
38 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

Carroll and Campbell [2] and Suchman [11] have
also argued that software embodies user work
processes, but stopped short of examining the pro-
found implications for organizations and businesses.
They need to respond to accelerating change in the
world by improving their work processes continu-
ously, and in some cases by reengineering them com-
pletely. Often an information system will be the
principal means to implement the desired new
process. However, applications that don’t carefully
build in the desired work process actually end up
selecting one by implication rather than by design.

The implied work model may actually contradict a
good business process for performing the work.
Then the power of computing can turn into a kind
of ubiquitous, electronic superbureaucrat that
imposes unnecessary overhead while stubbornly
frustrating users’ attempts to work productively.

Designing Work versus Designing
Software
In order to design work deliberately we need to
understand the difference between work design and
software design. The design of work and the design
of software are distinctly different domains. The two
designs must interact, but they must each also func-
tion in their respective local environments, which are
fundamentally different. The analysis and design of
work deals with activity that will be executed in the
physical world, where its goal is to achieve physical
qualities such as better resource utilization, reduced
cycle time and variance, reduced costs and waste, or
to generate products with real-world qualities. In
contrast, software design has historically emphasized
completeness and consistency, and the efficiency of
code that will be executed electronically.

When we design interactive software we are also defining much about the work

of its users. The software embodies a model of work processes for its end users because part of

its job is to manage the content, format, and sequencing of the information that users need to

do their work. The effect is that any application will preferentially enable certain work processes,

and users will have to work harder to follow any others. It is actually unavoidable. Developers

may try to avoid the responsibility for promoting a particular work model by oversupplying

information or features for flexibility. But this

strategy is futile. It simply loads the user with

an additional process, one for dealing with the

resulting clutter. The effect is the same whether

the application was developed within a particu-

lar organization or purchased off the shelf.

Keith A. Butler, Chris Esposito, and Ron Hebron

Connecting the D
to the Design of Wo

ST
EV

E
A

D
LE

R

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 39

A representation language for designing work
should explicitly account for the utilization of the
physical resources and information that are needed
to accomplish the work. It should also support iden-
tification of performance obstacles in an existing
work process, and the analysis of how to improve it.
In order to meet these requirements, a representa-
tion language for modeling work should also provide
some metric of goodness, so we can predict when a
work design will actually make an improvement, or
compare design alternatives.

Work design and software design require
two different types of
languages to model
two different worlds
that are understood by
different people. Kyng
[5] argued persuasively
that the logical responsi-
bility for work design belongs to
the user community, while application devel-
opment is the domain of computing technol-
ogists. This division of labor seems like a realistic
view. Users have the most intimate understanding of
their work. But technology changes the possibilities
for accomplishing work, and users cannot be
expected to know enough about it. It is the job of
computing professionals to know about new techni-
cal possibilities and, as importantly, the limitations
on the technology that is available.

Integrating the two views can be difficult, expen-
sive and unreliable. But it is also essential because
design involves making rational trade-offs between
the costs of technology and the benefits of its impacts.
In this context we need to understand how the bene-
fits to the work process trade off against the cost,

timeliness, or technical feasibility of the new system.
Iterating back and forth between the two types of

design seems like a practical solution. But there are
a wide variety of social and economic factors that
have historically kept developers and users from col-
laborating more effectively or more often [5, 8]. The
one that we will focus on here is overcoming the
technical difference between designing work and
designing software, and the obstacles it poses to iter-
ative design.

Making the
Connection
Attempts to make a
closer connection
between the design of
software and the design
of work have begun
evolving rapidly. In the
software modeling
community the Uni-
fied Modeling Lan-

guage (UML)1 for the analysis and design of
object-oriented software (OOAD) has recently
added user-centered views such as use-cases and user
activity diagrams. These are important develop-
ments from the standpoint of escalating the impor-
tance of setting and satisfying user requirements.
They also provide a much more systematic connec-
tion from user requirements to all the aspects of
implementation. However, use-cases do not cur-
rently satisfy our requirements for a language to sup-
port work design. They are an effective way to
document work processes but do not support prob-

esign of Software
rk When the software’s preference contradicts good user work

practice the power of computing quickly becomes an
electronic bureaucrat—frustrating productivity while
imposing overhead.

1More detailed information on UML is available at www.rational.com/uml/

40 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

lem identification, improvement analysis, or any
metric of goodness.

