooks [1986, 1995] eloquently

reminds us is an accidental (i.e. incidental) task far removed from the essential

Communications of AIS Volume 2, Article 3 10
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

tasks of dealing with conceptual complexities. While there is no doubt that

changes in representational form from some structured programming language to

some object-oriented one are possible using these techniques, there is serious

doubt as to whether many, if any, business benefits result. For example, a recent

report from Hong Kong of a migration using reverse engineering and design

recovery techniques achieved a degree of technical success, but at a huge cost,

probably not worth the effort [Liao et al. 1998, O'Callaghan 1998a].

The raison d'être for contemplating a move to an object-based

representation for an existing system is the belief that business benefits in terms

of increased flexibility to business change, and increased productivity (through

software reuse) will result. But these benefits rely, as we have seen, on the fact

that object systems 'break' from the underlying Von Neuman architecture of the

machine and enable the possibility of building software solutions in the image of

the problem space itself. This understanding demands an approach to the

migration of legacy systems which focuses on the software architecture, and

which follows as closely as possible the well-understood forward engineering

techniques of object-oriented development, especially those of object modelling.

Such an approach draws upon research gains in this area dating back to 1991

[Jacobson 1991] and developed further by the OE&M group at De Montfort

University. A beneficial side-effect of such an approach, incidentally, is a reduced

cost of legacy migrations since specialist 'reverse engineering' skills and tool sets

are not relied upon, but rather many of the same skills and tools employed in

'greenfield' object development can be reused.

The arguments in favour of this architectural approach against a traditional

reverse engineering approach to the migration of systems to objects are

presented fully in O'Callaghan, 1997. The differences are summarized in Table 1.

Communications of AIS Volume 2, Article 3 11
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Table 1 The Differences Between 'Architectural' and Traditional Reverse

Engineering Approaches to Legacy System Migration

Architectural approaches Traditional approaches
Seek to impose a new separation of

concerns

Seek a translation from one representation to

another

Heuristic, and informal methods Formal methods

Regards the legacy system as 'living history' Regards the legacy system as archaeology

Problem-centred Solution-centred

Modelling is emphasized Rule-based transformation is emphasized

Focus is holistic, with an emphasis typically

on the human maintainers of the system (or

their organization) for input

Focus is typically on source code for input

Typically multi-paradigm or cross-paradigm Typically single paradigm

Armed with the theoretical understanding elaborated above, the OE&M

group established a track record of success in legacy system migrations in the

telecommunications sector since 1993. The same approach is currently being

tested in two different sectors, the CAD/CAM industry and the defence industry.

Those experiences, plus other successes that we are aware of have been

abstracted in the form of a software patterns language, ADAPTOR. The evolution

of this still-developing pattern language is described in Section IV.

IV. THE EVOLUTION OF THE ADAPTOR PATTERN
LANGUAGE

A migration from a system built using, say, structured methods to a

component or object-based architecture involves above all imposing a separation

of concerns upon the system that is different from the one that it was originally

designed to reflect. Since migration is always a costly and somewhat risky

venture, it tends to be enterprises that rely on software systems for their day-to-

day business operations which can present the necessary business case for such

a shift. In most cases it is changing business requirements, and the need for such

systems to be flexible and adaptable to them, which creates the need for a new

Communications of AIS Volume 2, Article 3 12
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

architecture. The worldwide telecommunications sector provides an exemplar of

such needs.

WHY LEGACY MIGRATIONS TO 'COMPONENT ARCHITECTURES' ARE
ATTRACTIVE TO THE TELECOMMUNICATIONS SECTOR

Telecommunications companies developed historically as either state-

owned or private monopolies in each country (sometimes, as in the case of the

UK, originally as part of a wider communications infrastructure such as that

provided by the UK Post Office). However, the force of global competition led to

deregulation and the rise of new start-ups, followed by mergers, takeovers, and

international operations agreements as the new market takes shape. At the same

time, new technology in cabling, cellular telephone traffic, satellite transmission,

and digital broadcasting changed the very nature of the services some of the

more traditional companies provide. Network services in the new millennium will

include more of the numerous features such as call waiting and voice mail that are

strictly related to their telephone operations, but will also involve other services

such as video on demand. While start-ups can take advantage of the latest

technology, the traditional service providers have a huge investment in software,

hardware and peopleware in systems that are 10-20 years old already. Where it is

either too expensive or too risky simply to replace such systems, they have to

cater for new, unanticipated requirements if their owners are to remain business

competitive.

Even the companies that have the luxury to be able to invest in greenfield

systems must be prepared to regard their new systems as legacy systems almost

immediately after installation. Component-based software architectures are

therefore extremely attractive to telecommunications companies. It is in this sector

that the OE&M group deployed the architectural approach to migrating legacy

systems described above. Four successful projects have been completed since

the summer of 1993. Except in the case of the first of these projects (discussed

below), commercial confidentiality agreements prevent discussion in great detail

of the systems involved or the companies that own them. However, Table 2

demonstrates that each project was in a different business area and had different

Communications of AIS Volume 2, Article 3 13
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

technical characteristics, despite the fact that all the projects lay in the same

industrial sector, i.e. telecommunications.

The common characteristic of each of these systems (the case studies

were 'live' subsets of each of them) was the need to impose a new separation of

concerns upon them, i.e. a new software architecture, in response to changing

business requirements. In each case the systems' owners made a business

decision that they needed a component-based architecture in order to meet the

challenge of ever new requirements, and this architecture implied the kind of

encapsulation that object-based systems deliver. Note however, that the

architecture did not necessarily imply an object-oriented implementation. Indeed,

the first two pioneering projects delivered a restructured system in the same base

technology in which the legacy system was originally implemented.

Table 2 Successful Telecommunications Sector Projects that Inform the
ADAPTOR Pattern Language

Year Business
Area

Business
Requirement

Technical
platform of

legacy

Target
platform

1993-5 Customer service
support

Flexible and
configurable tax
calculation

MVS/ COBOL MVS/
COBOL

1996-7 Network services
management

Flexible, extensible
support for feature
development

ANSI C, pre-ANSI
C / Oracle
(plus in-house
scripting languages)

ANSI C
/Oracle

1997-8 Resource
management

Adaptable
architecture

C / C++ C++

1997-8 Pricing and
charging of
network services

Components for
reuse

C C++

In all of these systems, irrespective of the target implementation

technology, object modelling was used to capture a description of the existing

system in its business context, describe the new architecture, and plan the

technical migration. In each case the migration itself was carried out by the client's

own developers, with the OE&M group playing a knowledge transfer role. The

particular role of OE&M group members in the project team itself differed from

Communications of AIS Volume 2, Article 3 14
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

project to project. In two projects they had a hands-on part in software design, in

another two as visiting consultants, primarily in the 'analysis' phase. All the

projects were considered to be successful in terms of their immediate technical

objectives, their medium to long-term business objectives, and in their strategic

and tactical research objectives. With each new success, new insights were

gained into what elements of the approach were common to all the projects, and

what elements were genuinely specific to each of them.

