
ACS Computer Workshop

Web–Database Integration

Introduction
Database systems enable you to create, store, organize, and manipulate data. By
integrating databases and web sites you can open up new possibilities for data access and
dynamic web content.

Objectives
The goal of this workshop is to introduce participants to the tools and skills required for
creating web–database applications. After today’s workshop, participants will be able to:

• Create a database and a table.
• Manipulate table data.
• Create web-based access to a database.
• Create database-driven web content.

Prerequisites
Web Authoring: CGI Scripts or equivalent skills

Web-Database Integration 2 © 2000 The University of Kansas

Related Academic Computing Services workshops
See the current issue of Driver’s Ed for the Information Superhighway or go to
http://www.ukans.edu/acs/training for the most recent information about dates, times, and
places for these classes.

WEB AUTHORING: CGI SCRIPTS
Use Perl to program dynamic, interactive Web sites, including support of HTML forms.

Prerequisites: Web Authoring: Forms and Web Authoring: Introduction to Perl.

Class handout: www.ukans.edu/acs/docs/wkshop/cgi.shtml

ACCESS: INTRODUCTION
In this workshop, the Access modules are defined. You create a table, then use commands and menu

features to create, save, index, sort, and edit a database table. Participants also filter fields and records from

a table.

Prerequisites: Experience with the Windows environment.

This workshop requires registration. (See the registration information at

www.ukans.edu/cgiwrap/acs/training/geninfo.cgi.) There is a $75 fee for non-KU participants.

Class handout: www.ukans.edu/acs/docs/wkshop/Access-intro-handout.pdf

Web-Database Integration 3 © 2000 The University of Kansas

ACS Computer Workshop

Web–Database Integration
DATABASES A database is an organized collection of data. A relational

database is a database in which the organization of the data
incorporates the way data items are related to one another.
In particular, data in a relational database is stored in one or
more tables. A table (also called a relation) is a two-
dimensional array of columns (also called fields or
attributes) and rows (also called records or tuples).
Relational databases are very versatile.

A database consisting of multiple tables can offer some
advantages over a single-table database. Consider, for
example, a database of student information including ID
numbers, names, addresses, classes, and grades. A single-
table database for this example might have these nine
columns:

ID last first street city state zip class grade

… … … … … … … … …

Notice that for every class in which a student receives a
grade, the ID, last, first, street, city, state, and zip for that
student must be repeated in the table!

If the database has multiple, related tables, however, we can
have one table for name and address information, and
another for grade information:

ID last first street city state zip ID class grade

… … … … … … … … … …
Because the common ID column relates the two, we can use
this to send a student’s grade report using the name (last,
first) and address (street, city, state, zip) from the first
table and the class and grade data from the second. Notice
that this eliminates a considerable amount of data
duplication and opportunity for error. Notice also that the
data can be used however we wish, without regard for the
database structure; in our example, information is combined
from both tables, and not all columns are utilized (only the
name and address would appear on the envelope, for
instance). Modification of the database structure is similarly
flexible in the multiple-table relational model.

Relational databases are the predominate form of database
in use today, and are the type on which this class focuses.

Web-Database Integration 4 © 2000 The University of Kansas

DATABASE DESIGN Of course, some ways of organizing data are better than
others, and you face a number of choices when creating a
database. What data is to be included? What will the
columns be? How will they be divided into multiple tables?
Which columns will the individual tables share with each
other? These are important considerations, and, in general,
it is vital that you plan your database design carefully. It
should be capable of accommodating all the data you can
foresee needing to store, but should not waste storage space
on data you don’t need. It should also be immune to errors
or inconsistencies arising from changes made to data items,
now or in the future.

Besides thoughtful consideration of the needs your database
must meet, there are formal means of making (some)
database design decisions, those of database normalization.
A database that is normalized has certain structural
characteristics that make it more efficient and less
susceptible to data integrity problems than one that is not.
There are multiple levels of normalization, the first three of
which are sufficient for most common situations.

For a database to be in first normal form, there must be no
repeating columns, each cell of the table must have only a
single value, and each table row must be unique. Rows are
guaranteed to be unique through the use of primary keys. A
primary key is a column or group of columns whose values
uniquely identify a row in a table.

For example, consider a database of retail clothing items
with the following table:

item colors price tax
T-shirt red, blue 12.00 0.60
polo red, yellow 12.00 0.60
T-shirt red, blue 12.00 0.60
sweatshirt blue, black 25.00 1.25

It is not in first normal form, both because the cells in the
colors column have multiple items, and because there are
duplicate rows, i.e., there is no primary key. Eliminating the
duplicate row and splitting the colors into their own cells
brings it to first normal form:

item color price tax
T-shirt red 12.00 0.60
T-shirt blue 12.00 0.60
polo red 12.00 0.60
polo yellow 12.00 0.60
sweatshirt blue 25.00 1.25
sweatshirt black 25.00 1.25

Web-Database Integration 5 © 2000 The University of Kansas

Here, item and color together comprise the primary key.
Notice that it is almost trivial to obtain first normal form.