The methodology community has also made
important contributions. For example, Kyng [5]
described a thorough method for integrating work
design with the design of supporting software. His
primary representations of user work are scenarios.
To represent the system Kyng applies user interface
prototypes.

We are attempting to extend the work of
researchers like Kyng and also of UML in several
directions. One important limitation of Kyng’s
method is the scope. It’s main focus is on user inter-
face design. But we believe that during the early
stages of design the entire architecture of a proposed
system must be analyzed for cost and feasibility, so
the representation of the proposed system should
not be limited to the user interface or its neighbor-
ing components. UML does offer the advantage of

connecting its use-cases to the design of the entire
system architecture via event sequence diagrams.
However, use-cases and other scenarios that rely on
free text as their representation language seem inher-
ently limited in their ability to meet the require-
ments for work design that we explained in the
previous section.

In this article we will look at two emerging stan-
dards: UML for modeling the functional aspects of
software; and IDEF3 for modeling work activity [6].
We will give simple examples to illustrate how
IDEF3 can be used to design work, and then show
how important aspects of a UML software model
can be derived from the IDEF3 model. We will also
show how the ability to relate the two enables a prac-
tical, iterative method for the design of work and the
design of supporting software.

User-Centered Models of Work
There are strong reasons for building a model of
work to represent the users’ view. It makes our
assumptions about user work explicit. The activity
of building the work model can expose important
gaps in our understanding about the way users per-
form work, both singly and in cooperation with oth-

ers. Also, interviewing and modeling are valuable
opportunities to observe nuances and obstacles to
good work performance or to note valuable design
ideas for later use. A work model can also identify
user data needs and map them to user tasks, regard-
less of implementation details.

We also assert that a business process is actually
some aggregation of user tasks. In order to improve
the quality of business processes and products with
interactive computing, we must be able to make a
connection between the way people work, both
singly and in combination, with improved perfor-
mance at the level of a business process.

We focus our modeling to capture the conceptual
data model along with the logical work process and
rules that must persist, regardless of the information
system being used. If the model is open with respect
to any particular implementation, it can produce
insights about alternate ways in which technology

could improve the users’ current processes. This
point is also important because it frees us from the
necessity of modeling how the users perform current
work in too much detail. Analysis actually has two
objectives: The first is to understand the current sit-
uation; the second is to produce requirements for
improvement.

A work process model also calls for understanding
who the users will be, their goals, roles and tasks, and
the way they think about their work. Defining the
intended user population, both in terms of profes-
sional and computing skills, is essential in determin-
ing who will be at the center of the design process.
Representative samples of users are needed to gather
knowledge about their application domains and to
support user testing. Often the user population is
heterogeneous, in which case subgroups and their rel-
ative proportions also need to be defined.

Modern methods for work modeling began when
industrial engineers needed to plan and prescribe
activity as a sequence of steps in order to perform a
physical task [7]. Precedence diagrams and hierar-
chical decomposition became popular techniques.
Precedence represents the temporal sequence or log-
ical dependencies in which activity units take place.

{ }
Building the work model can expose important gaps

in our understanding about the way users perform

work, both singly and in cooperation with others.

Hierarchical decomposition is a common technique
for managing large or complex processes in which
sub-processes can be nested within higher-level
processes.

One of the best specified languages for representing
work processes in the physical word is IDEF3, devel-
oped by the U.S. Air Force to standardize a technique
for stating requirements [6]. Unlike many ad hoc
methods for task analysis, IDEF3 has a well-defined
ontology for representing the processes that accom-
plish work. In the specifications of the Workflow
Management Coalition this type of model corre-
sponds in part to a process definition tool [4]. But
IDEF3 has a much richer representation than the flow
of work. It explicitly represents the people, machines,
and other resources that must participate to execute
the processes. The behavior characteristics of these
participants, in turn, support discrete event simula-
tions to evaluate how well a process will perform.

When we apply IDEF3 for the design of informa-
tion work, the lowest event level is a user task, in
which users interact with information systems to
accomplish work goals. Figure 1 gives an example of
this level. The work domain for this illustration is
employee time-keeping. It shows the user process for
employee time-keeping with an existing IMS data-

base application called ETS. We deliberately chose a
simple case with one user and one information sys-
tem to illustrate the features of the modeling lan-
guage. The same language could also represent
multiple users working in collaboration and sup-
ported by many information systems. The screen
shots have been assembled from an unreleased tool
for enterprise-modeling that has integrated several
different IDEF views [12].

