
Chapter 1

GEOMETRIC UNCERTAINTY IN SOLIDMODELING

Pierre J. Malraison

PlanetCAD, Inc.,

Boulder Colorado, USA

pierre.malraison@planetcad.com

Bill Denker

PlanetCAD, Inc.,

Boulder Colorado, USA

bill denker@yahoo.com

Abstract In solid modeling geometric uncertainty arises in several settings. For
systems which use analytic solutions when possible it is necessary to
determine the type of a surface so that the correct analytic solver will
be used. In passing from 3-D space data to 2-D parametric data, the
algorithms used are vulnerable to geometric uncertainty { examples and
solutions from a project in a commercial solid modeler [ACIS, 2001] are
presented. For any solid modeler, there is a fundamental uncertainty
imposed by the use of exact logic for topology together with necessarily
inexact logic for geometry.

Keywords: solid modeling, data translation, healing, parametric surfaces

1. Introduction

This paper covers three types of geometric uncertainties arising in
the context of geometric modeling. First, uncertainty as to the type
of a surface, e.g., sphere or very un-eccentric ellipsoid. Second, uncer-
tainty about approximations arising from the mapping between parame-
ter space and three-space. Third, an epistemological uncertainty caused
by the fact that in a computer algorithms invloving topology demand

1

2

exact answers but the underlying geometric mechanisms only operate
within a given tolerance.

2. \Pure" Geometry

The classical example of geometric uncertainty in this area is the
quadratic formula. In theory (or for an in�nite precision computer) it
provides an exact solution to �nding the roots of a quadratic. In practice
it becomes numerically unstable close to singular points. This section
presents two other examples of this sort of phenomenon occurring in
geometric modelling.

2.1 Quadrics

[Levin, 1976] describes how to draw and intersect quadric surfaces us-
ing the discriminant of the matrix for the quadric. [Hakala, et. al. 1980]
discuss the geometric uncertainties arising from an actual implementa-
tion.

The technique is to represent a quadric surface as a 4�4 matrix Q. If
x is a vector in homogeneous cooridnates, the quadric surface is de�ned
by Q x QT = 0. Levin's algorithm then looks at the matrix P + �Q
having the simplest form to draw the curves on P \Q.

The uncertainty is: how to decide if Q is almost a sphere; do we treat
it as a sphere or an ellipsoid? In [Hakala, et. al. 1980] the issue was
avoided by restricting attention to a �xed set of quadrics which did not
include ellipsoids.

2.2 When is a cone too at?

One algorithm for intersecting a cone with a plane looks at the ellipses
formed by intersecting a bounding box with a cone. If the cone angle is
near 90o the radius of those ellipses can be very large. The de�nition of
\nearness" is arbitrary - in the software we use, the test was that the
cosine of the cone angle should be less than .1. This translates to about
85o.