From the beginning, an objective of the OE&M group was to distill generic

guidelines for migrating legacy systems to object-based and/or component-based

architectures so that the lessons could be 'downstreamed' for all the relevant

developers in the host organization. The difficulties of supplying meaningful

abstractions so that experiences of success could be communicated with clarity

and efficiency were reported after the first project to two conferences in 1996

[Farmer et al. 1996, O'Callaghan 1996], but by this time design patterns had

made their appearance in the object-oriented community. It was decided to test

the possibility of framing the migration guidelines in terms of software patterns.

The network services project begun in the spring of 1996 was designed

specifically to establish the feasibility of using software patterns to communicate

best practice experience in the migration of large-scale legacy systems to

component-based architectures.

SOFTWARE PATTERNS
Although interest in patterns was at the time almost exclusively focused on

greenfield object-oriented design, the OE&M group's review of the literature led to

the conclusion that there was no a priori reason in theory to believe this

necessarily had to be so. Moreover, much of the theoretical inspiration for

patterns came from, as it still does, the architect of the built environment

Alexander, who has authored 253 patterns for constructing gardens, rooms,

buildings, towns and communities to express a new way of building [Alexander et

al. 1977]. Alexander is driven by the contradiction he has long observed that

traditional societies who had no architects and no engineering or scientific

discipline of architecture as such were nevertheless far more successful at

Communications of AIS Volume 2, Article 3 15
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

building 'living structures' than is modern society [Alexander 1964]. One of

Alexander's first contributions was to reject the modern split between architect

(who theorizes) and builder (who constructs, following the architect's drawings) in

favour of a combination of user (inhabitant)-centred design and an architect-

builder model in which the architect also implements [Gabriel 1996]. The central

mechanism for this ongoing partnership between the inhabitants of a living space

or a working space and the architect-builder was the pattern language. One way

of viewing a pattern language, then, is as a way of capturing and communicating

best practice - the modern equivalent of the cultural vehicles of the traditional

builders that Alexander so admires.

The pragmatic attractions of using patterns to capture and describe best

practice in an architectural approach to the migration of legacy systems were

ultimately many. They included the following:

• Patterns structure the solution according to the problem.

• They abstract and communicate successful solutions.

• They are usable in varied specific contexts.

• They are applicable to software systems in general, not just object

systems (and should therefore be applicable to legacy systems).

• They resolve non-functional (i.e., architectural) forces.

• They can be regarded as microarchitectures in their own right.

From a more theoretical aspect the practice of the use of software patterns

is strongly suggestive of some of the academic discussion current in the built

environment. Patterns attest to architecture being both a product and a process.

A building is, at its most elementary level, a construction of physical elements or

materials into a more or less stable form, as a result of which a space is created

that is distinct from the ambient space that surrounds it. Thus, every building is

both a physical and spatial transformation of the situation that existed before the

building was constructed. Bill Hillier argues that at each step complex logical and

sociological transformations are involved as well as physical ones [Hillier 1996].

The space carved out by the building is physically separated from ambient

space, but this itself implies a mutually interdependent relationship between the

Communications of AIS Volume 2, Article 3 16
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

logical notions of an 'inside' and an 'outside'. Moreover, the drawing of the

boundary also establishes a social separateness of the protected space which is

identified, typically through ownership, with an individual or group which claims

special rights over it. Hillier points out that these complex sets of physical, logical

and sociological relationships are implicit in every construction from a primitive

shelter to the most complex skyscraper. He calls complex schema of such

relationships 'configurations' and posits that the notion of architecture deals

essentially with these configurational aspects.

For Hillier, configuration is non-discursive. By 'non-discursive' he means,

we do not know how to talk about it. We can recognize or even use

configurations long before we can put a name to them. Indeed the normative

behaviour they generate seems to depend on their existence as abstract ideas at

levels other than conscious thought. Analytical knowledge is deliberately

articulated by science in order to put it at risk, so that it can be challenged by

other theories and hypotheses while the very purpose of configurational ideas

would be put at risk if articulated. Indeed we normally take configurations so

much for granted that it is only when confronted with another, culturally distinct,

set of configurational ideas that we often become aware of them. In the built

environment the use of 'standard' configurations leads to vernacular building. In

vernacular building the non-discursive aspects of building are handled

autonomically and more or less unconsciously, but architecture begins when

these concerns become the object of reflective, critical and creative thought,

when "the designer is in effect a configurational thinker" [Hillier 1996, p. 46)

 From this perspective, patterns in general, and software patterns in

particular, may be considered to be a way of making the hidden, social

knowledge of construction explicit.1 Certainly, it is clear that patterns document

what has typically gone undocumented previously. In many cases a pattern puts

into literature what an expert developer considers second nature. On a number of

occasions in our own experience, the presentation of a pattern would draw a

1 Hillier chose the term 'configuration' over 'pattern' only because he thought the
latter carried a connotation of regularity that he wanted to avoid.

Communications of AIS Volume 2, Article 3 17
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

response from an expert along the lines of "But that's always the way I do it!" or

even "That's just commonsense", while in the same workshop a junior developer

would respond along the lines of "I wish I had had that pattern when I was

working on the X problem…", implying that the junior developer had not yet

sufficient experience to acquire the configurational ideas that structured the

creative thought of the expert.

Making these ideas explicit also puts them at risk. But in a paradigm shift,

explicitness is necessary. The vernacular construction techniques of structured

methods are not the same as the vernacular of object-orientation or of

component-based development. Arguably, the cause of most failed migrations

has been the failure to understand that a different mindset is required to build

successfully with objects and/or components [O'Callaghan 1994]. This conclusion

suggests that the systematic articulation and dissemination of the non-discursive

aspects of object-oriented and component-based construction is a minimum

requirement for success. If, indeed, patterns do successfully capture these

aspects, then they can help short-circuit the otherwise lengthy learning curve that

a migration and/or development team might need to go through to acquire this

hidden social knowledge which can otherwise only be gained through hands-on

experience and learning-by-doing. In short there were good pragmatic and

theoretical reasons for having confidence in a patterns-based approach.

INITIAL EXPERIENCES IN THE USE OF 'MIGRATION PATTERNS'
In the first project that patterns were applied to (the network services

system, 1996-7, listed in Table 2) the aim was to produce a small catalogue of

loosely related design patterns, united by the fact that they were useful in

migrating legacy systems. It was expected that this would include design patterns

'mined' from the legacy system, together with object-oriented patterns reflecting

the new architecture, and, perhaps, some special 'transitional' patterns which

would be specific to the migration phase. A technique we called 'pattern panning'2

2 The term deliberately evokes analogies with gold prospecting. The more usual
ways of abstracting patterns either from source code, or from interviews with
domain experts is often called 'pattern mining' (Rising 1997). Pattern panning is

Communications of AIS Volume 2, Article 3 18
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

was utilized in which designs and design decisions were documented as they

were made during the migration phase of the development project. These

documents were then examined off-line to write candidate patterns. The candidate

patterns were drafted according to a pattern template customized to meet the

specific needs of the host organization's developers [Harries 1996] and then

presented back for peer review to developers' workshops (sometimes special

purpose, sometimes 'piggy-backed' on to the project's regular design workshops).

They were then redrafted and presented to a final validation workshop, which

included developers who were familiar with the system, but not directly involved in

the migration project. Patterns that passed through this final validation were then

included in a catalogue, which contained, besides the patterns themselves, a

graphical pattern map showing the relationships between the individual patterns.