In Figure 1 the upper screen shows how the user
and the ETS system interact as participants in a
series of process steps to change one another’s states
until the user’s goal state Done is reached. Each of
the participants maintains its identity although the
different steps may require it to provide different
information and be in a different state.

The lower screen shows how to use the property
editor for a participant to represent the information
that it must have in order to proceed to each step of
a task. The property values, in turn, determine the
state of a participant. In our example the user must
be in the Select Daily Hours state in order to partici-
pate in the step for Select Daily Screen. The state of
Select Daily Hours means that the user possesses val-
ues for the needed information properties. Specifi-
cally, user has a value ETS command, while all the

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 41

Add Remove Exit

Property
Property
Property
Property
Property
Property
Property
Property
Property

OK Cancel Apply

Absence hours
Overtime hours
Overtime code
Absence code
Job number
ETS command
Password
Regular hours
User ID

Name

Daily hours

Hours, tenths
Hours, tenths

Hours, tenths

No
No
No
No
No
No
No
No
No

Description Properties Sources Notes Facts Contracts Synonyms

Properties
Label Value Range Type Creator Inherited

: Edu state < Select Daily hours > of class < user >
ETS

System: L3
entry

ETS System:
Entry

Successful

ETS System:
Update

Successful

PrintersValidate
hours

Update
ETS

User:
Ready to

enter

User:
Entry

validated

User:
Data

User:
Select Daily

Hours

Select daily
screen

4:58 PM NUM

Project Model Edit Back Diagram Trace Tools View Window Help

ETS Process

1.25 1.26 1.27

Figure 1. User and system interact to
change one another’s state

other user properties are null, meaning they are not
required for this step.

If the information type has not appeared before,
we add it as a property to the participant that serves
as its source. Wherever an information type is used
in a task, we assign it the needed value in its con-
taining participant. Wherever the information type
is not needed in a task the property value will be set
back to null. This technique allows us to incremen-
tally capture the information support for an existing
work process. In our example when the model is
complete the user will contain all the information
types it needs to participate in all time-keeping
tasks. Alternately, when we are designing an
improved work process the same technique allows us
to define information support requirements.

In this way we can exploit participant states to
capture the information required to support a given
work model. It allows us to map specific informa-
tion types to specific steps in a work process. This
feature allows us to calculate the way each informa-
tion type must be distributed to support the work
process. As will be shown, this is a key principle for
connecting the work model to software design.

Translating Information Distributions
into Object Classes
One of the defining features of a good, high-level
object is that it should contain information attrib-
utes that need to be used in conjunction with one
another. These attribute clusters can be derived from
our IDEF3 model by analyzing the utilization of
information over the tasks. We use a graph-theoretic
approach called Pathfinder to analyze utilization
patterns and discover clusters of information types.
A complete description of the techniques, algo-
rithms and mathematics involved can be found in
[1, 3, 10].

Pathfinder is a data reduction technique that has
proved quite useful for discovering clustering, and has
been successfully used elsewhere for tasks such as elic-
iting and representing domain expert knowledge
structures [10]. It is similar to, but more general than,
its better-known sister, hierarchical cluster analysis.
This section describes the basic steps for reducing and
analyzing the raw co-occurrence data and deriving
definitions for candidate business objects.

One of the intuitions that drives our approach is
the idea that a pair of data elements with identical

42 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

Figure 2. PathFinder
graph-theoretic
representation of
proximity data

usage distributions is more likely to wind up as part
of the same object than a pair of data elements that
are never used together in any task. The Jaccard coef-
ficient is an equation for calculating the similarity in
usage vectors across tasks for each pair of information
types. From these coefficients we calculate a matrix of
proximity values so that each value represents some
measure of distance between information types. The
result is that information types with similar usage
vectors are ‘near’ one another. This matrix of prox-
imities can be displayed as a complete network, that
is, a graph with an edge between every pair of nodes
(information types) and with the proximity value as
the numerical weight attached to the edge.