Second normal form requires that, if the primary key is a
combination of multiple columns, all non-key columns must
depend on all components of the key. Put another way, no
column can be dependent upon just one part of the primary
key.

In our example, price and tax depend on item, but not
color, so the table is not in second normal form. Splitting
the table into two brings about second normal form:

item color item price tax
T-shirt red T-shirt 12.00 0.60
T-shirt blue polo 12.00 0.60
polo red sweatshirt 25.00 1.25
polo yellow
sweatshirt blue
sweatshirt black

Notice that item and color still make up the primary key for
the left table, and item is the primary key for the right table.
Notice also that a table in first normal form whose primary
key is a single column is automatically in second normal
form as well.

Third normal form is attained when no non-key field
depends upon a field other than the primary key.

In our example, price depends on item, the primary key,
but tax depends on price, not item. This is called a
transitive dependency, and must be eliminated to bring the
database into third normal form. Splitting the table once
more does the trick:

item color item price price tax
T-shirt red T-shirt 12.00 12.00 0.60
T-shirt blue polo 12.00 25.00 1.25
polo red sweatshirt 25.00
polo yellow

sweatshirt blue
sweatshirt black

DATABASE
MANAGEMENT SYSTEMS

The program or set of programs used to create the database
and provide access to it is often called a database
management system, or DBMS. This is also sometimes
referred to as the database server or database engine. There
is a wide variety of DBMSes available to meet a wide
variety of needs.

Web-Database Integration 6 © 2000 The University of Kansas

The tool or tools used to interact with a database, e.g., for
data entry or querying, may be part of the DBMS or
separate from it. They may run on the same computer as the
DBMS or on other computers on a network. The latter
configuration is known as a client/server system, in which
the front-end programs are the clients, and they
communicate over the network with the database server.
These are two-tier database systems.

Other terms frequently applied to databases are database
application, which most often refers to the collection of the
database, the DBMS, and the client programs. Database
system is sometimes used to encompass the entire system,
including the database application and the supporting
hardware. (These terms are often used somewhat loosely,
however, so they may not be used with precisely these
meanings in all contexts.)

Our aim in this class is to create database applications in
which the custom clients are part of web pages.

STRUCTURED QUERY
LANGUAGE

SQL, which stands for Structured Query Language, is an
industry standard language for creating and working with
relational databases. Because it is not a procedural
language, it is used from within DBMSes or programs
written in other languages. Most, but not all, DBMSes are
based on SQL, or provide some level of SQL support. The
implementation of the SQL standard varies from one DBMS
to another, with each implementing some subset of the
standard (possibly in combination with additional
capabilities outside the standard). This means that moving a
database from one SQL DBMS to another may require
rewriting the custom software in the database application,
even though both DBMSes use SQL.

MINI SQL Mini SQL, or mSQL, is a lightweight SQL-based DBMS
for UNIX that is free for certain noncommercial users,
including education institutions. We will use mSQL in this
class, along with Perl as our programming language. As was
the case in the Web Authoring: CGI Scripts class, the
concepts and techniques introduced in this class can be
applied to similar endeavors regardless of the particular
tools that you use. Though the concepts presented are
general, choosing a particular tool set for this class provides
the necessary framework for demonstrating specific
examples.

Web-Database Integration 7 © 2000 The University of Kansas

WORKING WITH MSQL
DATABASES

In order to make use of mSQL, you need to know how
databases are created, how to create and delete tables, how
to enter data into tables, how to make modifications to the
data, and how to selectively retrieve data from a database.

Creating databases Database creation is done by the mSQL server administrator
using the msqladmin program. The following UNIX shell
command creates a database called student_grades on the
local system:

msqladmin create student_grades

The mSQL monitor The msql command invokes the mSQL monitor, an
interactive interface to the mSQL server. The command
itself, msql, must be followed by the name of the database
to be accessed, like so:

msql student_grades

The -h host option can also be used to access an mSQL
server running on a remote host, where host is the remote
hostname or IP address. (If no remote host is specified, the
monitor connects to the server on the local host.) The
mSQL monitor can be used to submit SQL commands
directly to the server. After an SQL command has been
entered in the mSQL monitor, entering \g sends the
command to the server. Entering \q at any time quits the
monitor.

Note: The msql command file is in the
/usr/local/Hughes/bin directory on Eagle and Falcon, and
in /usr/local/mSQL/bin on Lark and Raven. You may need
to add the appropriate directory to your $PATH
environment variable or use the full pathname
(/usr/local/Hughes/bin/msql on Eagle and Falcon,
/usr/local/mSQL/bin/msql on Lark and Raven) to use the
msql command.

In the examples below, SQL commands are presented in all
caps for clarity and emphasis. SQL is not case sensitive,
however.

