

Raj Jain The Ohio State University Columbus, OH 43210 Jain@CIS.Ohio-State.Edu

These Slides are available on-line at:

ttp://www.cis.ohio-state.edu/~jain/talks/h_aipwd.hti io State University Raj.

1

Stack Debate: To SONET or Not to SONET?

Why we have Multi-Layer Stack?

What are the Problems with Multi-layer Stack?

P over DWDM Node Architecture and Issues

Virtual Topology Issues

Multiprotocol Lambda Switching

P/MPLS over DWDM

io State University

Raj.

Stack Debate

io State University

Simple Data Link

⁻raming: How to tell where the frame begins and en Γwo methods:

- **•** HDLC: 01111110 Flag
 - Need byte stuffing
 - Arbitrary increase in data rate
 - Need byte-level processing \Rightarrow slow

• ATM: Header error check. Hunt and resync. SDL: Use HEC plus length (since variable size bayload)

SONET Functions

Clock Synchronization Rate Multiplexing/Traffic Grooming Rate Division/Inverse multiplexing Fault Tolerance Signal trace Error Monitoring Fault Isolation \Rightarrow Dual Ring Localized Decision \Rightarrow Fast Restoration

Multi-Layer Stack: Why?

- Speed: $\lambda > \text{SONET} > \text{ATM} > \text{IP}$ $\Delta \text{TM} < \text{OC-12}, \text{IP} < \text{OC-3}$ $_\text{ow}$ speed devices \Rightarrow Not enough to fill a λ ΔSONET (1 λ) limited to 10 Gbps Distance: End-system, Enterprise backbone, Carrier Δccess , Carrier Backbone, Core Δome unique function in each layer \circ ATM = Access/Integration/Signaling/QoS/TM
- SONET = Mux/Transport

Multi-layer Stack: Problems

- ncreasing Bandwidth
- \Rightarrow Core technologies move towards the edges
- Gigabit Routers \Rightarrow No need for grooming One router port should be able to use all resources. Functional overlap:
- Multiplexing: DWDM $\lambda = \Sigma$ STM = Σ VC = Σ Flows = Σ packe
- Routing: DWDM, SONET, ATM, IP
- QoS/Integration: ATM, IP
- Static division of bandwidth in SONET good for continuous traffic not for bursty traffic.

io State University

Raj.

[ultilayer Stack Problems (Con

Failure affects multiple layers:

- Fiber $\Rightarrow 64 \lambda \Rightarrow 160$ Gbps = 1000 OC-3 $\Rightarrow 10^5$ VC
- $\Rightarrow 10^8$ Flows

Restoration at multiple layers:

 $\mathsf{DWDM} \Rightarrow \mathsf{SONET} \Rightarrow \mathsf{ATM} \Rightarrow \mathsf{IP}$

 $\text{SONET} \Rightarrow 50\%$ lost = Inefficient Protection

 $SONET \Rightarrow$ Manual (jumpers) \Rightarrow Slow provisioning Need Bandwidth on all rings \Rightarrow months/connection Bandwidth reserved during setup

Any layer can bottleneck

⇒ Intersection of Features + Union of Problems ^{io State University} Raj

P Directly over DWDM: Why?

P ⇒ revenue OWDM ⇒ Cheap bandwidth P and DWDM ⇒ Winning combination Avoid the cost of SONET/ATM equipment P routers at OC-192 (10 Gb/s) ⇒ Don't need SONET multiplexing Coordinated restoration at optical/IP level Coordinated path determination at optical/IP level SONET Framing can remain for error monitoring Fwo parts of a layer: Framing + Protocols

Each optical node will be an IP addressable device Will implement OSPF/RIP/BGP, Protection, Wavelength Switching, QoS io State University Raj.

IP over DWDM: Issues

Routing Wavelength Assignment Algorithms Cheaper High-Speed Routers Fopology design Algorithms Wavelength conversion devices Packet Switching Architecture Protection schemes Inverse multiplexing for higher speed pipes QoS Multicast

Virtual Topology Issue

Juplication between PNNI and OSPF \checkmark irtual topology \Rightarrow n² scaling problem \circlearrowright olutions:

○ IP Switching ⇒ Make every switch a router
 ○ MPLS ⇒ Make every switch an LSR

io State University

Raj.

Label Switching

Label = Circuit number = VC Id

ngress router/host puts a label. Exit router strips it off.

Switches switch packets based on labels.

To not need to look inside \Rightarrow Fast.