B
B
B
B
B
BB

�
�
�
�
�
��

\regular" cone
```

`
   

 

\at" cone
Figure 1: Cones



Geometric Uncertainty in Solid Modeling 3

For very small values of the cosine of the cone angle it is better to
treat the cone as a plane. The threshhold used for this is quite tight:
1:0e�10. This is an arbitrary choice but has proven to be adquate in
practice.

2.3 Conic Sections

There are several di�erent ways to represent ellipses, parabolas and
hyperbolas, and none is stable for all conic-section curves. The classi�ca-
tion of a conic can be quite signi�cant, because the geometric properties
and algorithms can be very di�erent for the three types. For example, an
invariant of the common representation Ax2+Bxy+Cy2+Dx+Ey+F =
0 is the discriminant B2

� 4AC. This value is negative, zero or positive
for ellipses, parabolas or hyperbolas, respectively. In the corresponding
cases, the eccentricity is less than, equal to, or greater than 1. Analagous
situations arise in the rational quadratic representation, and even if the
conic were to be represented using a 3D conic and a plane. In all cases,
the curve is a parabola if one real number \equals" another. The value
of a oating-point tolerance will depend on the representation and the
application, and choosing an appropriate value can be very diÆcult.
Wilson [Wilson, 1987] provides a more detailed discussion.

3. Surface Inversion

This section presents examples of problems caused by geometric un-
certainty that arose during the development of a geometric algorithm
within a commercial solid modeler (ACIS [ACIS, 2001]). Some of the
problems were expected, and some were not.

The task was to invert curves on a surface: given a parametric surface
S(u; v) and a three-space curve C(t) lying on (or very near) the surface,
create the preimage P (t) of the curve in the parameter space of the
surface; i.e., S(P (t)) = C(t), within a given tolerance. The curve P (t),
whose range consists of uv positions in the domain of S(t); is termed a
pcurve.

Surface inversion is central to this algorithm: given a position xyz on
the surface, �nd a parameter position uv such that S(u; v) = xyz. The
xyz position may not be exactly on the surface, due to noisy data, but it
should be close. In the usual case, inverting a position requires �nding
a good uv guess if none is provided, and performing a two-dimensional
Newton-Raphson iteration to set to zero the distance from the given
position to the surface normal vector.



4

Vectors, as well as positions, must be inverted. Having inverted a
curve position C(t) onto the surface, so that S(u; v) corresponds to C(t),
the derivative of uv with respect to t is required. This amounts to writing
a vector (Ct) as a linear combination of two basis vectors ( Su and Sv
), i.e., �nd ut and vt such that Ct = utSu + vtSv. In the usual case,
inverting a vector requires solving a two-by-two linear system. In the
current algorithm, the parameter-space derivative uvt is used to �nd the
coeÆcients of the two-dimensional B-spline for the pcurve.

Each Newton step for inverting a position is the same problem as
inverting a vector, but there are di�erences in the requirements that
necessitate di�erent code for the two operations. The main di�erence is
that a Newton step is actually used to change a uv guess value, and large
steps probably represent a problem in the progress of the algorithm, but
a large vector in uv space is perfectly acceptable for �nding B-spline
coeÆcients, as long as it's accurate. For this reason, system routines
were suÆcient for position inversions, but a special routine had to be
written to invert a vector.

3.1 Expected Complications

3.1.1 Poles. A surface is singular when the surface parametric
normal vanishes, i.e., Su � Sv is the zero vector. The most common
reason for this is that one of the surface derivatives goes to zero. Singu-
larities include the poles of spheres, apices of cones, and the degenerate
edge of a three-sided patch represented as a four-sided tensor-product
spline.

As an example, consider a sphere, where u is the longitude, 0 <=
u < 2�, and v is the latitude, ��=2 <= v <= �=2. Then at the
north pole, Su is the degenerate derivative, and Sv runs into the pole.
When inverting an xyz point corresponding to the pole, any parameter
position (u; �=2) will map to that position, and the system inversion
routines will indeed return any value. For our purposes, however, the
value of u is signi�cant: the pcurve should be well behaved in parameter
space. For example, an incorrect u value can cause what should be an
isoparametric curve to take drastic turns near the pole. Analogously,
the vector-inversion method must return the correct uvt, so that the
derivative of the pcurve is correct in parameter space.



Geometric Uncertainty in Solid Modeling 5

Pole here

t
t

t

t

d t

Figure 2: Parametic pole
The basic solution to this is quite simple, and almost always works:

just make u the same as that of an adjacent point. The corresponding
solution for vector inversion is to set the degenerate component of the
parameter derivative to zero. This makes the pcurve go straight into the
pole along an isoparameter line, which in real-world models is almost
always the case.

3.1.2 Seams. Periodic surfaces add another complication. The
sphere again provides a good example: at any point along the prime
meridian, S(0; v) == S(2�; v), and an inversion algorithm could return
either 0 or 2� as the u value.

There are two cases here: the curve runs either along the seam, or
across it. If the curve is the seam curve, our algorithm deals with the
ambiguity by always returning the low edge of the period; at this level,
there is no information to decide otherwise. If the curve runs across