Creating tables The CREATE statement is used to create tables within the
database. With it, you specify the table name, the column
names, and the type of data each column represents. For
example, to create a table of students called students, one
could use the following command:

Web-Database Integration 8 © 2000 The University of Kansas

CREATE TABLE students (
ID char(6) not null,
last char(25),
first char(15),
street char(25),
city char(15),
state char(2),
zip char(9)

)

The name of the table, students, follows the CREATE
TABLE statement. The list in parentheses is a list of the
column names, separated by commas. Each column name is
followed by its type; in this example, all the columns are of
type char, for strings of characters. The numbers in
parentheses after char represent the length the string is
allowed to have. Finally, columns can be specified with the
NOT NULL qualifier, which requires all rows to have data
entered into such columns. This is a good idea for primary
keys.

The data types available in mSQL are summarized below.

char(len) String of characters.
text(len) Variable length string of characters. The

defined length is used to indicate the
expected average length of the data.

int Signed integer values.
real Decimal or scientific notation real values.
uint Unsigned integer values.
date Date values in the format of DD-Mon-

YYYY; e.g., 1-Jan-1998.
time Time values stored in 24-hour notation in

the format of HH:MM:SS.
money A numeric value with two fixed decimal

places.

Entering data into tables The INSERT statement is used to add data to the table. You
can insert data into a row by providing a list of column
names to indicate into which columns the respective data
items are to be inserted. If you exclude the column names,
you must specify entries for every column in order. For
example:

INSERT INTO students
(ID, last, first, street, city,
 state, zip)
VALUES ('765432', 'Smith',
 'Sarah',
 '23 Massachusetts',
 'Lawrence', 'KS',
 '66044')

Web-Database Integration 9 © 2000 The University of Kansas

INSERT INTO students
VALUES ('555588', 'Jones',
 'Kaitlyn',
 '2323 West 23rd',
 'Wichita', 'KS', '67214')

These commands would insert rows into a table called
students, resulting in something like this:

ID last first street city state zip

… … … … … … …

765432 Smith Sarah 23 Massachusetts Lawrence KS 66044
555588 Jones Kaitlyn 2323 West 23rd Wichita KS 67214

… … … … … … …

Retrieving data from tables The SELECT statement is used to extract data from the
database. It provides the power and versatility to retrieve
exactly the information you want from the database. This
may mean viewing the contents of an entire table, viewing a
specific row, restricting the view to only certain columns, or
viewing entries that meet a specified condition.

For example, to simply view an entire table, you can use:

SELECT * FROM students

The * is a wildcard character that means “everything,” so in
this example all columns in the table called students will be
listed. Because no restrictions were placed on the rows to be
returned, all rows will be listed.

WHERE clauses can be used to select particular rows by
specifying one or more conditions that must be met. For
example, the command

SELECT * FROM students
WHERE city = 'Wichita'

will display only those rows with the value "Wichita" in the
city column. Other operators can be used to specify
conditions other than equality. Available operators are <, >,
=, <=, >=, <>, LIKE, RLIKE, CLIKE, and SLIKE. The last
four operators are for regular expression-style pattern
matching. LIKE is the standard SQL regular expression
operator, which uses the following special characters:

- Matches any single character.
% Matches 0 or more characters of any value.
\ Escapes special characters (e.g., \% matches a literal %

and \\ matches \). All other characters match
themselves.

CLIKE is a standard LIKE operator that ignores case.

Web-Database Integration 10 © 2000 The University of Kansas

RLIKE is a more complete regular expression operator than
that offered by standard SQL, providing more of the power
of UNIX regular expression syntax. It uses the following
special characters:

. The dot character matches any single character.
^ When used as the first character in a regex (regular

expression), the caret character forces the match to start
at the first character of the string.

$ When used as the last character in a regex, the dollar
sign forces the match to end at the last character of the
string.

[] By enclosing a group of single characters within square
brackets, the regex will match a single character from
the group of characters. If the] character is one of the
characters you wish to match you may specify it as the
first character in the group without closing the group
(e.g., []abc] would match any single character that
was], a, b, or c). Ranges of characters can be specified
within the first group using the “first-last” syntax (e.g.,
[a-z0-9] would match any lowercase letter or a
digit). If the first character of the group is the ^
character, the regex will match any single character that
is not contained within the group.

* If any regex element is followed by a *, it will match
zero or more instances of the regular expression. To
match any string of characters you would use .* and to
match any string of digits you would use [0-9]*.

The SLIKE operator provides a way of matching a value
that sounds like the specified value.