ORGANIZATION AND PROCESS PATTERNS
The project was successful in uncovering a number of patterns, more than

was anticipated, and was highly successful in that regard. But there were also a

number of unanticipated developments:

• the use of many more existing, public domain design patterns than was

anticipated.

• the discovery of patterns similar to public domain patterns, but which

addressed a different problem.

• the need to apply patterns to non-technical areas in the migration

project (e.g. process, organization).

• the realization of a greater 'interconnectedness' between our patterns

than was anticipated.

The need to address organizational and process issues arose when at one

point a sound technical solution had to be dropped because it strayed into parts of

the system under the ownership of a different development team in the host

organization. Examination of the ownership issue showed that the software

more a form of participatory action research in which we extracted the pattern
'nuggets' from an actually flowing stream of developmental activity.

Communications of AIS Volume 2, Article 3 19
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

development team structure faithfully reflected the high-level architecture of the

team itself. Changing the architecture challenged the ownership structure. This

finding turned out to be an illustration of Conway's Law, a pattern included in Jim

Coplien's pattern language for the software development process [Coplien 1997].

Conway's Law states that, over time, "organization follows architecture; or

architecture follows organization". Once this was understood then the need to

explain to our hosts that they had to deal with the organizational barriers to a

successful technical migration led us to two ideas simultaneously:

• the idea of using patterns to describe the non-technological issues

surrounding migrations.

• the possibility, not just of a patterns' catalogue, but of a pattern

language for the migration of legacy systems.

PATTERN LANGUAGES
Gabriel, one of the members of the software patterns movement most

influenced by Alexander, writes,

"A pattern language is a set of patterns used by a process to generate

artifacts. These artifacts can be considered complexes of patterns. Each pattern is

a kind of rule that states a problem to be solved and a solution to that problem.

The means of designing a building, let's say, using a pattern language is to

determine the most general problem to be solved and to select patterns that solve

that problem. Each pattern defines subproblems that are similarly solved by other,

smaller patterns. Thus we see that the solution to a large problem is a nested set

of patterns" [Gabriel 1996, p. 46].

Schmidt, Fayed and Johnson similarly state that "When patterns are woven

together they form a language that provides a process for the orderly resolution of

software development problems" [Schmidt et al. 1996].

The possibility of there being a pattern language in the sense that

Alexander used the term for software is a controversial one, and one that the

OE&M group initially embraced with some scepticism. The basis of Alexander's

proposed partnership between the inhabitants of buildings and the architect-

Communications of AIS Volume 2, Article 3 20
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

builder was that the real 'experts' of living buildings were the people who lived in

them and worked in them. The pattern language was designed to generate 'living'

architectures through complex emergent behaviour. The difficulty is in identifying

the analogue to buildings architecture in software development. Nearly all human

beings interact with buildings, whether living in them in or working in them, most of

the waking minutes of every day of their lives. Software developers simply do not

interact with software in the same way, although Gabriel speaks of the

'habitability' of source code [Gabriel 1996, p. 11].

 Coplien suggests that the analogue is to be found, rather, in organization

and that this is true not just for software developers, but for all professions

[Coplien 1997, p. 243]. What was plain from our very first extended experience of

the use of patterns for migrating legacy systems was that the patterns we were

finding and using were highly interconnected. The use of one pattern seemed to

set the context for the use of another in many instances. In other words our

catalogue of patterns was exhibiting characteristics one might expect of an

Alexandrine pattern language. It was at that point (the end of the second project)

that the OE&M group coined the acronym ADAPTOR (Architecture Driven and

Patterns-based Techniques for Object Re-engineering) for what was designated a

candidate, embryonic pattern language. ADAPTOR is described as embryonic

because:

• it is still evolving.

• it is not yet comprehensive in its coverage of the issues of legacy

migrations.

• despite the successful use of its patterns to date, its generative character is

not yet proven.

In its history to date there is more than a suggestion that software

architecture may yet turn out to be the true analogue of the architecture of

buildings in Alexander's language. The OE&M group is actively researching the

theoretical aspects of patterns as possible explicators of the non-discursive

aspects of construction, as discussed above. If true, this suggestion is not a

complete refutation either of Gabriel's view or of Coplien's, but perhaps goes

Communications of AIS Volume 2, Article 3 21
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

some way to reconciling them. Software architecture, though not reducible to

source code is clearly strongly related to it, while Conway's Law already

establishes the parallelism between software architecture and the organization of

software developers.

THE FOUR COMPONENTS OF A PATTERN LANGUAGE DESCRIPTION
The patterns in ADAPTOR contain four components (see Figure 1):

1. the abstract pattern itself (the problem-solution-context triple);

2. the pattern template to which its description conforms;

3. the pattern writers' workshops and other peer reviews through which it

 evolves; and

4. the pattern map (see Figure 2 for a high-level map of the ADAPTOR

 language), which describes its relationship to other patterns in the

 language.

Most descriptions of patterns in the public domain include only the first two

components, but all four are necessary to the successful discovery, refinement,

and use of software patterns.

The pattern template is important. It presents a standard structure in which

the pattern documentation should be written, and in which the user of a pattern

will expect to discover its contents. No one single standard pattern template

exists. The Alexandrine [Alexander et al. 1977], Coplien [Coplien & Schmidt 1995]

and Gang-of-Four [Gamma 1995] templates are the ones most well known in the

public domain but, as mentioned above, templates can be company-specific or

even project-specific. For this reason, and because ADAPTOR reuses patterns

and even pattern languages that originated elsewhere, ADAPTOR patterns have

more than one form. In the public domain, they use a form based on Coplien's

[Coplien 1997]. This form is used in the Appendix to this paper, but in the

catalogues of the companies in which they originated they have a form based on

an in-house template. In addition, they are collected and indexed as 'thumbnails'.

This form, too, is shown in the Appendix.

Communications of AIS Volume 2, Article 3 22
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Figure 1 The Four Components of a Pattern Language Description

Patterns, when first drafted, enter the ADAPTOR language as candidate

patterns. It is necessary for them to go through a formal review and redrafting

experience that is common throughout the patterns movement: the pattern writers’

workshop. The sole purpose of the pattern writers’ workshop is to improve the

pattern as a piece of literature. Its workings are fully described in Rising [1997]. A

pattern writers’ workshop is not a validation panel, which may take place

separately. The potentially lengthy social process of peer reviews and validation

which a pattern goes through before the 'candidate' prefix is dropped is an

essential requirement for pooling the experiences of many developers, so as to

pitch the pattern at the right level of abstraction.

AN OVERVIEW OF THE ADAPTOR PATTERN LANGUAGE
The ADAPTOR patterns can be categorized in a number of ways. They

include newly discovered patterns abstracted from the four telecommunications

projects, together with some seen in evidence elsewhere. They also include

patterns already in the public domain, some in design patterns catalogues [e.g.,

 Pattern

Pattern
Template

Pattern
Map

Pattern
Writers'
Workshops

Communications of AIS Volume 2, Article 3 23
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Gamma 1995, Buschmann 1996] and others in process pattern languages that

originated elsewhere [e.g. Coplien 1997]. The existing collection of patterns

garnered from these sources already provides a high-level view of an overall

process for legacy system migration. In particular the building of the analysis

model is fairly well covered, together with some hooks into high-level and detailed

design both of the software and the organization that supports it.