Figure 2 shows the results of a graph-theoretic
representation. It displays a network structure of arcs
for the strength of associations among all pairs of
information types used in employee time-keeping.
The positioning of the nodes in Figure 2 is only an
aid to understanding. Unlike multidimensional scal-
ing, the spatial relations are not usually significant in
themselves. The structure of the network is of great-
est interest. A circular layout is shown in Figure 2.
Two other layouts, orthogonal and symmetric, are
also available.

Pathfinder removes the weakest associations
between information types so that the resulting net-

work only has edges where there is a strong connec-
tion between elements joined by these edges. As an aid
to understanding these networks, they are displayed in
graphical rather than tabular form. The results of
our example PathFinder cluster analysis are shown in
Figure 2.

A variety of graph-theoretic structural and cluster
analyses are available to further reduce the data and
derive definitions of candidate business objects. Stud-
ies have shown that interesting clusters appear in the
structure as cliques, near-cliques and stars [3]. Algo-
rithms have been implemented for identifying these
structures, and also for groups whose members are
perfectly correlated. All of these patterns are sub-
graphs that can be identified using the cluster-finding
algorithms. Once clusters have been identified, a node
editor is used for placing the members of a cluster into
a higher-level node. The resulting cluster definitions
can be exported to a tool for OOAD for feasibility
analysis and design of the supporting software.

Technology-Centered Software Modeling
In the early 1990s Rumbaugh and his colleagues [9]
developed an excellent and well-written manual for
the practice of OOAD. There is a companion article
by Mylopoulos, Chung, and Yu in this section that
explains OOAD and traces its history. In recent years

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 43

User

Message Standard NonStandard

ArchitectureComponents
WeeklyEntry

WETS – Class Composition View

Containment2 Containment1

LegacyComponents WebComponents

 Authorization
User_id
Password
Session_valid
Authentication
Is Session Valid
Send User Info
Send Weekly Signature
Signature Valid
Signature Accepted
Get Time Approval Form
Time Approval Data
Send Approval
Approve Validation
Authorization Request
Signature Authentic

Sticky

...

...

Commands

Model Selected Edit Windows Help

Daily_Entry

Figure 3. Class diagram for designing software

the modeling languages, methods and tools for
OOAD have matured rapidly. In an important indus-
try-wide development the Object Management
Group (OMG) has defined a clear notation for
OOAD in its UML. OMG recognized that no single
view of software was sufficient to capture its com-
plexity, so UML integrates such popular views as class
diagrams, use-cases, and event sequence diagrams.

Figure 3 shows the Authorization class, whose
definition was downloaded directly from cluster
analysis. The tool for OOAD is an alpha version of
IBM’s OBJChart. The clusters of information types
that were derived from usage patterns have now
been loaded as classes into a tool for software analy-
sis and design.

The class for Authorization contains the informa-
tion types that need to be used together in the work
process as attributes. The object class for Authoriza-
tion has both meaning and match for the work
process it is intended to support.

Figure 4 shows the event sequence diagram devel-
oped by the software architect. Event sequence dia-
grams have also been called object interaction

diagrams. They are a useful way to analyze how the
objects of a system must interact in order to satisfy a
use-case, a scenario, or a user work process. In the
event sequence notation, a column represents the
life cycle for each object from top to bottom, and
the horizontal lines represent the flow of responsi-
bility. By making this flow explicit an analyst or sim-
ulation can determine whether the flow is complete
and whether each object can satisfy the requirements
of its responsibilities. Figure 4 shows the event
sequence diagram for our employee time-keeping
example.

Figure 4 represents the objects and events that
must take place for software to support the time-
keeping work process that was designed earlier. How-
ever, there is a different focus. The design problem
being attacked is technology-centered, that is, how to
make software systems function in the required way.
In order to perform this type of analysis a software
architect would have to add technical objects, such as
the IMS database and the RACF security system, in
order to assess the technical feasibility of supporting
the work process as it was defined.