The ORDER BY clause can be used to sort the output of a
SELECT statement by the values in one or more columns. If
more than one column is specified (separated by commas),
the data is sorted by the first specified column, then (within
that order) by the next, and so on. For example, if our
student table included the names Sarah Smith, Kaitlyn
Jones, and Brittnay Jones,

SELECT last, first FROM students
ORDER BY last, first

would give

+-------+----------+
| last | first |
+-------+----------+
Jones	Brittnay
Jones	Kaitlyn
Smith	Sarah
+-------+----------+

Web-Database Integration 11 © 2000 The University of Kansas

The DESC attribute can be added after any column name to
change sorting on that column from ascending to
descending order, e.g.:

SELECT last, first FROM students
ORDER BY last DESC, first

This would give

+-------+----------+
| last | first |
+-------+----------+
Smith	Sarah
Jones	Brittnay
Jones	Kaitlyn
+-------+----------+

A list of column names can follow the SELECT statement
(instead of *) to restrict the columns returned, as seen in the
last two SELECT statement examples. This can also be used
to join information from multiple tables, by listing columns
from more than one table. When this is done, each column
name is preceded by the name of the table to which it
belongs followed by a dot (.). With the students and grades
tables of our examples, we could get a grade report for
Brittnay Jones (ID number 510958) with a SELECT
command like

SELECT students.last, students.first,
 grades.class, grades.grade

FROM students, grades
WHERE students.ID =

grades.ID
AND students.ID = '510958'

This would give

+-------+----------+----------+-------+

| last | first | class | grade |

+-------+----------+----------+-------+

| Jones | Brittnay | MJTA 410 | A |

+-------+----------+----------+-------+

The SELECT statement in mSQL supports the following
features, most of which have been covered in this section:

Web-Database Integration 12 © 2000 The University of Kansas

1. Relational joins among multiple tables
2. Table aliases
3. DISTINCT row selection for returning unique values
4. ORDER BY clauses for sorting
5. Normal SQL regular expression matching
6. Enhanced regular expression matching including case

insensitive and soundex
7. Column-to-column comparisons in WHERE clauses
8. Complex conditions

The formal definition of the syntax for mSQL’s SELECT
statement is:

SELECT [table.]column[,
 [table.]column]…
 FROM table [= alias][,
 table [= alias]]…
 [WHERE [table.]column OPERATOR VALUE
 [AND | OR [table.]column OPERATOR

VALUE]…]
 [ORDER BY [table.]column [DESC][,
 [table.]column [DESC]…]

Deleting rows The DELETE statement is used to remove one or more rows
from a table. The selection of rows to be removed is based
on the same WHERE clause used by the SELECT
statement. For example:

DELETE FROM students
WHERE ID = '555588'

Modifying table data The UPDATE statement is used to modify data that is
already in a table. New values are SET in rows meeting the
condition specified in the WHERE clause. For example:

UPDATE grades
SET grade = 'A'
WHERE ID = '555588' AND
 class = 'MJTA 410'

This command would result in something like:

ID class grade

… … …

555588 MJTA 410 A

… … …

Summary of mSQL commands The basic SQL commands in mSQL are CREATE, INSERT,
SELECT, DELETE, and UPDATE.

In the mSQL monitor, \g executes an SQL command that
has been entered, and \q quits.

Web-Database Integration 13 © 2000 The University of Kansas

Exercises To start with the workshop examples, you’ll need to log into
raven.cc.ukans.edu.
1. Telnet to raven.cc.ukans.edu

2. Log into classX, where X is replaced by a number,
yielding class1, class2, …, class15. Number
assignments and passwords will be provided by the
instructor.

Creating and entering data into
a table

The first exercise will be to create a table in the database
workshop.

• Create a table whose name is the username you are
using, e.g., class1, class2, etc. Define it to have columns
as follows:

Column name Column type
last char(25)
first char(15)

• Add the some of the following information to the table,
as time allows. Be sure to add at least one row, but do
not worry about adding them all. Feel free to add a row
with your own name as well.

last first
Jensen Jan
Wiley William
Bailey Bill
Brown Beth

• Select the whole table.

Using the SELECT statement The second exercise demonstrates some different uses of the
SELECT command. It uses a table called textbook that has
already been set up. Enter each of the following commands
and observe the output.

Web-Database Integration 14 © 2000 The University of Kansas

• select * from textbook
• select * from textbook where title

like 'A%'
• select * from textbook where required

= 1
• select * from textbook where required

<> 1
• select * from textbook where

published > '1-Jan-1988'
• select * from textbook where price >

10.00 and required = 1
• select * from textbook where required

= 1 and class = 101
• select * from textbook where class =

101 or class = 102
• select title from textbook
• select title, author, required from

textbook
• select title from textbook where

required = 1
• select title, price from textbook

where class = 101

The diagram below illustrates the components of the
database application as it has been used up to this point.

mSQL client mSQL server

Raven, Lark,
Falcon, or Eagle

select …

data

Raven, Lark,
Falcon, or Eagle

Importing tables mSQL includes the msqlimport utility, which loads flat
ASCII data files into mSQL database tables. Source files
can be formatted using any character as the column
separator, with line breaks delimiting the rows. Enter
msqlimport at the UNIX shell prompt for usage
information.

Removing tables The DROP statement is used to remove tables from
databases. The syntax of the DROP statement is as follows:

DROP TABLE table_name

Web-Database Integration 15 © 2000 The University of Kansas

ACCESSING DATABASES
FROM CGI SCRIPTS

Once you’re comfortable creating and managing databases
with mSQL, you can integrate them with your web sites.
When working with mSQL alone, you use the mSQL
monitor program to enter mSQL commands and send them
to the mSQL server. The basic idea behind integrating an
mSQL database and a web site is to instead write a CGI
script that will construct the mSQL commands and send
them to the mSQL server itself.