Figure 2 presents a high-level view of some of the existing patterns and the

links between them. The map is a two-dimensional grid. The x-axis divides the

patterns into technical patterns, process patterns and organizational patterns; the

y-axis into concept model, high-level software architecture, and detailed design.

The patterns with bold-face names and boxes are newly discovered patterns, the

others already exist in the public domain in other sources. The arrows proceed

from a pattern that sets the context for the use of the one it points to.

The map, though it shows only a small number of the ADAPTOR patterns,

demonstrates their interconnectivity, and even at this stage of the research, a

limited generativity. Buffer the System with Scenarios maps out alternate future

contexts for the system's use. This, together with System Composite, sets the

background for use case modelling to define the interfaces of the system

components, which are themselves possibly reflections of the Shamrock pattern

(described below). These interfaces can be represented by the Façade pattern,

and/or a specialization of it, Semantic Wrapper. Both patterns mandate the

modelling of semantically rich business components. Conway's Law now comes

into operation, with each Façade being assigned to a team leader following the

Code Ownership pattern.

By now the software architecture (the chosen separation of concerns) has

helped deliver the outline, the 'scaffolding' if you will, both of the software system

and of the team that is supposed to maintain it. The use of each pattern sets the

context for the next one, without unnecessarily constraining the way in which it will

be utilized. The next steps largely concern the detail of the implementation

abstractions, which will, of course, include legacy code. At the moment the

language only deals with the interfaces of those abstractions (via Semantic

Communications
Migrating Large-S
and Object Techn

Wrapper). The next stage is to fill out the language with patterns that address

these issues.

If, as new patterns are added, the language continues to express the same

level of generativity that can be seen here, then it may become possible to speak

realistically about a pattern language for object migration. Such a language seems

sure to include all of the kinds of patterns shown in Figure 2, with strong links to

other pattern languages, and perhaps a number of mini-pattern languages

embedded within it.

Figure 2

Process
Patterns

High-
level
Architec-
ture
Model

Detailed
Design
Technical
Patterns
of AIS Volume 2, Article 3
cale Legacy Systems to Component-Based
ology by A.J. O’Callaghan

 A High-Level Pattern Map of Some ADAPTOR P

Time-ordered
Layers

Semantic
Wrapper

System
Composite

e

Scenarios
Define
Problem
Organizational
Patterns
Buffer the System
with Scenarios
Conway's
Law

Code
Get the Model
from the
People
 Shamrock
Façad

Concept
Model
 24

atterns

Ownership

Communications of AIS Volume 2, Article 3 25
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

V. A CASE STUDY REVISITED

The ADAPTOR language is currently being evaluated in the CAD/CAM

sector and also in the defence industry, as well as in a fifth project in the

telecommunications sector. Commercial confidentiality agreements prevent

disclosing detailed information about these projects, but one way of validating the

patterns as they emerge is to run them against past projects, to see if evidence of

their use can be found there. This is a form of pattern mining [DeLano 1997]. The

same technique can be used to illustrate the utility of the ADAPTOR patterns by

examining the one migration project listed in Table 2 that is already in the public

domain. British Telecom's (BT) future-proof value added tax (VAT) processor

project [Freestone 1996] used the architectural approach described above before

it was cast into a patterned form.

THE BUSINESS NEED FOR THE FUTURE-PROOF VAT PROCESSOR
BT owns a customer service system which maintains information on each

of its estimated 32 million customers (both private household and business) and

the many products and services which it supplies. Its historical monopoly on

telecommunications in the UK means that BT also happens to be the largest

single collector of VAT on behalf of Customs and Excise. Telephone bills

comprise two parts: an element for rental which is charged in advance typically on

a quarterly basis, and an element for call charges which is made in arrears. While

VAT was either zero-rated or charged at a single, constant rate (15% for a long

period in the early 1990s) its collection through telephone billing did not constitute

a major problem. But as recession loomed in the mid-1990s the Conservative

government in the UK made two decisions that dramatically altered the situation.

First, it changed the standard rate of VAT to 17.5% and then it introduced VAT on

fuel at half that rate, raising a political furore about imposing a tax on an essential

requirement for old age pensioners (OAPs).

Although BT was legally entitled to charge the new rate of VAT for both

rental and call charges in its next quarterly bills, even if part of the period covered

was when VAT was at a lower rate, its attempt to do so was a public relations

Communications of AIS Volume 2, Article 3 26
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

disaster at a time when the company was facing increased competition from cable

companies and others. BT immediately committed itself to rebating its customers

with the difference, and, indeed, fully implemented its promise. However, the

administrative cost was huge, largely because both the procedures for calculating

VAT and the data such calculations needed were scattered throughout the

customer service system. This system was already 12 years old and had been

subjected to major upgrades eight or nine times in each year of its life.

The government's decision raised the prospect of further, perhaps rather

frequent VAT changes as a tool of monetary policy. Worse still, the political

argument about VAT on fuel not only meant that different products might attract

different rates of VAT, but also meant that different types of customer might be

charged differently (e.g. exemption of OAPs). It was decided that a future-proof,

'one-stop shop' VAT processor was required, and that it should be crafted as a

reusable software component in order to test the feasibility of migrating the

customer service system incrementally to an object-based architecture.

Freestone and Wezeman [1996] of BT described this first, highly visible

and very successful project as a three-phase process for object migration. A

number of general guidelines for the migration of large-scale legacy systems were

abstracted from this small subset of the customer service system. The following

stages were involved:

• the creation of a Smalltalk prototype to gather requirements and model

the functionality of the processor.

• the mapping of the abstractions modelled into MVS/COBOL (the current

and target implementation technology of the customer service legacy

system).

• the stubbing out of references to VAT in the legacy system, and the

installation of the processor as a component within it.

PATTERNS USED IN THE VAT FUTURE-PROOF PROCESSOR
In retrospect, a number of the ADAPTOR patterns can readily be discerned

in the migration. The ADAPTOR pattern System Composite, for example, treats

any software system as a recursive aggregate of arbitrarily sized components. It

Communications of AIS Volume 2, Article 3 27
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

does not mandate any particular physical or logical characteristics of a

component, other than it exists in a composition. This approach gives maximum

freedom to the developer to impose an appropriate separation of concerns on the

system. It also implies that a large-scale system can be treated as if it were a

primitive component and vice versa. This understanding frees the developer to

utilize the same requirements gathering and modelling techniques to describe any

part of a system that could be used to describe the system as a whole.

In the case of the future-proof VAT processor, use case modelling

techniques were used to capture an understanding both of the way VAT was

currently being collected, and to explore the ways it might change. These

requirements gathering activities are examples of two process patterns: one

already in the public domain, the other only recently added to the ADAPTOR

language. The utilization of use cases to capture the 'as is' requirements reflects

pattern 22, Scenarios Define Problem in Coplien's organization and process

pattern language [Coplien 1997], but the engagement of BT's internal VAT

experts in modelling potential future scenarios reflects the Buffer the System with

Scenarios pattern. This pattern is included in full in the Appendix to this paper.