44 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

 Selected Edit Windows Help

Sticky

WETS – EnterDailyTime – Scenario Composition View
Scenario

HTML

HTML

HTML

HTML

HTML

HTML

HTML

S

nancySmith webBrowser webSener authorization dailyEntry db2_DB ims_DB RACE

endOfTask

logonRequest

URL

enterIDandPassword

IDandPasswork

displayPrompt

authorizationRequest

requestAuthorization

validateSignature

signatureAuthentic

getRecentData

recentData

recentData

getRecentData

displayMainPage

choosePage

dailyEntryPage

openDailySession

displayDailyPage

enterWorkTime

hoursandCode
AndJobnumber

data

goodEntry

requestValidation

dataValid

beginSession

updateRecord

Figure 4. UML event sequence diagram

Converging the Design of Work and the
Design of Supporting Software
Our intent is to support a technical engineering dia-
log between work process (WP) design and OO
design, based on quantifiable value to the business
and technical feasibility for the software. The goal of
this interactive design flow is a well-matched pair of
designs: a WP design that is valuable and Imple-
mentable; and a software design for business compo-
nents that is feasible and cost effective.

Figure 5 shows how such collaboration can take
place to promote convergence of the two design
tracks. The needed life cycle begins with an analysis
of an existing work process and proceeds through
component reuse for continuing work improve-
ments. The method is similar to that advocated by
Kyng [5] but it incorporates more of the software
developer’s responsibilities. It also clearly states what
each iteration should try to accomplish.

Initially the As-is WP should be modeled in terms
of user tasks and data to understand what improve-
ments are needed and how they may be accom-
plished. The WP’s performance qualities can be
measured or estimated to establish a baseline or to
help diagnose the sources of any poor performance.

The As-is software should also be modeled. Event
sequence diagrams can document how software cur-
rently works. The As-is software constrains the As-is
WP. That may be good or bad for the WP, but cur-
rently it is not dependably good.

The work analyst then determines how user work
processes should be changed. The new user work
processes are documented in the context of a Desired
WP model. The Desired model should generate
improved performance estimates on quality metrics.
The work model can be queried to obtain usage dis-
tributions on data over all user tasks. The distribu-
tions help define data requirements for supporting
the Desired WP. As was shown earlier, they can pro-
vide candidate definitions for business objects that
are given to the software designer as classes for
OOAD. Since containment defines the source of the
information, this part of the model is also valuable
for identifying reusable portions of legacy systems.
By explicitly modeling data sources we can also
begin defining reuse potential for any legacy systems
that may be available.

The software architect takes the preliminary
business requirements in the form of classes to
develop a Corresponding model of software. The
classes and use-cases from the WP can be elabo-
rated into interaction diagrams to analyze the tech-
nical feasibility of the required functionality. The
architect may compare requirements to common

business objects or other libraries for reuse.
The results of the feasibility analysis on the Cor-

responding object model can provide feedback to the
work designer as to whether the software can be cre-
ated to implement the Desired WP. It could well be
that the technical feasibility analysis by the OOAD
indicates a level of technical risk that is too high.
Alternately, technical possibilities may enable greater
improvements than the business analysts originally
realized. This prospect is just one reason why the
designers for work and the designers for software
must collaborate while they iterate their respective
designs.

The work designer can then perform a cost-ben-
efit analysis and a sensitivity analysis to determine
priorities for Feasible changes. This decision will
likely require several iterations between WP and
software models because the software analysis can
reveal both technical constraints and technical
possibilities. They need to be analyzed for their
impact on the WP. Several alternative combina-
tions of WP and supporting software may be
examined in order to arrive at a well-matched pair
of effective designs.

Further Technology Development
The methodological steps we have presented involve
the development of the WP model, including data
requirements, from use-cases, and the derivation of
business component definitions from cluster analysis
routines. The definitions can then be loaded as
classes for further OOAD work. But there are other
types of models that will be needed to enable a Con-
verging Life Cycle.

Business value simulation. There are two impor-
tant, related limitations on use-cases and scenarios.

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 45

Model of
As–is
WP

Model of
Desired

WP
change

Model of
Feasible

WP
change

Model of
Implemen-

table
software

Model of
Corres-
ponding
software
change

Model of
As–is

software

Business
requirements

feasibility
and

schedule

cost
effective
 require-
 ments

user
tasks

 Library of
 Business
 Components

Rigid
Application
Develop-

ment

Figure 5. Connections in the converging life cycle

Neither has any metric of “goodness” nor any
methodical way to estimate added value. When a
designer is faced with a choice between two alterna-
tives for a use-case there is no analytical way to
decide which is better. Estimating a return on
investment is one of the most common ways to
make business decisions. IDEF3 is complete enough
to support discrete event simulations of the Desired
WP. We have begun simulating work processes to
estimate the added value of a new work design. A
process-oriented view of use-cases can be built in
UML as Activity Diagrams. We should also investi-
gate how Activity Diagrams could be extended to
support the needed anlysis.