This is straightforward in principle, and indeed the bulk of
the work is simply implementing in the language of your
CGI script (e.g., Perl) the logic required to produce the
mSQL commands that you would otherwise enter into the
mSQL monitor to accomplish the same things. The only
outstanding requirement is the interface between your
program and the mSQL server, which provides the
mechanism for actually sending the mSQL commands to the
server and receiving its responses.

When working with Perl, one preferred solution is the Perl
Database Interface (DBI). As defined by its creator, “DBI is
a database access application programming interface (API)
for the Perl language. The DBI API specification defines a
set of functions, variables, and conventions that provide a
consistent database interface independent of the actual
database being used.” It provides a simple means of
embedding database commands in your Perl programs, and
handles all the details of communicating those commands to
whatever database server you are using (mSQL, in our
case). The server-specific details are handled by a database
driver (DBD), which DBI loads and uses to translate its
server-independent functions to the necessary server-
specific commands. The DBD for mSQL is DBD::mSQL.
Both DBI and DBD::mSQL come in the form of freely
available Perl modules.

Using DBI To enable the functionality of DBI in your script, include
the use DBI; command, which imports the DBI module.

Connecting to a database DBI is object-oriented, and provides a method called
connect, which returns a handle to the specified database.
This database handle provides the means for your program
to interact with the database.

Web-Database Integration 16 © 2000 The University of Kansas

The connect method requires a data source string as its
argument. This string must begin with dbi: followed by
the name of the driver, without the DBD:: portion of the
module name, e.g., dbi:mSQL. This is followed by driver-
specific information; in the case of DBD::mSQL, this
should include a database name, hostname, and port
number, delimited by colons. If the mSQL server is running
locally on a default port, localhost and 1114 can be
used for the hostname and port number, respectively, or
these portions of the data source string can be left blank. For
example, a Perl script that utilizes a database on the local
host called classX could begin as follows:

#!/usr/local/bin/perl

use DBI;

$datasource = "dbi:mSQL:workshop";

$database_handle =
DBI->connect($datasource);

The database handle’s prepare method is used to prepare
an SQL statement, returning a statement handle. The
statement handle has an execute method that executes the
SQL statement.

$sql_statement =
"SELECT first, last FROM classX";

$statement_handle =
 $database_handle->prepare($sql_statement);

$statement_handle->execute;

Issuing queries and processing
results

After you’ve executed a statement, you can use one of the
statement’s fetch methods to retrieve the rows that the
SQL statement returned. There are several fetch
methods, summarized below.

fetchrow_arrayref Fetches the next row of data
and returns a reference to an
array holding the field values.
If you assign the output of the
method to the variable
$ary_ref, you can refer to
the array with @$ary_ref.

fetch Alias for
fetchrow_arrayref.

fetchrow_array Fetches the next row of data
and returns it as an array
holding the field values.

Web-Database Integration 17 © 2000 The University of Kansas

fetchrow_hashref Fetches the next row of data
and returns it as a reference to a
hash containing field name and
field value pairs. The names of
the columns can be obtained by
examining the
$statement_handle->
{NAME} property, where
$statement_handle is the
statement handle. A column’s
value can be obtained as
$hash_ref->{column_
name}.

fetchall_arrayref Used to fetch all the data to be
returned from a prepared
statement. It returns a reference
to an array that contains one
array reference per row (as
returned by
fetchrow_arrayref).

while (
($first, $last) =
$statement_handle->fetchrow_array)

{
print "$first $last \n";

}

When done with a statement handle, you should tell it you
are finished by invoking its finish method.

$statement_handle->finish;

The database handle’s disconnect method releases it:

$database_handle->disconnect;

Exercise Enter the preceding example into a file called classX.pl by
typing

pico classX.pl

and entering the Perl code:

Web-Database Integration 18 © 2000 The University of Kansas

#!/usr/local/bin/perl

use DBI;

$datasource = "dbi:mSQL:workshop";

$database_handle = DBI->connect($datasource);

$sql_statement = "SELECT first, last FROM classX";

$statement_handle =
$database_handle->prepare($sql_statement);

$statement_handle->execute;

while (($first, $last) = $statement_handle->fetchrow_array) {
 print "$first $last \n";
}

$statement_handle->finish;

$database_handle->disconnect;

Save and enter

perl classX.pl

to run the program.