The initial modelling of the future-proof VAT processor was done without

reference to the existing representation of relevant data in the customer service

system, or indeed to any part of the legacy system other than to note that it held

information about customers and products. This scoping of the analysis model so

that it captured the key abstractions of the problem space and modelled them

separately and independently of any implementation concerns reflects the

Shamrock pattern of the ADAPTOR language. A thumbnail of this pattern can be

found in the Appendix .The stylized 'three-leaf shamrock', which gives the pattern

its name, is shown in Figure 3.

Communications of AIS Volume 2, Article 3 28
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Figure 3 The Shamrock Pattern Illustrated

Each leaf reflects a common type of architectural domain that can be found

in object-based or component-based systems, particularly information systems. In

other words, these are the kinds of concerns that are most typically separated at

the top level. The central leaf represents the problem space domain or domains

(depending on whether the problem space itself needs to be partitioned logically).

Its position in the illustration indicates that these domains form a conceptual

model which captures the key abstractions in the problem space. They map to

objects or components that directly represent them in the solution space (so-

called 'business objects' or 'business components'). A business user would

normally be able to recognize the abstractions contained in these domains, and

the relationships between them. The other two leaves contain domains that are

relevant to the software solution primarily, rather than the problem space. They

are the infrastructural domains (e.g. for concurrency, persistence, distribution,

etc.) and the interaction domains (e.g. GUIs or machine-to-machine interfaces).

Each one of these types can include one to many domains itself, as needed, and

is characteristically the concern of the designers of the software.

The point of the pattern is to underline the need to separate these concerns

as cleanly as possible, by dealing with the issues of on-screen presentations

separately from the key concepts, for example. This separation is exactly what

was done in the future-proof VAT processor case study. By postponing

Concept
Domains

Interaction
Domains

Infrastructu
ral

Problem space

Solution space

Communications of AIS Volume 2, Article 3 29
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

consideration of the representation of the key VAT abstractions in software (to

phase 2), and of their implementation and interfacing to other components in the

customer service system (phase 3), the development team was able to capture

the essence of the business problem by working with the users. The software

development was driven by the business instead of the other way round.

A number of other patterns are reflected in the case study, but here we will

mention just two more. The prototype used to capture the business problem and

validate the proposed solution was a Smalltalk prototype that made full of use of

its encapsulation, inheritance, polymorphism, and other features. Most of these

language features do not exist in MVS/ COBOL, the target implementation

technology. A major design decision was to create Policy objects to abstract away

the complexity of the different permutations for taxing customers and products,

and even for rounding figures after calculation. In retrospect it is clear that these

objects played roles which are recognizable in the Mediator and Strategy patterns

[Gamma 1995]. More generally, both the prototype and the live solution made use

of a pattern called Time-Ordered Layers (see Appendix) even though they were

necessarily different implementations. This pattern from the ADAPTOR language

calls for components with similar change rates to be grouped together, with the

slower changing 'layers' constraining the faster ones to limit the 'shearing effects'

in a system of components being changed with different frequencies.

V. CONCLUSION

The experience of four successful migration projects in five years clearly

demonstrated the importance of

• focusing on software architecture (the partitioning of a system according

to a specific separation of concerns) and on

• achieving a strong correspondence between the key abstractions in the

problem space and software components in the solution space.

Flexible architectures that can support reuse and at the same time be

flexible to business requirements must necessarily be shaped by the vocabulary

Communications of AIS Volume 2, Article 3 30
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

of the problem domain. To do so requires the conscious and explicit use of object

modelling methods.

Expertise in shifting legacy systems to new paradigms is buried in the

folklore of software engineering. Patterns offer a way of capturing and

communicating best practice in migration projects, just as much as they do for

object-oriented design. A number of such patterns have been accepted and are

now in use in the telecommunications sector. 'Migration patterns' seem to

demonstrate a high connectedness and interdependence, including between

design, process, and organizational patterns. By documenting such patterns, the

host organization captures elements of the configurational aspects of design

which otherwise go unreported. The documentation makes explicit knowledge

that may be critical for future maintainers in understanding why one of a number

of possible design solutions was chosen. It also shortens the learning curve of

less experienced developers by providing exemplars of best practice. Finally, by

utilizing such patterns as guidelines, the considerable risk involved in each

subsequent migration of a legacy system is reduced substantially.

ADAPTOR is an evolving, candidate pattern language for the migration of

legacy systems. It continues to grow and evolve, exhibiting some of the

characteristics of an Alexandrine pattern language. As yet it has neither the

coverage nor the generative power to be considered a full pattern language.

Research into the theoretical aspects of patterns and pattern languages, in

particular their relationship to theories of 'social knowledge' and non-discursivity in

design, is still being carried out by the author, and by De Montfort University's

OE&M group. In the meantime, further live industrial-strength case studies and

projects will fully test out and either validate or invalidate the potential of

ADAPTOR as a genuine pattern language. Its catalogue of existing patterns,

considered as largely 'stand-alone' patterns, continues to be effective in its own

right and is being applied to sectors other than the telecommunications industry in

which it originated.
Editor’s Note. Christopher Holland served as Editor for this article. It is part of the Focus Issue on
Legacy Systems and Business Process Change The article was fully refereed. It was received on

Communications of AIS Volume 2, Article 3 31
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

February 25, 1999 and published on July 30, 1999. The manuscript was with the author for
approximately 3 weeks for 2 revisions.

LIST OF ACRONYMS
ADAPTOR Architecture-Driven and Patterns-based

Techniques for Object Re-engineering

BPR Business Process Re-engineering

BT British Telecom

CAD/CAM Computer Aided Design/Computer Aided

Manufacturing

CBD Component Based Development

OAPs Old Age Pensioners

OE&M group Object Engineering and Migration group

OT Object Technology

REFERENCES

Alexander, C. (1964) Notes Towards a Synthesis of Form, New York:

Oxford University Press.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King

and S. Angel (1977) A Pattern Language, New York: Oxford University Press

Appleton, D. (1983) "Law of the Data Jungle", Datamation, October, 29(10):

225-30

Booch, G. (1991) Object-oriented Design with Applications, Redwood City,

CA:Benjamin/Cummins

Brooks, F.P. Jr. (1986) "No Silver Bullet - Essence and Accident in Software

Engineering" in H.-J. Kugler (ed.) Information Processing '86, Amsterdam: Elsevier

Science (North Holland), pp. 1069-76.

Brooks, F.P. Jr. (1995) " 'No Silver Bullet' Refired", The Mythical Man

Month, 2nd ed. Reading, MA: Addison Wesley

Communications of AIS Volume 2, Article 3 32
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Bucken, M. (1992) "Travellers Preserving Programming Pillars; Insurance

Giant Pushes Reengineering Pilot Successes to IS Skeptics”, Software Magazine,

October, 12 (14): 48

Buschmann, F. R. Meunier, H. Rohnert, P. Sommerlad and M. Stal (1996)

Pattern-Oriented Software Architecture: A System of Patterns, Chichester,

England: John Wiley and Sons

Chen, P. (1989) "Entity Relationship Model: Towards a Unified View of

Data", ACM Transactions on Database Systems, 1 (1)

Chikofsky, E. and J.H. Cross II (1990) “Reverse Engineering and Design

Recovery: A Taxonomy", IEEE Software, January, 7 (1): 13-17

Chomsky, N. (1957) Syntactic Structures, The Hague: Mouton

Connall, D. and D. Burns (1993) "Reverse Engineering: Getting a Grip on

Legacy Systems", Data Management Review, October: 24-7

Constantine, L. and E. Yourdon (1976) Structured Design, Englewood Cliffs,

NJ: Yourdon Press, Prentice Hall

Cook, S. (1994) "Analysis, Design, Programming: What's the Difference?" in

A.J. O'Callaghan and M. Leigh (eds) Object Technology Transfer, Henley-on-

Thames, England: Alfred Waller, pp. 55-64

Cook, S. and J. Daniels (1994) Designing Object Systems, Englewood

Cliffs, NJ: Prentice Hall

Coplien, J.O. (1996) Software Patterns, New York: SIGS Books

Coplien, J.O. (1997) "A Generative-Development Process Pattern

Language" in L. Rising (ed.) The Patterns Handbook, New York: SIGS Books, pp.