the seam, then we may assume that a point on the seam is either the
start or end of the curve. In this case, we check whether its direction
corresponds to increasing or decreasing u on the surface.

t t

t
t

t

Figure 3: Curve running along a seam

3.1.3 Incorrect Convergence. It is also possible for inver-
sion routines to converge to an incorrect solution. Because the position
to be inverted does not necessarily lie on the surface, the convergence
criterion is actually that xyz is on the surface normal vector, within
tolerance. Therefore, the inversion algorithms can converge to a local
distance maximum instead of a minimum. This was observed, for exam-
ple, on a large, thin torus. A special method was written to determine



6

whether a uv parameter position is the proper inversion of an xyz posi-
tion. It checks both whether the uv is a solution, and whether it appears
to be the correct solution.

3.2 Unexpected Complications

Even the expected complications such as periodicity and singularities
became problematic when dealing with real-world data.

3.2.1 Behavior Near Poles. In addition to dealing with
singularities, points that are very close to true singularities also need
special handling. If one derivative is extremely small compared to the
other, then Newton iteration steps can be meaningless. As an example,
consider inverting a position very near the pole of a sphere. The stan-
dard two-dimensional Newton step can, because of numerical noise, give
large steps in u. These large steps have almost no e�ect on the surface
position, but they can prevent the loop from settling into a solution.
This behavior arises when the three-space step is closely aligned with
the non-degenerate surface derivative. In that case, a tiny component in
the direction of the degenerate component, which could easily be nothing
more than numerical noise, can cause a macroscopic, and meaningless,
change in parameter value.

Figure 4: Parametric Degeneracy

!!!!!!!!!!!!!!!!!!!! -6

3.2.2 Detecting Poles. Even just deciding whether a uv pa-
rameter position corresponds to a singular point has caused problems.
There are two reasons for this. First, ACIS [ACIS, 2001] allows surface
singularities only on domain boundaries. Because of this, system meth-
ods �rst check whether the parameter position corresponds to a surface
parametric boundary, and if not, report that the point is nonsingular.
But imported data has been known to contain internal singularities, for
example where the surface passes through a pole and emerges, ipped,
on the other side.

Another reason why it can be diÆcult to determine whether a point is
singular is the age-old question, how small is a \zero" vector? Legitimate
derivatives have been encountered with magnitudes as small as 10�7 and



Geometric Uncertainty in Solid Modeling 7

as large as 107. This would indicate that tests for degeneracy should be
relative, not absolute. The basic criterion that is appropriate for this
application is the ratio of the magnitudes of the derivatives: if Su is, say,
10,000 times as big as Sv, then this parameter position is presumably
unstable and special care should be taken. Unfortunately, even that is
not enough in practice: counterexamples arise in which absolute tests
are required in addition to the relative tests.

For these reasons, more general methods for determining singularity
had to be written.

3.2.3 Pcurve Position and Direction at Poles. The new
pcurve algorithm was occasionally observed to create pcurves with very
many small segments, and not particularly good accuracy, as they came
into poles. The reason turned out to be that the curves were \curving"
into the pole, in parameter space. As described under expected compli-
cations, this is very rare in practice. New methods were required to �nd
the correct value { and derivative { of the degenerate parameter at the
pole.

In any event, a special method was written to decide whether a
parameter-space derivative is accurate. It simply checks the result in
three dimensions: it compares the given three-space vector with the
composition utSu + vtSv. As soon as the check routine is satis�ed, the
result is returned. If it is not able to calculate any result that will sat-
isfy the check routine, this fact is communicated to the calling routines,
which are then able to use other information to �nd an acceptable value
to be used in the pcurve spline.

3.2.4 Seams. As with poles, what exactly does it mean to
be \on" a seam? Periodicity checks might invoke system methods to
determine whether a value is within an interval. For a parameter value
t in an interval [a; b], system routines will return a <= t <= b, with the
interval perhaps even expanded by some epsilon. For our application
however, being within the base period of a periodic entity generally
means a <= t < b. For reasons such as these, local versions of some
system utility algorithms had to be written.

One numerical problem arose from a very tiny curve. The curve
crossed a seam in a generally perpendicular direction, and was longer
than the system tolerance, but so short that every point on it was within
tolerance of the seam. This somewhat pathological example necessitated
a change in the algorithm for determining whether a curve represents a
surface seam.



8

3.2.5 Bad Guesses. Newton-type iterations are famous for
having extremely fast convergence, if the guess is good, but also for
the possibility of pathologically bad behavior if the guess is not close
enough. The caller may or may not provide a guess, and if it does, the
guess could be too far away. This could be because the caller simply
uses a previous value as a guess, which would usually represent a good