The diagram below illustrates the components of the
database application as it now stands.

execute …

fetch …

mSQL client mSQL server

DBI

Raven, Lark,
Falcon, or Eagle

Perl
script

select …

data

select …

data

Raven, Lark,
Falcon, or Eagle

Web-Database Integration 19 © 2000 The University of Kansas

Issuing updates Since updates (i.e., UPDATE, INSERT, and DELETE
statements) do not return any results, there is no need to
prepare statement handles for them. For these, you can
simply use the database handle’s do method. For example:

$sql_statement =
"INSERT INTO classX " .
"VALUES ('Johnson', 'Marla')";

$database_handle->do($sql_statement);

EXERCISE The next step is to implement a CGI script that is a client
for the database, as diagrammed below.

execute …

fetch …C
G

I
mSQL client mSQL server

HTTP server DBI

Raven, Lark,
Falcon, or Eagle

Perl
script

select …

data

select …

data

Raven, Lark,
Falcon, or Eagle

Recall the Interest Form example from the Web Authoring:
CGI Scripts class. In it an HTML form collects a name and
email address from the user and passes it to a CGI script,
which then generates a personalized message with the form
data. We also looked at how the script could write the form
data to a text-file database, and later read it back. In this
exercise you’ll create a similar form and use CGI scripts to
store and read the form data to and from an mSQL database.

Creating the form The HTML document that contains the interest form is
shown below:

Web-Database Integration 20 © 2000 The University of Kansas

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<HTML>

<HEAD>

<TITLE>Interest Form</TITLE>

</HEAD>

<BODY>

<H1>Interest Form</H1>

<P>

If you would like more information about the topics discussed on this

Web site, please enter your name and email address below.

<FORM action="http://raven.cc.ukans.edu/cgiwrap/classX/

myform.cgi" method="post">

<P>

<LABEL for="name">Please enter your name:</LABEL>

<INPUT type="text" name="name" size="35" id="name">

<P>

<LABEL for="address">Please enter your email address:</LABEL>

<INPUT type="text" name="address" size="35" id="address">

<P>

<INPUT type="submit" value="Send Address">

</FORM>

</BODY>

</HTML>

Notice that it is essentially the same as its counterpart from
the Web Authoring: CGI Scripts class.

This document has been prepared for you and is stored as
/homea/classX/public_html/myform.html. Please verify that
it is in place, and look over it so that you understand what it
does.

Adding the form data to the
database

Next, create the CGI script that will service the form. This
script stores the form data in the database and returns a
personalized message. Enter

cd ~/public_html/cgi-bin
pico myform.cgi

Then enter this Perl script and save:

Web-Database Integration 21 © 2000 The University of Kansas

#!/usr/local/bin/perl

use CGI;
use DBI;

$form_data = new CGI;

$datasource = "dbi:mSQL:workshop";
$database_handle = DBI->connect($datasource) or
 die "Could not connect:$DBI::errstr";

$unquoted_name = $form_data->param('name');
$name = $database_handle->quote($unquoted_name);
$address =

$database_handle->quote($form_data->param('address'));

$insert_sql = "INSERT INTO formX " .
 "(name, address)" .
 "VALUES($name, $address)";

$database_handle->do($insert_sql) or
 die "Insert failed: " . $DBI::errstr;

$database_handle->disconnect;

print "Content-type: text/html\n\n";

print <<END_OF_MESSAGE;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<TITLE>Return Page</TITLE>
<H1>Thank you for filling out my form!</H1>
<P>Thank you, $unquoted_name, for filling out my form!
<P>See who else has signed up
END_OF_MESSAGE

exit;

Enter

chmod 755 myform.cgi

to make it accessible.

The database table A table named formX, where X is the same number as in
your username (e.g., user class2 has table form2) has been
created for you in the database workshop for use with this
script. It has a name column and an address column, both
of type char(35).

Web-Database Integration 22 © 2000 The University of Kansas

Testing the script Open a web browser on your workstation and access
http://raven.cc.ukans.edu/~classX/myform.html to test the
script. You should be able to enter data into the form and
see the customized thank you message. The link on the
returned page won’t yet function, of course, since show.cgi
is not in place.

Understanding myform.cgi Let’s go back through myform.cgi step by step to see how
it works.

#!/usr/local/bin/perl

This is the standard Perl invocation.

use CGI;
use DBI;

These lines import the Perl modules used below. The CGI
Perl module, included with most Perl distributions, uses
objects to make it easy to create web forms and parse their
contents. It was introduced in the Web Authoring: CGI
Scripts class. DBI, of course, provides the interface to the
database.

$form_data = new CGI;

This will parse the input (from both POST and GET
methods) and store it into an object called $form_data.

$datasource = "dbi:mSQL:workshop";
$database_handle =

DBI->connect($datasource) or
 die "Could not

 connect:$DBI::errstr";

These lines establish a connection to the database called
workshop. $datasource is the data source string.
$database_handle is the database handle. If it cannot be
assigned (i.e., the assignment operation returns 0), the
program exits and reports the error condition.