243-300

Coplien, J.O. and Schmidt D. (1995) Pattern Languages of Program Design,

Reading, MA: Addison Wesley

DeLano, D.E. (1997) "Patterns Mining" in L. Rising (ed.) The Patterns

Handbook, New York: SIGS Books, pp. 87-96

Farmer, R.W., A.J. O'Callaghan, L.T. Harries and N.K. McBride (1996)

"Dealing with Legacy Systems and Legacy Culture", Workshop, Object Technology

'96 Oxford, England

Communications of AIS Volume 2, Article 3 33
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Freestone, D. and C. Wezeman (1996) "Object Lesson: Changing Legacy

Systems" in A.J. O'Callaghan (ed.) Practical Experiences in Object

Technology, Cheltenham, England: Stanley Thornes

Gabriel, R. P. (1996) Patterns of Software - Tales from the Software

Community, New York: Oxford University Press

Gamma E., R. Helm, R. Johnson and J. Vlissides (1995) Design Patterns:

Elements of Reusable Object-Oriented Software Reading, Mass: Addison-Wesley

Graham, I. (1995) Migrating to Object Technology, Wokingham, England:

Addison Wesley

Graham, I. (1998) Requirements Engineering and Rapid Development,

Wokingham, England: Addison Wesley

Hammer, M. and J. Champy (1993) Reenginering the Corporation: A

Manifesto for the Business Revolution, New York: Harper Collins

Harries, L.T. (1996) "Towards a Catalogue for Patterns", Confidential

Technical Report, Object Engineering & Migration Group, School of Computing

Sciences, De Montfort University, Leicester, UK

Hillier, B. (1996) Space is the Machine, Cambridge: Cambridge University

Press

Jacobson, I. and F. Lindstrom (1991) "Re-engineering of Old Systems to an

Object-Oriented Architecture", Proceedings of OOPSLA '91 New York: ACM Press

Jones, T. (1994) Assessment and Control of Software Risks, Englewood

Cliffs, NJ: Yourdon Press, Prentice Hall

Kuhn, T.S. (1970) The Structure of Scientific Revolutions, second edition,

Chicago, IL: University of Chicago Press

Lano, K. and H. Houghton (1993) Object-oriented Specification Case

Studies, Hemel Hempstead, England: Prentice Hall

Lerner, M. (1994) "Software Maintenance Crisis Resolution: The New IEEE

Standard", Software Development, August, 2(8): 65-72

Liao, S.Y., P. Shao and W.H. Tsang (1998) "Experience Report: SSADM-

Designed System to Object-Oriented System", Journal of Object-Oriented

Programming, February: 38-48

Communications of AIS Volume 2, Article 3 34
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Martin, J. and J. Odell (1998) Object-Oriented Methods: A Foundation (UML

Edition), Englewood Cliffs, NJ: Prentice Hall

Meyer, B. (1988) Object-oriented Construction, first edition, Englewood

Cliffs, NJ: Prentice Hall

Meyer, B. (1996) Object-oriented Construction, second edition, Upper

Saddle River, NJ: Prentice Hall

O'Callaghan, A.J. (1994) "Object Skills: Why, What and How" in A.J.

O'Callaghan and M. Leigh (eds) Object Technology Transfer, Henley-on-Thames,

England: Alfred Waller, pp. 3-30

O'Callaghan, A.J. (1996) "Legacy Systems, Legacy Culture: Crossing the

Great Divide", Proceedings of ObjectExpo Europe, September

O'Callaghan, A.J. (1997) "Object-oriented Reverse Engineering",

Application Development Advisor, 1 (1): 35-9

O'Callaghan, A.J. (1998a) "Perverse Engineering", Application Development

Advisor, 1 (5): 56-60

O'Callaghan, A.J. (1998b) "ADAPTOR: A Pattern Language for the

Reengineering of Systems to Object Technology", IEE Informatics Division

Colloquium on Understanding Patterns and their Application to Systems

Engineering, Digest No. 98/308, London, 28 April

Rising, L. (ed.) (1997) The Patterns Handbook, New York: SIGS Books

Schmidt, D., M. Fayad and R. Johnson (1996) Guest editorial

Communications of the ACM Special Issue on Software Patterns 39 (10)

Selic, B., G. Gullekson and P.T. Ward (1995) Real-time Object-oriented

Modeling, New York: Wiley

Sprott, D. and L. Wilkes (1998) Component-Based Development:

Application Delivery and Integration Using Componentised Software, Hull,

England: Butler Group

Ulrich, W. (1994) "From Legacy Systems to Strategic Architectures",

Software Engineering Strategies, March/April, 2(1):18-30

Wirth, N. (1971) "Program Development by Stepwise Refinement",

Communications of the ACM, 14(4): 221-7

Communications of AIS Volume 2, Article 3 35
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

APPENDIX
Selected Excerpts from the ADAPTOR Patterns Catalogue
The patterns below are reprinted in the form in which they appear in the

ADAPTOR pattern catalogue.

BUFFER THE SYSTEM WITH SCENARIOS

Problem: If business requirements shape software architecture, but the business
context is volatile, how do you start constructing a software architecture?

Context: Main functional requirements have been specified, possibly in an implied
rather than explicit, overall business context stretching ahead over time.

Forces
All significant software systems are predictions: all predictions are wrong.
- Prioritization of requirements is typically dictated, in the final analysis, by the

business context the software system serves, but in the first analysis there are
usually a host of hidden assumptions underlying the business perspective
itself.

- A software system built to support only one perspective for the business will
almost certainly prove to be brittle to change.

- A software system that tries to meet the requirements of all possible scenarios
will almost certainly suffer 'analysis paralysis' and will be too complicated
and/or inefficient to deliver and use.

Solution
Draw on the expertise of business planners, marketeers and domain experts to
extract 3 -7 'alternative' business perspectives to the 'main' one around which the
company's operations are being planned. Name the scenarios, write them down in
concise and precise terms and extract the key impacts that the eventuality of each
scenario would have for the system. Develop an optimal architecture with
sufficient flexibility to allow it cope with any of these scenarios should they
develop for real.

Resulting Context
A minimum gain is that the environment which sets the context for the use of the
system is better understood by the developers including, crucially, an
understanding of the key factors impacting upon its business scope. This lays the
basis for the development of a more adaptable software architecture, flexible to
major business changes. The use of this pattern sets the context for the use of the
Time-Ordered Layers pattern.