Label Switching (Cont)

Label Stacks

A MPLS packet may have multiple labels Labels are pushed/popped Is they enter/leave MPLS domain Stack allows hierarchy of MPLS domains Bottom label may indicate protocol (0=IPv4, 2=IPv6

Label Stack Examples

3GP/OSPF Routing Hierarchy

VPN: Top label used in public network. Net A and B can use the same private addresses.

Advantages of MPLS

MPLS takes the best of both IP and ATM networks Works on both ATM and non-ATM networks

Common routing and label distribution on all media ⇒ Easier management

No routing over large cloud issue

IP over <u>MPLS</u> over DWDM

- <u>MPLS</u> = Multi-Protocol <u>Lambda</u> Switching
- **DWDM** network \approx ATM network with Limitations
- Dptical Channel Trail = VC = LSPs = Traffic Trunk
 Fiber = Link
- Limited # of channels
- Global significance, if no λ conversion
- Local significance with λ conversion (still complex)
- $\text{Granularity} = \lambda \Rightarrow \text{Fixed datarate}$
- No aggregation yet \Rightarrow No label merging

MPLS over DWDM (Cont)

No hierarchy yet ⇒ No label stacks No TDM yet ⇒ No cells or packets No queueing ⇒ No scheduling, No Priority, No burstiness, No policing Need Shaping/grooming at entry ⁷aster restoration via redundancy (rings/mesh) Vendor specific management ⇒ Interoperability issues

Raj.

MPLS Control Plane: Today

- Resource Discovery: IGP (OSPF/PNNI)
- Path Computation: IGP (OSPF/PNNI)
- Connection Management: Label Distribution via GP(OSPF), LDP, RSVP
- Survivability: Rerouting,...
- Constraint-based routing based on data rate, verbooking, delay, ...

IPLS Control Plane: Tomorrov

Next Hop Forwarding Label Entry (NHFLE)

- = Preprogrammed λ switching
- = Wavelength Forwarding Information Base matrix
- \Rightarrow <Input port, λ > to <output port, λ > mapping

Constraints: Data rate, Attenuation, Dispersion, Length, delay

Fopologies: Linear and rings to partial Mesh

l control plane via network management

- \Rightarrow Permanent \Rightarrow Static routing
- \Rightarrow Too slow for restoration

IPLS Control Tomorrow (Cont

Can add resilience (survivability) preemption, esource class affinity attributes to trails Each OXC will be an IP addressable device Control plane can be out-of-band IP channel, ledicated supervisory channel Need to build on concept of "Abstract Node" in IP outing \Rightarrow Failures are handled locally ι availability will be advertised by optical node/WRouter

Optical Node Architecture

IP/MPLS Control Plane

Switch Fabric Controller

Data Plane

Pre-configured control wavelength upon initializatio

Need to develop hierarchical/aggregation concepts label stacks or VPs)

 $\Rightarrow \lambda$ -Group (Optical channel, optical path, Light pat

Add light path constraints to MPLS label distribution or explicit path requests

lef: draft-awduche-mpls-te-optical-00.txt

io State University

Raj.

- High IP Routing speeds and volumes
- \Rightarrow Need a full wavelength
- ⇒ Many ATM/SONET functions not needed
- Need MPLS to provide QoS, Isolation
- Protection/Restoration/Routing should be coordinate petween IP/MPLS and DWDM

Need to develop hierarchy/aggregation concepts for DWDM io State University Raj.

References:

See references in <u>http://www.cis.ohio-</u> <u>tate.edu/~jain/refs/opt_refs.htm</u> Recommended books on optical networking, <u>nttp://www.cis.ohio-state.edu/~jain/refs/opt_book.ht</u> Optical networking and DWDM, <u>http://www.cis.ohi</u> <u>tate.edu/~jain/cis788-99/dwdm/index.html</u> P over DWDM, <u>http://www.cis.ohio-</u> <u>tate.edu/~jain/cis788-99/ip_dwdm/index.html</u> Newsgroup: sci.optics.fiber

Acronyms

ATM	Asynchronous Transfer Mode
3GP	Border Gateway Protocol
OWDM	Digital Wavelength Division Multiplexing
GHz	Giga Hertz
GP	Interior Gateway Protocol
Ρ	Internet Protocol
Pv4	IP Version 4
Pv6	IP Version 6
MIP	Millions of Instructions per second
MPLS	Multiprotocol Label Switching
NHFLE	Next Hop Forwarding Label Entry

Acronyms (Cont)

 \mathcal{C} **Optical Carrier DSPF Open Shortest Path First DXC Optical cross connect** C Personal Computers **?NNI** Private Network to Node Interface PP Point-to-point protocol SONET Synchronous Optical Network ΓDM **Time Division Multiplexing VC** Virtual Circuit VPs Virtual Paths WRouter Wavelength Router