$unquoted_name =
$form_data->param('name');

$name =

 $database_handle->quote($unquoted_name);
$address =
 $database_handle->

 quote($form_data->param('address'));

Web-Database Integration 23 © 2000 The University of Kansas

$form_data->param('name') returns the CGI query
parameter called name; likewise
$form_data->param('address') returns the
address parameter. (Object->method is the standard
Perl construction for invoking a method of an object.) In
general, this is all that’s needed to get the CGI parameter
values. However, if a value includes a quote, e.g., O’Hara, it
will present problems when used in an SQL statement later.
The database handle routine quote takes care of this. We
get the address value, prepare it with quote, and assign it
to $address. Because we want to be able to use the name
both as is and as cleaned up by quote, we first assign
$form_data->param('name') to $unquoted_name,
then run quote on that and assign the result to $name.

$insert_sql =
"INSERT INTO formX " .
"(name, address)" .
"VALUES($name, $address)";

$database_handle->do($insert_sql) or

 die "Insert failed: " .
 $DBI::errstr;

$database_handle->disconnect;

The SQL statement is constructed with the values obtained
from the form, and executed with the do method. (The .
simply represents concatenation in Perl.) If the do fails, the
program exits and reports the error condition. The database
handle is then released.

print "Content-type: text/html\n\n";

print <<END_OF_MESSAGE;
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

<TITLE>Return Page</TITLE>
<H1>Thank you for filling out my
form!</H1>
<P>Thank you, $unquoted_name, for
filling out my form!
<P>See who else has
signed up
END_OF_MESSAGE

exit;

Web-Database Integration 24 © 2000 The University of Kansas

An HTML document is returned, and the program exits.
Notice that the HTML document incorporates
$unquoted_name to personalize the page.

Reading information from the
database

The script show.cgi completes the example. It reads the
information from the recipients table and displays it in an
HTML document. Enter

cd ~/public_html/cgi-bin
pico show.cgi

Then enter this Perl script and save:

#!/usr/local/bin/perl

use DBI;

$datasource = "dbi:mSQL:workshop";
$database_handle = DBI->connect($datasource) or
 die "Could not connect:$DBI::errstr";

$sql_statement = "SELECT name, address " .
 "FROM formX ";
$statement_handle =

$database_handle->prepare($sql_statement);

$statement_handle->execute or
 die "Statement failed: " . $statement_handle->errstr;

print "Content-type: text/html\n\n";
print <<ENDSTART;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<TITLE>Mailing List</TITLE>
<H1>People who have requested information:</H1>
<P>
ENDSTART

$row;
while ($row = $statement_handle->fetch) {
 print "$$row[0]" . " <" . $$row[1] . ">
\n";
}
$statement_handle->finish;

$database_handle->disconnect;

print "<P>Return to
 Interest Form";
exit;

Web-Database Integration 25 © 2000 The University of Kansas

Enter

chmod 755 show.cgi

to make it accessible.

Testing the script Open a local web browser and access
http://raven.cc.ukans.edu/~classX/myform.html to test the
script. After entering data into the form and viewing the
customized thank you message, use the link on the returned
page to test show.cgi.

Understanding show.cgi The program begins by invoking Perl, importing DBI, and
establishing the database handle.

#!/usr/local/bin/perl

use DBI;

$datasource = "dbi:mSQL:workshop";
$database_handle =

DBI->connect($datasource) or
 die "Could not

 connect:$DBI::errstr";

The SQL statement is constructed next. Since it’s a
SELECT, which will return something,
$database_handle->prepare is used on it to create
a statement handle, $statement_handle. The statement is
then executed.

$sql_statement =
"SELECT name, address " .

 "FROM formX ";
$statement_handle =
 $database_handle->prepare($sql_statement);

$statement_handle->execute or
 die "Statement failed: " .
 $statement_handle->errstr;

The following print statements get the HTML document
started.

Web-Database Integration 26 © 2000 The University of Kansas

print "Content-type: text/html\n\n";
print <<ENDSTART;
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<TITLE>Mailing List</TITLE>
<H1>People who have requested
information:</H1>
<P>
ENDSTART

Now the output of the SELECT statement needs to be
inserted into the HTML document.

$row;
while ($row = $statement_handle->fetch) {
 print "$$row[0]" . " <" .
 $$row[1] . ">
\n";
}
$statement_handle->finish;

$database_handle->disconnect;

The while statement loops over each row returned by the
SELECT statement. Each row is fetched into $row, and its
values (the elements of the array @$row) are printed within
a line of HTML. When complete, the statement and
database handles are released.

print "<P>

 Return to Interest Form";
exit;

The remainder of the HTML document is printed, and the
program exits.

EXAMPLE:
STUDENTS.CGI

A more complete example of an HTML form-based
database front-end can be found at
http://raven.cc.ukans.edu/cgiwrap/milo/students.cgi. Source
code for the students.cgi script can be viewed at
http://raven.cc.ukans.edu/~milo/cgi-bin/students.cgi.

Web-Database Integration 27 © 2000 The University of Kansas

EXAMPLE: MJTA410.CGI A final example can be found at
http://raven.cc.ukans.edu/cgiwrap/milo/mjta410.cgi. A
printout of the associated database’s tables is provided in a
separate document; a code listing for this script can be
viewed at http://raven.cc.ukans.edu/~milo/cgi-
bin/mjta410.cgi. This example highlights how databases can
be used to enhance the functionality of web sites. In the
previous example, the web site provided a front-end to the
database—the web site added value to the database. In this
example, the database powers the web site—the database
adds value to the web site.