Communications of AIS Volume 2, Article 3 36
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Rationale
Scenario buffering is an established technique in the architecture of the built
environment for scoping new office buildings and major refurbishment. Enabling
techniques such as use cases, role-modelling (e.g. OORAM) and task scripts (e.g.
in SOMA) are already wide spread in object-oriented software development, and
there is already existing usage of adapted versions of these techniques (e.g.
'Change Cases') to explore future scenarios. Buffer the System with Scenarios is
related to Scenarios Define Problem in Jim Coplien's Generative Development-
Process Pattern Language.

(Note: the pattern template used here follows the form of Coplien's Generative
Development-Process Pattern Language referred to above.)

TIME-ORDERED LAYERS

Problem: How is the high-level structure of a system best organized for adaption
in the long term?

Context: The business and/or technical environment into which the system is to
be deployed is understood to be volatile over time, and will require as yet
unspecified changes to be made to the system.

Forces
- Change is the only constant in a long-lived system.
- Structural stability is a requirement of long life.
- Different aspects of the system are impacted by different kinds of change
requirements (e.g.
business, technical, environmental, legal, etc.).
- Different elements of a system change at different rates.
- Change effects need to be localized to minimize cost and effort "ripple effects".

Solution
Organise the system into layers such that the components of each layer have
similar lifespans and/or change rates. Each layer should be distinguishable from
the others on the basis of the expected change rates of its components. Design
the 'permanent' and slowest-changing layers first and proceed in a time-ordered
manner, moving to the next slowest layer and so on.

Resulting Context
A system layered according to the different change rates of its components
localizes the effects of change. "Slower-moving" layers constrain the design of
those with faster change rates, resulting in a system which is stable but flexible
both to different kinds of change, and to changes with differing frequencies.

Communications of AIS Volume 2, Article 3 37
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Rationale
Time-ordered layering is a well-established technique in office building design
enabling the flexible utilization of buildings with say, sixty-year life spans, so that
services (electrical wiring, plumbing) can be overhauled every seven years on
average, but office space altered as frequently as daily if required (Duffy 1990). It
is based on the observation, also seen in biology (O'Neill 1986) that elements with
similar life-spans often form cohesive systems and subsystems which respond to
similar kinds of change forces. In the development of commercial information
systems a well-known precept is to design the data model first, on the basis that it
is less volatile than process (e.g. Howe 1983). Similarly, the well-known three
and n-tiered client/server architectures can be seen to observe principles of time-
ordering.

References
Duffy, F. (1990) "Measuring Buildings Performance", Facilities, May
Howe, D. R. (1983) .Data Analysis for Database Design, Edward Arnold, London,
England
O'Neill, R.V. et al. (1986) A Hierarchical Concept of Ecosystems, Prentice Hall,
Englewood Cliffs, NJ

Communications of AIS Volume 2, Article 3 38
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

Thumbnails of Some Key ADAPTOR Patterns
The patterns below are presented in the form in which they appear in the

ADAPTOR pattern catalogue.
System Composite. This pattern is an analogue of the Composite design pattern
in the Gamma catalogue. It is the most fundamental of the patterns – one which
creates the context for the other patterns. System Composite views all systems as
recursive aggregates being made up of subsystems of components and
connectors. These subsystems can themselves be treated as systems in their
own right. As with the Gamma Composite the power of the pattern is that these
aggregates can be treated in the same way as system primitives. This permits
system-level modelling techniques to be used at arbitrarily recursive depths in any
large-scale system. System Composite is a pattern discovered by the Object
Engineering and Migration group at De Montfort University.

Scenarios Define the Problem. This pattern exists in Jim Coplien’s generative
software development pattern language. The pattern describes the utilization of
Use Cases or Task Scripts to capture interractions between external “actors” and
the system to both capture functional requirements and drive the extraction of
candidate classes etc. Actors can be humans, external systems or, applied
recursively, other subsystems. The significance of using this pattern in the context
set by System Composite is that it opens the way for Object-Oriented Analysis
modelling of the problem space, including that part of it occupied by the legacy
system. The use of similar techniques to forward engineering of object systems is
fundamental to the approach described by ADAPTOR.

Get the Model from the People. This is a process pattern discovered in
migration work done at BT by the Object Engineering and Migration group at De
Montfort University. It was published at the first TelePlop (Telecommunication
Pattern Languages of Programs) workshop at OOPSLA ’96. It focuses on the
notion that system maintainers hold in their heads and in their work culture
valuable knowledge about the legacy system which is not held documented
elsewhere. Get the Model from the People is actually itself the entry point into a
small, self-contained pattern language.

Shamrock. This pattern is a recent addition to ADAPTOR. It is based on the
observation that most object-oriented information systems rest on a domain
structure in which the domains can be classified into three kinds: concept
domains, interaction domains and infrastructure domains. In conjunction with
Scenarios Define the Problem and Get the Model from the People, this pattern
can be used in early analysis to shape the high-level topology of the migrated
system.

Façade. Façade is a Gamma pattern which describes an object which sits on the
logical boundary between two subsystems. It presents a single interface of a

Communications of AIS Volume 2, Article 3 39
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

subsystem to its clients, delegating requests for services of the subsystem to the
actual objects (or other software entities in the case of a legacy system) which
implement the requested behaviours. Façade is fundamental to the migration of
legacy systems, allowing as it does software on either side of the façade to evolve
independently.

Semantic Wrapper. This pattern can be considered to be one that implements
Façade in a legacy system context. The basic notion is that classes which exist to
access legacy code should differ from other objects only in their implementation
details. The interface they present to the rest of the system should capture and
present abstract behaviours which have semantic content.

 ABOUT THE AUTHOR
Alan O'Callaghan is Senior Lecturer at De Montfort University, Leicester in

the United Kingdom. He has been a national committee member of the British

Computer Society's Object Oriented Programming and Systems (BCS OOPS)

specialist group since 1993, and is also on the Pattern Languages of the United

Kingdom (PLUNK) co-ordinating committee. He has edited two books on object

technology, and is a regular columnist for Application Development Advisor on the

migration of legacy systems. His research interests include object technology,

software architecture, software patterns and the migration of legacy systems to

componentized software.

Copyright © 1999, by the Association for Information Systems. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and full citation on the first page. Copyright for components of this work owned by others
than the Association for Information Systems must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office,
P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from ais@gsu.edu.

mailto:ais@gsu.edu

From: Ashley D. Lloyd
Management School
University of Edinburgh

To the Editor of CAIS:

I believe there is value in reading our paper BUSINESS PROCESS AND
LEGACY SYSTEM REENGINEERING: A Patterns Perspective (by Lloyd, Dewar,
and Pooley, Communications of AIS Vol. 2, No. 24) together with O’Callaghan’s
paper Migrating Large-Scale Legacy Systems to Component-based and Object
Technology: The Evolution of a Pattern Language. Both papers promote Patterns
as a means of capturing knowledge about the reengineering of legacy computer
systems, both view the legacy issue as primarily a business problem, and both
recognise that different information is required by different participants in the
reengineering process.