Software project estimation. Another missing
connection in the Converging Life Cycle (Figure 5)
is a cost and schedule estimate for developing the
needed support software. In our experience, UML
seems useful for assessing technical feasibility, but by
itself feasibility does not provide cost information. If
a UML model could provide input to a tool for esti-
mating the cost and schedule for the object-oriented
software development, then an investment decision
could be supported. The costs and time to support
the new work process could be compared to the ben-
efits estimate for implementing it. The structure of
UML is elaborate and it seems like an ideal situation
for investigating how well it could support project
estimation.

Reuse estimation. The connection between work
models and object models may have additional ben-
efits for estimating the reusability of software com-
ponents. The PathFinder networks provide a
methodical means to estimate the reuse potential for
business objects to respond to changing business
needs. From a statistical point of view, this is equiv-
alent to asking how sensitive the design of the
underlying software system is to changes in the work
processes that it supports.

Lessons Learned
The tool suite we have described is an advanced pro-
totype and only one example of how software and
work design can be connected through iterations.
The advantages of our particular example are three-
fold: it is a reliable and replicable method; it
addresses the entire system architecture; and once
the first pair of models has been built we can move
through additional iterations quickly.

The benefits of establishing the connection
between work and software design are much more
profound. If work process improvement is the goal,
then often an information system is the means to
achieve it. When the goal and its implementation

are defined in isolation the predictable result will be
partial success at best. Our tools are not a substitute
for insight or creativity in design, but they do pro-
mote a focus on the key issue of adding value to
work via computing applications that are technically
feasible and cost effective.

By planning a project around the two converging
design tracks we make an explicit place for both, and
at the same time promote an understanding of the
roles that the interdisciplinary project team should
perform. In our experience the results are very
promising in terms of excellent customer satisfac-
tion, on-time and within-budget delivery of high-
quality software, and very high team morale.

References
1. Butler, K., Esposito, C., and Klawitter, D. Designing more deeper. In

Proceedings of DIS’97. ACM, 1997.
2. Carroll, J.M. and Campbell, R.L. Artifacts as psychological theories:

The case of human-computer interaction. Behaviour and Info. Tech. 8,
4 (1989), 247–256.

3. Esposito, C. A graph-theoretic approach to conceptual clustering. In
Schvaneveldt, R.W. Pathfinder Associative Networks: Studies in Knowl-
edge Organization. Ablex, Norwood, NJ.

4. Hollingsworth, D. The workflow management coalition specification.
Workflow Management Coalition Document No. TC00-1003, 1995.

5. Kyng, M. Making representations work. Commun. ACM 38, 9 (Sept.
1995), 46–55.

6. Mayer, R., Cullinane, T., deWitte, P., Perakath, B., and Wells, M.
Information Integration for Concurrent Engineering (IICE): The IDEF3
Process Description Capture Method Report. USAF Armstrong Lab,
1992.

7. McCormick, E.J. Job Analysis: Methods and Applications. AMACOM,
NY, 1979.

8. Poltrock, S.E. and Grudin, J. Organizational obstacles to interface
design and development: Two participant-observer studies. ACM
Trans. Computer Human Interaction 1, (1994), 52–80.

9. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs,
NJ, 1991.

10. Schvaneveldt, R.W. Pathfinder Associative Networks: Studies in Knowl-
edge Organization. Ablex, Norwood, NJ, 1990.

11. Suchman, L. Representations of work. Commun. ACM 38, 9 (Sept.
1995), 33–34.

12. Tissot, R. and Crump, W. An integrated enterprise modeling environ-
ment. International Handbook of Architectures of Information Systems,
Volume 1. Springer-Verlag, 1998.

Keith A. Butler (keith.a.butler@boeing.com) is an Associate
Technical Fellow in the Applied Technology Division at Boeing.
Chris Esposito (christopher.esposito@boeing.com) is an Associate
Technical Fellow in the Applied Research and Technology Division
at Boeing.
Ron Hebron (ron.hebron@boeing.com) is a senior system
modeling analyst in the Applied Research and Technology Division
at Boeing.

Copyright is held by the Boeing Company.

0002-0782/99/0100

c

46 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