guess, but not always. For example, if the curve corresponds to an
isoparametric longitude line on a sphere, steps can be very big.

A special method was written to check whether or not to use a given
guess. (If no guess is given, the system inversion routines will �nd one
themselves. That procedure is reliable, but slower, because it has less
information.) It �rst checks the proximity of the points: if they are very
close already, it returns TRUE. It then checks a trial Newton step, and
if that is too large, it returns FALSE. After that, it looks at curvatures
to see whether a Newton step could converge to an incorrect solution,
such as a relative maximum.

3.2.6 Incorrect Convergence. Convergence to an incorrect
solution could also be expected, but the exact nature of the problems
and the manner of dealing with them were not obvious during the design
phase, only when encountered.

Two factors conspired to make it diÆcult to determine whether a
given uv is the correct solution: the input curves can be a substantial
distance from their surfaces, and surfaces can be highly curved (such
as the large, thin torus). These two possibilities make it impossible to
determine a single tolerance value for the distance between S(u; v) and
xyz: the distance between the input curve and its surface can actually
be greater than the diameter of a surface.

The convergence-checking method must take this into account. It
actually uses two di�erent tolerance values: one to check whether the
given uv is a solution at all, and one to check whether it is the correct
solution. For two tolerance values called good tol and bad tol, the
algorithm is:

IF S(u; v) and xyz are themselves are within good tol, return TRUE;

IF xyz is not on surface normal to within good tol, return FALSE;

// This is a solution; check whether it's the correct one.

// Check the surface curvature:

IF xyz is at or beyond the center of curvature of the surface, return
FALSE; // wrong convergence;



Geometric Uncertainty in Solid Modeling 9

IF the points are farther apart than bad tol, return FALSE; // wrong
convergence;

The two tolerance values must be determined by the caller, and could
depend on the geometric situation.

4. Topology and Geometry

This is the central quandry of building boundary representations on
a computer: Topology is from Mars, Geometry is from Venus. Topolog-
ical relationships are logical { two faces either are or are not adjacent.
Geometric relationships are numerical { point a is the same as point b if
the distance between them is within some tolerance. This problem can
be managed within the context of a single modeler but becomes more
pronounced when dealing with data created externally. For example,
translating a CATIA model which was created with a tolerance of 10�3

into ACIS [ACIS, 2001] with a tolerance of 10�6.
There are two approaches to solving this problem: healing and tol-

erant topology. Several companies have addressed one or both of these
approaches, typically with proprietary algorithms. We present here an
overview.

4.1 Healing

Because of tolerance di�erences edges or faces which are supposed to
be adjacent appear not to be. Most healing software breaks the process
into two pieces: an analysis phase which �nds the parts of a solid which
need to be healed and a healing phase which does the healing.

Healing attempts to correct a wide range of problems. Here's a list
selected from the Theorem Solutions web site [Theorem, 2001]:

Remove a Sliver Face, with a maximum width of less than a de�ned
value.

Heal a whole body i.e. automatically modify edge curves and
surfaces to close gaps between the edges / surfaces and vertices /
curves.

Remove a Small Edge if the length is less than a de�ned value.

Remove a spike. This merges two adjacent edges of a face where
the angle between the two edges and the maximum width between
the two edges is small (e.g. removal of spike).

Split edges and rede�ne loops etc. at a face waist position i.e. if
two edges approach and are pinched other than at a mutual vertex



10

position within a given tolerance, split the edges if necessary at
that point.

Sew a group of unconnected faces with a given sewing tolerance.

4.2 Tolerant topology

To continue the analogy of our quotation, this approach moves topol-
ogy to Venus. In other words the notion of tolerant topology is intro-
duced, typically at the vertex and edge level.

The basic approach is to add a tolerance to the topological object:

B
B
B
B
B
BB

d
Tolerant vertex

B
B
B
B
B
BB

d�
�
�
�
�
��

i
Tolerant vertices

B
B
B
B
B
BB

�
�
�
�
�
��

n
Union

Figure 5: Tolerant topology

When two tolerant objects interact they inherit a larger tolerance.
From a theoretical point of view this would seem to lead inevitably to all
objects being reduced to a single tolerant vertex. In practice, tolerant
vertices tend to be isolated to fairly local parts of a solid model, for
example when doing variable radius blends with small radii.

References

Spatial Corporation, a Dassault Systemes, S.A. company ACIS 3D Geo-
metric Modeler (ACIS), http://www.spatial.com/products/Toolkit/toolkit.htm,

D.G. Hakala, R. C. Hillyard, P. Malraison, B. E. Nourse, Natural quadrics
in mechanical design, Proc - AUTOFACT West, Vol. 1, CAD/CAM 8,
Anaheim, Calif, USA, November 17-20, 1980 Publ by SME, Dearborn,
Mich, USA, 1980, 363{378

J. Levin, A parametric algorithm for drawing pictures of solid objects
composed of quadric surfaces, Communications of the ACM, Vol. 19,
No. 10, 1976, 555{563

Theorem Solutions, Ltd. CADhealer information, http://www.theorem.co.uk/docs/cadheinfo.htm
P. Wilson, Conic Representations for shape descriptions, IEEE Com-

puter Grahics and Applications, Vol. 7, No. 4, 1987, 23{30