OTHER TOOLS AND
MODELS

What has been presented here is but one of many means of
integrating databases and web sites. It uses mSQL, Perl, and
DBI (with DBD::mSQL) for the basic components of such
an application: the DBMS, the CGI scripting language, and
the database interface for that language. Many other
combinations of tools can comprise these components,
providing many possible solutions. There are also several
tools whose capabilities essentially combine one or more of
these components. Some HTTP servers accommodate
scripts, servlets, and/or plug-ins directly, without the CGI.
Others have built-in interfaces to DBMSes. Some web site
design tools automatically provide database interfaces, or
internalize databases. Some tools provide custom HTML
tags that handle database interaction. And some DBMSes
can be configured to serve their databases to the Web
themselves. The options are many. Before settling on any
one solution, you should shop around to be sure you find
one that meets your needs.

Regardless of the solution you choose, this introduction
should give you insight into how to build your own
web–database application.

RESOURCES

Databases • Codd, E. F. The Relational Model for Database
Management. Version 2. Addison Wesley
Longman, 1990. ISBN 0-201-14192-2.

http://cseng.awl.com/bookdetail.qry?
ISBN=0-201-14192-2&ptype=0

SQL • SQL FAQ
http://epoch.CS.Berkeley.EDU:8000/sequoia/dba/
montage/FAQ/SQL_TOC.html

• SQL standards
http://www.jcc.com/sql_stnd.html

Web-Database Integration 28 © 2000 The University of Kansas

• SQL tutorial
http://w3.one.net/~jhoffman/sqltut.htm

mSQL • mSQL home page
http://www.hughes.com.au/

• mSQL documentation library
http://www.hughes.com.au/library/

• Jepson, Brian, and David J. Hughes. Official Guide
to Mini SQL 2.0. New York: John Wiley & Sons,
Inc., 1998. ISBN 0-471-24535-6.

http://catalog.wiley.com/ss/.272907809/title.cgi?
0471245356
http://www.wiley.com/compbooks/catalog/24535-6.htm

• mSQL mailing list
http://hostingservices.net/msql/mailing-list.html

• mSQL information/interfaces page
http://www.hostingservices.net/msql/

DBD::mSQL • DBD::mSQL readme
http://www.perl.com/CPAN-local/modules/by-module/
DBD/Msql-Mysql-modules-1.1828.readme

• DBD::mSQL documentation
http://www.hostingservices.net/DBI/mSQL.html

DBI • DBI home page
http://www.symbolstone.org/technology/perl/DBI/
index.html

• DBI FAQ
http://www.symbolstone.org/technology/perl/DBI/doc/
faq.html

• DBI documentation and examples
http://www.symbolstone.org/technology/perl/DBI/
index.html#docs

• Descartes, Alligator & Tim Bunce. Programming
the Perl DBI. O’Reilly & Associates, Inc., 2000.
ISBN 1-56592-699-4.

http://www.oreilly.com/catalog/perldbi/
• DBI mailing lists

http://www.fugue.com/dbi
http://www.symbolstone.org/technology/perl/DBI/
index.html#mailinglists

Web-Database Integration 29 © 2000 The University of Kansas

Related Perl • Stein, Lincoln D. Official Guide to Programming
with CGI.pm. John Wiley & Sons, Inc., 1998. ISBN
0-471-24744-8.

http://www.wiley.com/compbooks/stein/
http://www.wiley.com/compbooks/catalog/24744-8.htm

• Perl CGI.pm documentation
http://www.perl.com/CPAN-local/doc/wwwman/CGI-pm/
CGI.html
http://www.genome.wi.mit.edu/ftp/pub/software/WWW/
cgi_docs.html

• Perl CGI.pm examples
http://www.genome.wi.mit.edu/WWW/examples/Ch9/

• Object-oriented Perl documentation
http://www.perl.com/CPAN-local/doc/manual/html/pod/
perltoot.html

HELP Academic Computing Services provides computing help in
a variety of ways:

Quick phone help The Help Center 785/864-0200
Quick email help question@ukans.edu
Consulting (Faculty/Staff) 785/864-0410
Online documentation www.ukans.edu/acs/docs
Training schedule online www.ukans.edu/acs/training

To receive automatic announcements of upcoming
computer training, send the following message to the email
address below:

address: listproc@ukans.edu
message: SUB COMPUTER-TRAINING your name

Note: Substitute your real name for your name above, i.e.,
Jane Smith, not your login name.

©2000 The University of Kansas
Academic Computing Services

Web–Database Integration
Prepared by Cole Robison

785/864-0447
cole@ukans.edu

July 26, 2000

Comments? Evaluate this class online at http://www.ukans.edu/acs/training/evaluation.