The papers however differ in a number of important respects. O’Callaghan’s
definition of a legacy system is more restrictive and focusses on large-scale
systems. Our definition could apply to a system of any size, age, or value, though
it does recognise that reengineering is not the only solution to a legacy problem.
Our paper also recognises that a ‘large-scale’ problem can emerge through the
‘intra-structure’ coupling of smaller legacy systems – a coupling which for many
smaller systems is the business process itself.

O’Callaghan recognises the need to apply patterns to non-technical areas, but
does not explicitly support communication of concepts or priorities between the
‘business’ and ‘technical’ domains, or between different hierarchical levels in an
organisation. We feel that such communications is critical in assisting balanced
decision making and address this problem through embedding generic concepts
of competitive advantage within the patterns themselves - an area that is
discussed in detail within our paper.

LETTERS TO THE EDITOR

It should be remembered that both papers recognise the emergent nature of the
patterns field, and that part of the validation process for patterns and the
methods by which they are recorded and used is publication. Neither paper
claims to provide answers to all the questions they raise, and in this light, we
welcome comments on either paper.

Response from:
Alan O'Callaghan
DeMontfort University

To the Editor of CAIS:

CAIS is to be congratulated on recent publication of two papers focusing on the
use of patterns in legacy systems re-engineering. I welcome in particular
Business Process And Legacy System Reengineering: A Patterns Perspective
(by A.Lloyd, R. Dewar and R. Pooley, CAIS Vol 2. no. 23) as a complement to
my paper Migrating Large-Scale Legacy Systems To Components And Object
Technology: The Evolution of a Pattern Language (Vol.2 no. 3). Together they
expose an exciting new area of research for Computing Scientists, Software
Engineers, Information Systems Engineers, and Business Analysts alike. The
papers hold in common, I believe, a concern for developing communication
between the different stakeholders involved in a legacy re-engineering project; in
advocating the primacy of assessing business need both in assessment of the
problem and the provision of the solution; and in utilising a specifically
"Alexanderian" approach to the identification of potential patterns.

In the comments on my own paper that Ashley Lloyd presented in his letter to the
editor the following differences are highlighted:
- my own definition is of a legacy system is more restrictive and focuses on large-
scale systems
- the Lloyd, Dewar and Pooley paper recognises that, presumably at enterprise-
level, large-scale legacy problems can emerge as a result of coupling between
smaller legacy systems which make up a business process
- the O'Callaghan paper does "not explicitly support the communication of
concepts or priorities between the business and technical domains"

Based on a reading of the paper all three points are valid, though I would add
here the qualification that the ADAPTOR pattern language as a whole does
attempt to deal with issues in the last of them, albeit in a different way from the
Lloyd et al. paper. A candidate pattern 'Archetype' which is not reflected in my
paper, but is an ADAPTOR pattern, stresses for example the need for the core
building blocks of a software architecture to reflect business abstractions. The
first two points Lloyd makes, are I think, more important because they reveal the
key differences in the contributions being made by the two research projects.
There is an emphasis on managerial issues in the Lloyd et al patterns which can
be seen in the'Middleware', ' War Room' and 'Work Shop' patterns in particular.

These are illustrated by issues that can emerge when dealing with vendors of
software products. In other words the scope of their patterns includes the tactical
problems that users have to deal with in dealing with a system, or a number of
systems that make up a legacy. Such patterns, whose validity I fully accept, are
beyond the existing scope of my own work. ADAPTOR has sought to concern
itself with the strategic issue of how a software architecture can be developed, in
the context of existing IT investment such that it can be more generally be made
flexible to business change. The ADAPTOR patterns are therefore certainly more
restrictive in scope in the sense of this focus on the software architecture, but are
simultaneously more broad in the sense that they deal with this issue of
architecture at a strategic level. The difference in the working definitions are
largely explained by this difference in focus. It seems likely that any mature
pattern language worthy of the name will need to include elements from both
these axes of research if it is to be sufficiently comprehensive to be truly
generative.

Lloyd is quite right to remind your readers of the emergent nature of the patterns
field. Within the 'patterns community' some important debates are beginning to
take place. One of these has to do with the significance of patterns as "stand
alones" versus pattern languages. The September/October issue of IEEE
Software, for example, focuses on Software Architecture and includes a Guest
Editorial by Jim Coplien. He suggests that the advocates of pattern languages
implicitly embrace a notion of 'architecture' which evolves through piece-meal
growth and are therefore hostile to the received wisdom in IT of architectures
defined as master plans or detailed blueprints contained in (often voluminous)
design documentation. Alexander is not only quoted, but his speech to the ACM
OOPSLA '96 conference in San Jose California is reprinted in full. From this
perspective the 'Design Patterns' contained in the famous Erich Gamma et al.
book might be considered "degenerate" because, valuable though they are, they
are mainly pieces of reusable design structure. Because they are not elements of
a language they are not, and cannot be, generative. There is no sense of
architectural vision that unites them.

ADAPTOR explicitly embraces the idea that patterns need to be seen as part of a
pattern language if they are to deliver their full potential. I personally accept the
broad proposition that Coplien has put forward about the relationship between
pattern languages and architecture. Pattern languages for software development
will have to go beyond the scope of Gamma et al. design patterns (a point which
is strongly made in both papers, incidentally), and seek a level of
comprehensiveness (in scope) and interlinking which has not yet been achieved
anywhere in our related disciplines. I hope CAIS readers will recognise that the
two patterns papers are, taken together, ground-breaking contributions to that
development. January 9, 2000

Communications of AIS Volume 2, Article 3 40
Migrating Large-Scale Legacy Systems to Component-Based
and Object Technology by A.J. O’Callaghan

 EDITOR
 Paul Gray

Claremont Graduate University

AIS SENIOR EDITORIAL BOARD
Henry C. Lucas, Jr.
Editor-in-Chief
New York University

Paul Gray
Editor, CAIS
Claremont Graduate University

Phillip Ein-Dor
Editor, JAIS
Tel-Aviv University

Edward A. Stohr
Editor-at-Large
New York University

Blake Ives
Editor, Electronic Publications
Louisiana State University

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
University of California at Irvine

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
Universityof Hawaii

CAIS EDITORIAL BOARD
Steve Alter
University of San
Francisco

Barbara Bashein
California State
University

Tung Bui
University of Hawaii

Christer Carlsson
Abo Academy, Finland

H. Michael Chung
California State University

Omar El Sawy
University of Southern
California

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University, Canada

Sy Goodman
University of Arizona

Chris Holland
Manchester Business
School, UK

Jaak Jurison
Fordham University

George Kasper
Virginia Commonwealth
University

Jerry Luftman
Stevens Institute of
Technology

Munir Mandviwalla
Temple University

M.Lynne Markus
Claremont Graduate
University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland,
New Zealand

Seev Neumann
Tel Aviv University, Israel

Hung Kook Park
Sangmyung University,
Korea

Dan Power
University of Northern Iowa

Maung Sein
Agder College, Norway

Margaret Tan
National University of
Singapore, Singapore

Robert E. Umbaugh
Carlisle Consulting
Group

Doug Vogel
City University of Hong
Kong, China

Hugh Watson
University of Georgia

Dick Welke
Georgia State University

Rolf Wigand
Syracuse University

Phil Yetton
University of New South
Wales, Australia

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Colleen Bauder
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

